
1

Fondamenti di
Grafica Tridimensionale

Paolo Cignoni
p.cignoni@isti.cnr.it

http://vcg.isti.cnr.it/~cignoni

2

Introduzione

 Riferimenti
 Opengl 2.0

http://www.opengl.org/documentation/opengl_current_version.html
 GLSL official specs

http://www.opengl.org/documentation/oglsl.html
 GLSL stands for GL Shading Language

 Tutorials
 http://www.lighthouse3d.com/opengl/glsl/index.php?intro
 Il sito dell'orange book http://www.3dshaders.com/
 Shader Designer

http://www.typhoonlabs.com/index.php?action=developer.htm
 Render Monkey

http://www.ati.com/developer/rendermonkey/index.html

http://www.opengl.org/documentation/opengl_current_version.html
http://www.opengl.org/documentation/oglsl.html
http://www.lighthouse3d.com/opengl/glsl/index.php?intro
http://www.3dshaders.com/
http://www.typhoonlabs.com/index.php?action=developer.htm

3

Pipeline Again

Molto semplificata


4

Pipeline Again

Molto semplificata


5

Vertex Transformation

Input
Vertex attributes (pos norm color ecc)

Operation Performed
 Vertex position transformation
 Lighting computations per vertex
 Generation and transformation of texture

coordinates

6

Primitive Assembly e Raster

Input
Transformed vertexes
Connectivity info

Operation Performed
Clipping and backface culling
Determinazione posizione frammenti
Generazione per ogni frammento attributi

interpolati

7

Fragment Texturing e Coloring

Input
The pixels location
The fragments depth and color values
Tex coord arrivano gia' preparate...

The common end result of this stage per
fragment is a color value and a depth for
the fragment

8

Shaders

In pratica si rimpiazza alcune
funzionalita
Vertex shaders may be written for the Vertex

Transformation stage.
Fragment shaders replace the Fragment

Texturing and Coloring stage's

9

Vertex Processor

The vertex processor is responsible for
running the vertex shaders.

The input for a vertex shader is the
vertex data:
namely its position, color, normals, etc,

depending on what the OpenGL application
sends.

10

Vertex Processor

vertex shader tasks:
Vertex position transformation using the

modelview and projection matrices
Normal transformation, and if required its

normalization
Texture coordinate generation and

transformation
Lighting per vertex or computing values for

lighting per pixel
Color computation

11

 Vertex Processor

No requirement to perform all the
operations above,
When a vertex shader is used it becomes

responsible for replacing all the needed
functionality of this stage of the pipeline.

12

ShaderGen

Un tool per generare glsl shaders che
ricalchino esattamente il comportamento
della fixed pipleine di opengl in un dato
setup

http://developer.3dlabs.com/downloads/shadergen/
Nota l'ultima ver richiede opengl2.0 drivers...

http://developer.3dlabs.com/downloads/shadergen/

13

Vertex processor

The vertex processor has no information
regarding connectivity,
operations that require topological knowledge

can't be performed in here.
not possible for a vertex shader to perform

back face culling, since it operates on vertices
and not on faces.

The vertex processor processes vertices
of a triangle individually
no clue of the remaining vertices.

14

Vertex Processor

The vertex shader is responsible for at
least writing a variable: gl_Position,
usually transforming the vertex with the
modelview and projection matrices.


15

Vertex Processor

Access to OpenGL state,
 so it can perform operations that involve

lighting for instance, and use materials.

It can also access textures
only available in the newest hardware

No access to the frame buffer.

16

Fragment Processor

The fragment processor is where the
fragment shaders run:
Computing colors, and texture coordinates per

pixel
Texture application
Fog computation
Computing normals if you want lighting per

pixel

17

Fragment Processor

Inputs
interpolated values computed in the previous

stage of the pipeline such as vertex positions,
colors, normals, etc...

In the vertex shader these values are
computed for each vertex.

As in the vertex processor, fragment
shader it replaces all the fixed
functionality.
not possible to have a fragment shader

texturing the fragment and leave the fog for
the fixed functionality.

18

Fragment Processor

The fragment processor operates on
single fragments:
i.e. it has no clue about the neighboring

fragments.
The shader has access to OpenGL state,

similar to the vertex shaders, and therefore it
can access for instance the fog color specified
in an OpenGL application.

