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Introduzione

 Riferimenti
 Opengl 2.0 

http://www.opengl.org/documentation/opengl_current_version.html
 GLSL official specs 

http://www.opengl.org/documentation/oglsl.html
 GLSL stands for GL Shading Language 

 Tutorials 
 http://www.lighthouse3d.com/opengl/glsl/index.php?intro
 Il sito dell'orange book http://www.3dshaders.com/
 Shader Designer 

http://www.typhoonlabs.com/index.php?action=developer.htm
 Render Monkey 

http://www.ati.com/developer/rendermonkey/index.html

http://www.opengl.org/documentation/opengl_current_version.html
http://www.opengl.org/documentation/oglsl.html
http://www.lighthouse3d.com/opengl/glsl/index.php?intro
http://www.3dshaders.com/
http://www.typhoonlabs.com/index.php?action=developer.htm
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Pipeline Again

Molto semplificata

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Pipeline Again

Molto semplificata




5

Vertex Transformation

Input
Vertex attributes (pos norm color ecc)

Operation Performed
 Vertex position transformation
 Lighting computations per vertex
 Generation and transformation of texture 

coordinates



6

Primitive Assembly e Raster

Input
Transformed vertexes
Connectivity info

Operation Performed
Clipping and backface culling
Determinazione posizione frammenti
Generazione per ogni frammento attributi 

interpolati
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Fragment Texturing e Coloring

Input
The pixels location
The fragments depth and color values
Tex coord arrivano gia' preparate...

The common end result of this stage per 
fragment is a color value and a depth for 
the fragment
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Shaders

In pratica si rimpiazza alcune 
funzionalita
Vertex shaders may be written for the Vertex 

Transformation stage.
Fragment shaders replace the Fragment 

Texturing and Coloring stage's 
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Vertex Processor

The vertex processor is responsible for 
running the vertex shaders. 

The input for a vertex shader is the 
vertex data: 
namely its position, color, normals, etc, 

depending on what the OpenGL application 
sends.
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Vertex Processor

vertex shader tasks:
Vertex position transformation using the 

modelview and projection matrices
Normal transformation, and if required its 

normalization
Texture coordinate generation and 

transformation
Lighting per vertex or computing values for 

lighting per pixel
Color computation
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 Vertex Processor 

No requirement to perform all the 
operations above,
When a vertex shader is used it becomes 

responsible for replacing all the needed 
functionality of this stage of the pipeline.
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ShaderGen

Un tool per generare glsl shaders che 
ricalchino esattamente il comportamento 
della fixed pipleine di opengl in un dato 
setup

http://developer.3dlabs.com/downloads/shadergen/
Nota l'ultima ver richiede opengl2.0 drivers...

http://developer.3dlabs.com/downloads/shadergen/
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Vertex processor

The vertex processor has no information 
regarding connectivity, 
operations that require topological knowledge 

can't be performed in here. 
not possible for a vertex shader to perform 

back face culling, since it operates on vertices 
and not on faces. 

The vertex processor processes vertices 
of a triangle individually 
no clue of the remaining vertices.
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Vertex Processor

The vertex shader is responsible for at 
least writing a variable: gl_Position, 
usually transforming the vertex with the 
modelview and projection matrices.

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Vertex Processor

Access to OpenGL state,
 so it can perform operations that involve 

lighting for instance, and use materials. 

It can also access textures 
only available in the newest hardware

No access to the frame buffer.
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Fragment Processor

The fragment processor is where the 
fragment shaders run:
Computing colors, and texture coordinates per 

pixel
Texture application
Fog computation
Computing normals if you want lighting per 

pixel
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Fragment Processor

Inputs
interpolated values computed in the previous 

stage of the pipeline such as vertex positions, 
colors, normals, etc...

In the vertex shader these values are 
computed for each vertex. 

As in the vertex processor, fragment 
shader it replaces all the fixed 
functionality. 
not possible to have a fragment shader 

texturing the fragment and leave the fog for 
the fixed functionality.
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Fragment Processor

The fragment processor operates on 
single fragments: 
i.e. it has no clue about the neighboring 

fragments. 
The shader has access to OpenGL state, 

similar to the vertex shaders, and therefore it 
can access for instance the fog color specified 
in an OpenGL application.
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Fragment Processor

Fragment shader can't change the pixel 
coordinate:
Recall that in the vertex processor the 

modelview and projection matrices can be 
used to transform the vertex. 

