Fondamenti di Grafica Tridimensionale

Paolo Cignoni

p.cignoni@isti.cnr.it

http://vcg.isti.cnr.it/~cignoni

Simplification Algorithms

- Simplification approaches:
 - incremental methods based on local updates
 - mesh decimation [Schroeder et al. 92]
 - energy function optimization [Hoppe et al. 93,96,97]
 - quadric error metrics [Garland et al. '97]
 - coplanar facets merging
 - ❖ [Hinker et al. `93, Kalvin et al. `96]
 - Re-tiling
 - ❖[Turk `92]
 - Clustering
 - [Rossignac et al. `93, ... + others]
 - Wavelet-based
 - ❖[Eck et al. `95, + others]

Incremental methods based on Iocal updates

- *All of the methods such that:
 - simplification proceeds as a sequence of *local* updates
 - each update reduces mesh size and [monotonically] decreases the approximation precision

- Different approaches:
 - *mesh decimation
 - energy function optimization
 - quadric error metrics

... Incremental methods based on *local updates* ...

Local update actions:

vertex removal

No. Faces

- edge collapse
 - preserve location
 - new location

- *triangle collapse
 - preserve location
 - new location

... Incremental methods based on *local updates* ...

The common framework:

loop

- *select the element to be deleted/collapsed;
- evaluate approximation introduced;
- update the mesh after deletion/collapse;

until mesh size/precision is satisfactory;

Energy function optimization

Mesh Optimization

[Hoppe et al. `93]

- Simplification based on the iterative execution of :
 - edge collapsing
 - edge split
 - edge swap

approximation quality evalued with an energy function :

$$E(M) = E_{dist}(M) + E_{rep}(M) + E_{spring}(M)$$

which evaluates geometric fitness and repr. compactness

E_{dist}: sum of squared distances of the original points from M

 \mathbf{E}_{rep} : factor proportional to the no. of vertex in M

 $\mathbf{E}_{\mathsf{spring}}$: sum of the edge lenghts

Algorithm structure

- outer minimization cicle (*discrete* optimiz. probl.)
 - choose a legal action (edge collapse, swap, split) which reduces the energy function
 - perform the action and update the mesh (M_i -> M_{i+1})
- inner minimization cicle (*continuous* optimiz. probl.)
 - \bullet optimize the vertex positions of M $_{_{i+1}}$ with respect to the initial mesh M $_{\scriptscriptstyle 0}$

but (to reduce complexity)

- legal action selection is random
- inner minimization is solved in a fixed number of iterations

Mesh Optimization - Examples

[Image by Hoppe et al.]

Mesh Optimization - Evaluation

- high quality of the results
- preserves topology, re-sample vertices
- high processing times
- not easy to implement
- not easy to use (selection of tuning parameters)
- adopts a global error evaluation, but the resulting approximation is not bounded

... Energy function optimization: **Progressive**

Meshes ...

Progressive Meshes [Hoppe `96]

- execute edge collapsing only to reduce the energy function
- edge collapsing can be easily inverted ==> store sequence of inverse vertex split trasformations to support:
 - multiresolution
 - progressive transmission
 - selective refinements
 - geomorphs

faster than MeshOptim.

... Energy function optimization: **Progressive Meshes** ...

Preserving mesh *appearance*

- shape and crease edges
- scalar fields discontinuities (e.g. color, normals)
- discontinuity curves

[image by H. Hoppe]

Managed by inserting two new components in the *energy function*:

- ❖ E_{scalar}: measures the accuracy of scalar attributes
- E_{disc}: measure the geometric accuracy of discontinuity curves

... Energy function optimization: **Progressive Meshes** ...

Progressive Meshes *Examples*

... Energy function optimization: Progressive Meshes...

Progressive Meshes - Evaluation

- high quality of the results
- preserves topology, re-sample vertices
- not easy to implement
- not easy to use (selection of tuning parameters)
- adopts a global error evaluation, not-bounded approximation
- preserves vect/scalar attributes (e.g. color)
 discontinuities
- supports multiresolution output, geometric morphing, progressive transmission, selective refinements
- much faster than MeshOpt.