19

Fragment Processor

Fragment shader can't change the pixel
coordinate:
Recall that in the vertex processor the

modelview and projection matrices can be
used to transform the vertex.

The fragment shader has access to the
pixels location on screen but it can't
change it
Si sa dove si va a finire ma non ci si puo' fare

molto...

20

Fragment

A fragment shader has two output
options:
discard fragment, hence outputting nothing
to compute

gl_FragColor (the final color of the fragment), or
gl_FragData when rendering to multiple targets.

Depth can also be written although it is not
required since the previous stage already has
computed it.

Notice that the fragment shader has no
access to the frame buffer.
blending occur only after the fragment shader

has run.

21

Using Shaders

Ricetta per usare gli shader
Two extensions are required:

GL_ARB_fragment_shader
GL_ARB_vertex_shader

Similar to write a C program.
Each shader is like a C module, and it must be

compiled separately, as in C.
The set of compiled shaders, is then linked

into a program, exactly as in C.

22

Using Shaders

23

Using Shaders

1) Creating an object which will act as a
shader container.
GLhandleARB glCreateShaderObjectARB(

GLenum shaderType);
 shaderType -

GL_VERTEX_SHADER_ARB or
GL_FRAGMENT_SHADER_ARB.

as many shaders as you want to add to a
program,
only ONE main function for the set of vertex

shaders and ONE main function for the set of
fragment shaders in each single program.

24

Using Shaders2

2) add some source code.
The source code for a shader is a string array

(can be reused)
void glShaderSourceARB(

GLhandleARB shader, int numOfStrings, const
char **strings, int *lenOfStrings);
shader - the handler to the shader.
numOfStrings - the number of strings in the array.
strings - the array of strings.
lenOfStrings - an array with the length of each

string, or NULL, meaning that the strings are NULL
terminated

25

Using Shaders3

Finally, the shader must be compiled.
The function to achieve this is:
void glCompileShaderARB(GLhandleARB

program);

Parameters:
program - the handler to the program

26

Using Shader Program

1) creating an object which will act as a
program container.

The function available for this purpose returns a
handle for the container.

GLhandleARB
glCreateProgramObjectARB(void);

As many programs as you want.
On rendering, you can switch from program to

program, and even go back to fixed
functionality during a single frame.
For instance you may want to draw a teapot with

refraction and reflection shaders, while having a
cube map displayed for background using
OpenGL's fixed functionality.

27

Using Shader Programs

2) To attach a shader to a program use the
function:
void glAttachObjectARB(GLhandleARB

program, GLhandleARB shader);
program - the handler to the program.
shader - the handler to the shader to attach.

If you have a pair vertex/fragment of shaders
you'll need to attach both to the program.
many shaders of the same type (vertex or

fragment) attached to the same program
for each shader type only be one main function
the same vertex shader in several programs.

28

Using Shader Programs

3) Link the compiled shaders into program
void glLinkProgramARB(GLhandleARB

program);
After the link operation the shader's source

can be modified, and the shaders recompiled
without affecting the program.

To actually load and use the program
glUseProgramObjectARB(GLhandleARB prg);

prg - the handler to the program you want to use,
or zero to return to fixed functionality

Each program is assigned an handler,
you can have as many programs linked and ready

to use as you want (and your hardware allows).

29

Example
void setShaders() {

v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

char *vs = textFileRead("toon.vert");
char *fs = textFileRead("toon.frag");

const char * vv = vs;
const char * ff = fs;

glShaderSourceARB(v, 1, &vv,NULL);
glShaderSourceARB(f, 1, &ff,NULL);

free(vs);free(fs);

glCompileShaderARB(v);
glCompileShaderARB(f);

p = glCreateProgramObjectARB();

glAttachObjectARB(p,v);
glAttachObjectARB(p,f);

glLinkProgramARB(p);
glUseProgramObjectARB(p);
}

30

Cleaning Up

void glDetachObjectARB(GLhandleARB
program, GLhandleARB shader);
program - The program to detach from.
shader - The shader to detach.