The fragment shader has access to the 
pixels location on screen but it can't 
change it 
Si sa dove si va a finire ma non ci si puo' fare 

molto...
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Fragment

A fragment shader has two output 
options:
discard fragment, hence outputting nothing
to compute 

gl_FragColor (the final color of the fragment), or
gl_FragData when rendering to multiple targets.

Depth can also be written although it is not 
required since the previous stage already has 
computed it.

Notice that the fragment shader has no 
access to the frame buffer. 
blending occur only after the fragment shader 

has run.
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Using Shaders

Ricetta per usare gli shader
Two extensions are required:

GL_ARB_fragment_shader 
GL_ARB_vertex_shader 

Similar to write a C program. 
Each shader is like a C module, and it must be 

compiled separately, as in C. 
The set of compiled shaders, is then linked 

into a program, exactly as in C.
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Using Shaders
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Using Shaders

1) Creating an object which will act as a 
shader container. 
GLhandleARB glCreateShaderObjectARB(

GLenum shaderType);
 shaderType - 

GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

as many shaders as you want to add to a 
program, 
only ONE main function for the set of vertex 

shaders and ONE main function for the set of 
fragment shaders in each single program.
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Using Shaders2

2) add some source code. 
The source code for a shader is a string array 

(can be reused)
void glShaderSourceARB(

GLhandleARB shader, int numOfStrings, const 
char **strings, int *lenOfStrings);
shader - the handler to the shader.
numOfStrings - the number of strings in the array.
strings - the array of strings.
lenOfStrings - an array with the length of each 

string, or NULL, meaning that the strings are NULL 
terminated
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Using Shaders3

Finally, the shader must be compiled. 
The function to achieve this is:
void glCompileShaderARB(GLhandleARB 

program);

Parameters:
program - the handler to the program
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Using Shader Program

1) creating an object which will act as a 
program container. 

The function available for this purpose returns a 
handle for the container.

GLhandleARB 
glCreateProgramObjectARB(void);

As many programs as you want. 
On rendering, you can switch from program to 

program, and even go back to fixed 
functionality during a single frame. 
For instance you may want to draw a teapot with 

refraction and reflection shaders, while having a 
cube map displayed for background using 
OpenGL's fixed functionality.
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Using Shader Programs

2) To attach a shader to a program use the 
function:
void glAttachObjectARB(GLhandleARB 

program, GLhandleARB shader);
program - the handler to the program.
shader - the handler to the shader to attach.

If you have a pair vertex/fragment of shaders 
you'll need to attach both to the program. 
many shaders of the same type (vertex or 

fragment) attached to the same program
for each shader type only be one main function
the same vertex shader in several programs. 
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Using Shader Programs

3) Link the compiled shaders into program
void glLinkProgramARB(GLhandleARB 

program);
After the link operation the shader's source 

can be modified, and the shaders recompiled 
without affecting the program.

To actually load and use the program
glUseProgramObjectARB(GLhandleARB prg);

prg - the handler to the program you want to use, 
or zero to return to fixed functionality 

Each program is assigned an handler,
you can have as many programs linked and ready 

to use as you want (and your hardware allows).
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Example
void setShaders() {

v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

char *vs = textFileRead("toon.vert");
char *fs = textFileRead("toon.frag");

const char * vv = vs;
const char * ff = fs;

glShaderSourceARB(v, 1, &vv,NULL);
glShaderSourceARB(f, 1, &ff,NULL);

free(vs);free(fs);

glCompileShaderARB(v);
glCompileShaderARB(f);

p = glCreateProgramObjectARB();

glAttachObjectARB(p,v);
glAttachObjectARB(p,f);

glLinkProgramARB(p);
glUseProgramObjectARB(p);
}
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Cleaning Up

void glDetachObjectARB(GLhandleARB 
program, GLhandleARB shader);
program - The program to detach from.
shader - The shader to detach.