An implementation is present as parto of DirectX 6.0 tools

Decimation

Mesh Decimation

[Schroeder et al'92]

- Based on controlled removal of vertices
- Classify vertices as removable or not (based on local topology / geometry and required precision)

Loop

- choose a removable vertex v_i
- \diamond delete \mathbf{v}_i and the incident faces
- re-triangulate the hole

until

no more removable vertex **or** reduction rate fulfilled

General method (manifold/non-manifold input)

Algorithm phases:

- topologic classification of vertices
- *evaluation of the decimation criterion (error evaluation)
- re-triangulation of the removed triangles patch

Topologic classification of vertices

for each vertex: find and characterize the loop of incident faces

- interior edge: if dihedral angle between faces < k_{angle} (k_{angle}: user driven parameter)
- >not-removable vertices: complex,
 [corner]

Decimation criterion -- a vertex ... Decimation ... is removable if:

*simple vertex:

if distance vertex - face loop average plane is lower than ε_{max}

boundary / interior / corner vertices:

if distance vertex - new boundary/interior edge is lower than ϵ_{max}

- adopts local evaluation of the approximation!!
- \bullet ϵ_{max} : value selected by the user

Re-triangulation

- * face loops in general non planar! (but star-shaped)
- adopts recursive loop splitting re-triangulation

control aspect ratio to ensure simplified mesh quality

- for each vertex removed:
 - *♦if* simple or boundary vertex ==> 1 loop
 - *♦if* interior edge vertex ==> 2 loops
 - ❖if boundary vertex ==> 1 face
 - **otherwise* ==> 2 faces

... Decimation...

Decimation - Examples

Full Resolution (569K Gouraud shaded triangles)

75% decimated (142K Gouraud shaded triangles)

75% decimated (142K flat shaded triangles)

90% decimated (57K flat shaded triangles)

(images by W. Lorensen)

Original Mesh Decimation - Evaluation

- good efficiency (speed & reduction rate)
- simple implementation and use
- good approximation
- preserves topology; vertices are a subset of the original ones
- error is not bounded (local evaluation ==> accumulation
 of error!!)

Approximation Error Evaluation

Classification of simplification methods based on **approximation error** evaluation euristics:

locally-bounded error, based on mesh distances
[ex. standard Mesh Decimation]

globally bounded error, based on mesh distances
[ex. Envelopes + enhanced Decimation + others]

- control based on mesh characteristics[ex. vertex proximity, mesh curvature]
- energy function evaluation
 [ex. Mesh Optim. , Progr. Meshes]

User' viewpoint:

- simple to grasp
- simple to drive

not easy, many
parameters to be
selected

Heuristics proposed for **global error evaluation**:

accumulation of local errors
[Ciampalini97]
fast, but approximate

vertex--to--simplified mesh distance [Soucy96]

requires storing which of the original vertices maps to each simplified face; very near to exact value (but large under-estimation in the first steps)

... Heuristics proposed for **global error evaluation**:

- input mesh -- to -- simplified mesh <u>edges</u> distance
 [Ciampalini97]
 - for each internal edge:
 - select sampling points p_i (regularly/random)
 - \diamond evaluate distance d(M₀, **p**_i)

sufficiently precise and efficient in time

input mesh -- to -- simplified mesh distance [Klein96]
precise, but more complex in time

• use envelopes [Cohen et al.'96] precise, no self-intersections but complex in time and to be implemented

Enhancing Decimation -- Simplification Envelopes

Simplification Envelopes [Cohen et al.'96]

- given the input mesh M
 - \clubsuit build two envelope meshes M_{-} and M_{+} at distance $-\zeta$ and $+\zeta$ from M;
 - simplify M (following a decimation approach) by enforcing the decimation criterion:
 - a candidate vertex may be removed **only if** the new triangle patch does not intersect neither M_{-} or M_{+}

... Enhancing Decimation - Simplification Envelopes ...

by construction, envelopes do not self-intersect
 ==> simplified mesh is not self-intersecting !!

- distance between envelopes becomes smaller near the bending sections, and simplification harder
- border tubes are used to manage open boundaries

(drawing by A. Varshney)

... Enhancing Decimation - Simplification Envelopes ...

Simplification Envelopes - Evaluation

- works on manifold surface only
- bounded approximation
- construction of envelopes and intersection tests are not cheap
- three times more RAM (input mesh + envelopes + border tubes)
- preserve topology, vertices are a subset of the original, prevents self-intersection

available in public domain

Results

❖ Simplification times ~= linear with mesh size

Construction of a multiresolution ... Enhancing Decimation -- Jade ...