Only shaders that are not attached can
be deleted so this operation is not
irrelevant.
void glDeleteObjectARB(GLhandleARB id);
In the case of a shader that is still attached ,

it is not deleted, but marked for deletion.
The delete operation will only be concluded when

the shader is no longer attached to any program,
(i.e.detached from all programs it was attached to)

31

Communicating

La parte interessante
Come si passa le informazioni tra

l'applicazione il vertex shader e il fragment
shader

ONE WAY
 the only output from a shader is to render to

some targets, usually the color and depth buffers.

Opengl state
shader has access to part of the OpenGL state

In this context, GLSL has two types of
variable qualifiers
Uniform
Attribute

32

Uniform variables

 A uniform variable can have its value
changed by primitive only, i.e.,
its value can't be changed between a

glBegin / glEnd pair.
it can't be used for vertices attributes
for values that remain constant along a

primitive, frame, or even the whole scene.
Uniform variables can be read (but not

written) in both vertex and fragment shaders

33

Uniform Variables

Get the memory location of the variable.
Note that this information is only available after you

link the program.

GLint glGetUniformLocationARB(
GLhandleARB program, const char *name);
program - the handler to the program
name - the name of the variable.
The return value is the location of the variable, which

can then be used to assign values to it:
void glUniform1fARB(GLint location, GLfloat v0);
GLint glUniform{1,2,3,4}fvARB(GLint location, GLsizei

count, GLfloat *v);
GLint glUniformMatrix{2,3,4}fvARB(GLint location, GLsizei

count, GLboolean transpose, GLfloat *v);


34

Attribute Variables

Set variables per vertex
Attribute variables can only be read (not

written) in a vertex shader
GLint glGetAttribLocationARB(GLhandleARB

program,char *name);
void glVertexAttrib2fARB(GLint location, GLfloat

v0, GLfloat v1);
void glEnableVertexAttribArrayARB(GLint loc);
void glVertexAttribPointerARB(GLint loc, GLint size,

GLenum type, GLboolean normalized, GLsizei
stride, const void *pointer);

35

Data Types

float bool int
vec{2,3,4} bvec{2,3,4} ivec{2,3,4}
mat2 mat3 mat4
sampler1D, sampler2D, sampler3D

samplerCube

Note
No auto type cast
Many access modes

vec4 a = vec4(1.0,2.0,3.0,4.0);
float posX = a.x;
float posY = a[1];
vec2 posXY = a.xy;
float depth = a.w

36

Functions

Simili al in c
No return of array
No recursion
Overload solo se lista param differente

Qualifiers of parameters of a function:
in - for input parameters
out - for outputs of the function. The return

statement is also an option for sending the
result of a function.

inout - for parameters that are both input and
output of a function

37

Varying Variables

Defined in the vertex shader
Are received linearly interpolated in the

fragment shader
eg. to have a per-fragment normal


38

Hello GLSL

Vertex shader
void main()
{

gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix *
gl_Vertex;

}

Fragment Shader
void main()
{

gl_FragColor = vec4(0.4,0.4,0.8,1.0);
}

39

Hello GLSL

Vertex shader
void main()
{

gl_Position = ftransform();
}

Fragment Shader
void main()
{

gl_FragColor = vec4(0.4,0.4,0.8,1.0);
}

40

Hello GLSL

Vertex shader
attribute vec4 gl_Color;
varying vec4 gl_FrontColor; // writable on the vertex shader
varying vec4 gl_BackColor; // writable on the vertex shadervoid
void main()
{

gl_FrontColor = gl_Color;
gl_Position = ftransform();

}

Fragment Shader
varying vec4 gl_Color; // readable on the fragment shader
void main()
{

gl_FragColor = gl_Color;
}

41

Toon shading minimo

Vertex shader
attribute vec4 gl_Color;
varying vec4 gl_FrontColor; // writable on the vertex shader
varying vec4 gl_BackColor; // writable on the vertex shadervoid
void main()
{

gl_FrontColor = gl_Color;
gl_Position = ftransform();

}

Fragment Shader
varying float intensity;
void main()
{
vec4 color;
if (intensity > 0.95) color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5) color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)color = vec4(0.4,0.2,0.2,1.0);
else color = vec4(0.2,0.1,0.1,1.0);
gl_FragColor = color;
}