Only shaders that are not attached can 
be deleted so this operation is not 
irrelevant.
void glDeleteObjectARB(GLhandleARB id);
In the case of a shader that is still attached , 

it is not deleted, but marked for deletion. 
The delete operation will only be concluded when 

the shader is no longer attached to any program, 
(i.e.detached from all programs it was attached to)
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Communicating

La parte interessante
Come si passa le informazioni tra 

l'applicazione il vertex shader e il fragment 
shader

ONE WAY
 the only output from a shader is to render to 

some targets, usually the color and depth buffers.

Opengl state
shader has access to part of the OpenGL state

In this context, GLSL has two types of 
variable qualifiers 
Uniform
Attribute
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Uniform variables

 A uniform variable can have its value 
changed by primitive only, i.e., 
its value can't be changed between a 

glBegin / glEnd pair. 
it can't be used for vertices attributes
for values that remain constant along a 

primitive, frame, or even the whole scene. 
Uniform variables can be read (but not 

written) in both vertex and fragment shaders
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Uniform Variables

Get the memory location of the variable. 
Note that this information is only available after you 

link the program.

GLint glGetUniformLocationARB(
GLhandleARB program, const char *name);
program - the handler to the program
name - the name of the variable.
The return value is the location of the variable, which 

can then be used to assign values to it:
void glUniform1fARB(GLint location, GLfloat v0);
GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei 

count, GLfloat *v);
GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei 

count, GLboolean transpose, GLfloat *v);




34

Attribute Variables

Set variables per vertex 
Attribute variables can only be read (not 

written) in a vertex shader
GLint glGetAttribLocationARB(GLhandleARB 

program,char *name);
void glVertexAttrib2fARB(GLint location, GLfloat 

v0, GLfloat v1);
void glEnableVertexAttribArrayARB(GLint loc);
void glVertexAttribPointerARB(GLint loc, GLint size, 

GLenum type, GLboolean normalized, GLsizei 
stride, const void *pointer);
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Data Types

float bool int
vec{2,3,4} bvec{2,3,4} ivec{2,3,4}
mat2 mat3 mat4
sampler1D, sampler2D, sampler3D 

samplerCube

Note
No auto type cast
Many access modes

vec4 a = vec4(1.0,2.0,3.0,4.0);
float posX = a.x;
float posY = a[1];
vec2 posXY = a.xy;
float depth = a.w
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Functions

Simili al in c
No return of array
No recursion
Overload solo se lista param differente

Qualifiers of  parameters of a function:
in - for input parameters
out - for outputs of the function. The return 

statement is also an option for  sending the 
result of a function.

inout - for parameters that are both input and 
output of a function
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Varying Variables

Defined in the vertex shader
Are received linearly interpolated in the 

fragment shader
eg. to have a per-fragment normal

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Hello GLSL

Vertex shader
void main()
{

gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * 
gl_Vertex;

}

Fragment Shader
void main()
{

gl_FragColor = vec4(0.4,0.4,0.8,1.0);
}
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Hello GLSL

Vertex shader
void main()
{

gl_Position = ftransform();
}

Fragment Shader
void main()
{

gl_FragColor = vec4(0.4,0.4,0.8,1.0);
}
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Hello GLSL

Vertex shader
attribute vec4 gl_Color;
varying vec4 gl_FrontColor; // writable on the vertex shader
varying vec4 gl_BackColor; // writable on the vertex shadervoid 
void main()
{

gl_FrontColor = gl_Color;
gl_Position = ftransform();

}

Fragment Shader
varying vec4 gl_Color; // readable on the fragment shader
void main()
{

gl_FragColor = gl_Color;
}
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Toon shading minimo

Vertex shader
attribute vec4 gl_Color;
varying vec4 gl_FrontColor; // writable on the vertex shader
varying vec4 gl_BackColor; // writable on the vertex shadervoid 
void main()
{

gl_FrontColor = gl_Color;
gl_Position = ftransform();

}

Fragment Shader
varying float intensity;
void main()
{
vec4 color;
if (intensity > 0.95) color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5) color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)color = vec4(0.4,0.2,0.2,1.0);
else color = vec4(0.2,0.1,0.1,1.0);
gl_FragColor = color;
}