Keep the *history* of the simplification process :

- when we remove a vertex we have dead and newborn triangles
- *assign to each triangle t a **birth error** t_b and a **death error** t_d equal to the error of the simplified mesh just before the removal of the vertex that caused the birth/death of t

By storing the **simplification history** (faces+errors) we can

Real-time resolution management

 \diamond by extracting from the **history** all the triangles t_i with

$$t_b <= \epsilon < t_d$$

we obtain a model $\,M_{\epsilon}\,$ which satisfies the approximation error $\,\epsilon\,$

mantaining the whole *history* data structure costs approximately
 2.5x - 3x the full resolution model

Quadric Error Metrics

Simplification using Quadric Error Metrics

[Garland et al. Sig'97]

Based on incremental edge-collapsing

but can also collapse vertex couples which are **not connected** (topology is not preserved)
Before
After

Geometric error approximation is managed by simplifying an approach based on **plane set distance**[Ronfard,Rossignac96]

- ❖INIT: store for each vertex the set of incident planes
- ♦ Vertex_Collapsing $(v_1, v_2) = > v_{new}$
 - plane_set (v_{new}) = union of the two plane sets
 of v₁, v₂
 - \diamond collapse only if v_{new} is not "farther" from its plane set than the selected target error ϵ

criticism:

storing plane sets and computing distances is not cheap!

Quadric Error Metrics solution:

- quadratic distances to planes represented with matrices
 - plane sets merge via matrix sums
 - very efficient evaluation of error via matrix operations

but

triangle size is taken into account only in an approximate manner (orientation only in Quadrics + weights)

Algorithm structure:

*select valid vertex pairs (upon their distance), insert them in an heap sorted upon minimum cost;

*repeat

- ❖ extract a valid pair v₁, v₂ from heap and contract into v_{new};
- ❖ re-compute the cost for all pairs which contain v₁ or v₂ and update the heap;

until sufficient reduction/approximation or heap empty

An example

- Original. Bones of a human's left foot (4,204 faces).
- Note the many separate bone segments.

- **Edge Contractions.** 250 face approximation.
- * Bone seg-ments at the ends of the toes have disappeared; the toes appear to be receding back into the foot.

Clustering. 262 face approximation.

Quadric Error for Surfaces

- Let $\mathbf{n}^{\mathsf{T}}\mathbf{v} + d = 0$ be the equation representing a plane
- The squared distance of a point x from the plane is

$$D(\mathbf{x}) = \mathbf{x}(\mathbf{n}\mathbf{n}^{\mathsf{T}})\mathbf{x} + 2d\mathbf{n}^{\mathsf{T}}\mathbf{x} + d^{2}$$

This distance can be represented as a quadric

$$Q = (A,\mathbf{b},c) = (\mathbf{n}\mathbf{n}^{\mathsf{T}},d\mathbf{n},d^{2})$$
$$Q(\mathbf{x}) = \mathbf{x}A\mathbf{x} + 2\mathbf{b}^{\mathsf{T}}\mathbf{x} + c$$

Quadric

- The boundary error is estimated by providing for each boundary vertex v a quadric Q_v representing the sum of the all the squared distances from the faces incident in v
 - The error of collapsing an edge e=(v,w) can be evaluated as $Q_w(v)$.
 - After the collapse the quadric of v is updated as follow $Q_v = Q_v + Q_w$

Error

Domain Error

- \clubsuit The two dataset D and D' span different domains Ω , Ω'
- Same problem of classical surface simplification
- Measure the Hausdorff distance between the boundary surfaces of the two datasets D and D'

$$e^{a}_{f}(D, D') = \max_{X \in \Omega} (\min(\operatorname{dist}(x,y)))$$

$$e_f(D, D') = \max(e_f(D, D'), e_f(D', D))$$

Various techniques to approximate this distance between two surfaces [Ciampalini et al. 97]

•

... Quadric Error Metrics Extension ...

- color and texture attributes error are computed by projecting them in R^{3+m} [Garland 98]
- by computing attribute error as the squared deviation between original value and the value interpolated [Hoppe 99]

(a) Original mesh (b) Q is just geometric error

(c) Q also includes normals

Quadric Error Metrics -- Evaluation

- iterative, incremental method
- error is bounded
- allows topology simplification (aggregation of disconnected components)
- results are very high quality and times incredibly short
- Various commercial packages use this technique (or variations)

Not-incremental methods:

- coplanar facets merging [Hinker et al. `93, Kalvin et al. `96]
- re-tiling

[Turk `92]

- clustering
 [Rossignac et al. `93, ... + others]
- wavelet-based

[Eck et al. `95]

Coplanar Facets Merging

Geometric Optimization[Hinker '93]

- Construct nearly co-planar sets (comparing normals)
- Create edge list and remove duplicate edges
- Remove colinear vertices
- Triangulate resultant polygons

Geometric Optimization - **Evaluation**

simple and efficient heuristic

evaluation of approximation error is highly inaccurate and not bounded

(error depends on relative size of merged faces)

- vertices are a subset of the original
- preserves geometric discontinuities (e.g. sharp edges) and topology

Superfaces

[Kalvin, Taylor

- group mesh faces in a set of superfaces:
 - lacktriangledown iteratively choose a seed face f_i as the current superface $S\!f_i$
 - \Leftrightarrow find by propagation all faces adjacent to f_i whose vertices are at distance $\epsilon/2$ from the mean plane to Sf_j and insert them in Sf_j
 - ullet moreover, to be merged each face must have orientation similar to those of others in Sf_j
- straighten the superfaces border
- re-triangulate each superface

Superfaces - an example

Simplification of a human skull (fitted isosurface), images courtesy of IBM

Superfaces - Evaluation

- slightly more complex heuristics
- evaluation of approximation error is more accurate and bounded
- vertices are a subset of the original ones
- preserves geometric discontinuities (e.g. sharp edges) and topology

Re-tiling

Re-Tiling

[Turk `92]

- Distribute a new set of vertices into the original triangular mesh (points positioned using repulsion/relaxation to allow optimal surface curvature representation)
- Remove (part of) the original vertices
- Use local re-triangulation

no info in the paper on time complexity!

Clustering

Vertex Clustering [Rossignac, Borrel `93]

- detect and unify *clusters* of nearby vertices (discrete gridding and coordinates truncation)
- all faces with two or three vertices in a cluster are removed
- does not preserve topology (faces may degenerate to edges, genus may change)
- approximation depends on grid resolution

Clustering -- Examples (1)

Simplification of a table lamp, IBM 3D Interaction Accelerator, courtesy IBM

Clustering -- Examples (2)

Simplification of a portion of Cluny Abbey, IBM 3D Interaction Accelerator, courtesy IBM France.

46,918 facets

6,181 facets

1,790 facets

16 facets

Clustering - Evaluation

- high efficiency (but timings are not reported in the paper)
- very simple implementation and use
- low quality approximations
- does not preserve topology
- error is bounded by the grid cell size

Wavelet methods

Multiresolution Analysis

[Eck et al. '95, Lounsbery'97]

- Based on the wavelet approach
 - simple base mesh
 - + local correction terms (wavelet coefficients)
- Given input mesh M:
 - ullet partition: build a low resolution base mesh K_o with tolerance $oldsymbol{\epsilon}_1$
 - ightharpoonup parametrization : for each face of K_0 build a parametrization on the corresponding faces of M
 - * **resampling**: apply **j** recursive quaternary subdivision on K_0 to build by parametrization different approximations K_j

Supports:

bounded error, compact multiresolution repr., mesh editing at multiple scales

... Wavelet methods ...

Hoppe's experiment: comparative eval. of quality of multiresolution representation

Progressive Meshes

53

Multires Signal Processing for Meshes

[Guskov, Swelden, Schroeder 99]

- Still the **Partition, Parmetrization and Resampling** approach but the original mesh connectivity is retained:
 - partition is done on the simplified mesh
 - use of a non-uniform relaxation procedure (instead of standard triangle quadrisection) that mimics the inverse simplification process
 - Possibility of using signal processing techniques on mesh (eg. Smoothing, detail enhancement ...)

Preserving detail on simplified meshes

Problem Statement :

how can we preserve in a *simplified* surface the **detail** (or **attribute value**) defined on the *original* surface ??

What one would preserve:

- color (per-vertex or texture-based)
- small variations of shape curvature (bumps)
- scalar fields
- procedural textures mapped on the mesh

... Preserving detail on simplified meshes ...

Approaches proposed in literature are:

*integrated in the simplification process (ad hoc solutions embedded in the simplification codes)

independent from the simplification process

(post-processing phase to restore attributes detail)

... Preserving detail: Integrated Appr....

Integrated approaches:

- attribute-aware simplification
 - do not simplify an element e IF e is on the boundary of two regions with different attribute values

or

use an enhanced multi-variate approximation evaluation metrics (shape+color+...)

[Hoppe96, GarHeck98, Frank et al 98, Cohen et al 98]

(image by H. Hoppe)

- store removed detail in textures
 - vertex-based [Maruka95, Soucyetal96]
 - texture-based [Krisn.etal96]
- preserve topology of the attribute field [Bajaj et al.98]

... Preserving detail: Simplif.-Independent... Simplification-Independent approach:

our Vis'98 paper

[Cignoni etal 98]

- higher generality: attribute/detail preservation is not part of the simplification process
- performed as a post-processing
 phase (after simplification)
- any attribute can be preserved, by constructing an ad-hoc texture map
- Used today in most games...

A simple idea: ... Preserving detail: Simplif.-Independent...

- for each texel simplified face:
 - detect the original detail by choosing either the closest point or along the normal.

an example of color preservation

example of geometric detail preservation by normal mapping

Original 20k face simplified 500 face

Original 60k faces simplified 250 faces

