
OpenGL

Performances and Flexibility

Marco Di Benedetto

Visual Computing Laboratory – ISTI – CNR, Italy

OpenGL Roadmap

 1.0 - Jan 1992 - First Version

 1.1 - Jan 1997 - Vertex Arrays, Texture Objects

 1.2 - Mar 1998 - 3D Texturing, Separate Specular Color, Vertex Array draw element range

 1.2.1 - Oct 1998 - Multi-Texturing

 1.3 - Aug 2001 - Compressed Textures, Cube Maps, Multi-Sampling

 1.4 – Jul 2002 – Depth Textures, HW Shadowing, Separate Blend, Extended Texture Addressing

 1.5 – Jul 2003 – Vertex Buffer Objects, Occlusion Queries, Extended Shadow Functions

 2.0 – Sep 2004 – Vertex and Fragment Shaders, Multiple Render Targets, Separate Stencil

 2.1 – Jul 2006 – Pixel Buffer Objects, sRGB

 3.0 – Jul 2008 – Framebuffer Objects, HW Instancing, Vertex Array Objects

 3.1 – Mar 2009 – Texture and Uniform Buffer Objects, Integer Textures, Fast Buffer Copy (OpenCL)

 3.2 – Aug 2009 – Geometry Shaders, Multisampled Textures, Synch and Fence Objects

 3.3 – Mar 2010 – Sampler Objects, Profiles Introduction

 4.0 – Mar 2010 - Tessellation Shaders, Per-Sample Fragment Shaders, Shader Subroutines, Double

Precision

M. Di Benedetto - OpenGL: Evolution through Revolution 2

The Abstract Graphics Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 3

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

1. The application specifies vertices & connectivity.

2. The VP transforms vertices and compute attributes.

3. Geometric primitives are assembled and rasterized,

attributes are interpolated. Culling occurs here.

4. The FP computes final “pixel” color.

5. The PP (output merger) writes pixels onto the FB after

stencil/depth test, color blending.

The OpenGL Fixed Function Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 4

1. The application specifies vertices & connectivity.

2. Transform & Lighting

3. Geometric primitives are assembled and rasterized,

attributes are interpolated. Culling occurs here.

4. Texture Mapping & Fog

5. Alpha test, Stencil/Depth test, Color Blending

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

The OpenGL FF Machine

 Most stages are configurable (turn lights on, specify backfacing, ...)

 No stage is programmable (hardwired logic)

 Vertex attributes have explicit semantic (position, normal, color, uv)

 Lighting equation is fixed (Phong illumination model)

 Texture images have fixed color semantic

M. Di Benedetto - OpenGL: Evolution through Revolution 5

Rendering Example

M. Di Benedetto - OpenGL: Evolution through Revolution 6

void render(void)

{

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glViewport(0, 0, width, height);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(fovY, width/height, zNear, zFar);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);

glEnable(GL_DEPTH_TEST);

glBegin(GL_TRIANGLES);

glColor3f(1.0f, 0.0f, 0.0f); glVertex3f(0.0f, 0.0f, 0.0f);

glColor3f(0.0f, 1.0f, 0.0f); glVertex3f(1.0f, 0.0f, 0.0f);

glColor3f(0.0f, 0.0f, 1.0f); glVertex3f(0.0f, 1.0f, 0.0f);

glEnd();

glDisable(GL_DEPTH_TEST);

}

Data Storage

 Textures reside in graphics memory

 Vertices:

 Immediate Mode: client-side attributes queued in a buffer,

then sent in batches to the HW

 Vertex Arrays: HW fetches data from client-side memory addresses

(most probably memory mapped I/O)

 Display Lists: Thou shalt not know my secrets!

 Vertex Buffer Objects: graphics memory, memory mappable

M. Di Benedetto - OpenGL: Evolution through Revolution 7

Buffer Objects (1/2)

 Introduced in OpenGL 1.5 (2003)

 Raw chunk of graphics memory

 Allocation should be considered slow but usually done only once

 Fixed size

 Application can query a pointer to them and read/write

 The Gfx Pipeline can use them as data sources for internal stages or as

data sinks from other stages (data reinjection)

 Given the handle to a buffer, we can bind it to several binding sites

 Named vertex attribute (VBO)

 Primitive indices array (EBO)

 Pixel read/store (PBO) (GL 2.1 – 2006)

M. Di Benedetto - OpenGL: Evolution through Revolution 8

Buffer Objects (2/2)

 Used for static & dynamic data

 Access through memory pointers, forget glVertex, glNormal etc.

 To modify content:

 Recreate the whole buffer (optimized if same size)

 Respecify data subsection (offset & size)

 Request a read and/or write pointer to whole or range

 Specifying a NULL pointer tells the GL to invalidate data,

possibly speeding up the following update operations

 Whenever a buffer is bound to a site, all relative GL calls which

accept a pointer will interpret the pointer value as an offset into the

bound buffer

 Otherwise it points to client-side memory

M. Di Benedetto - OpenGL: Evolution through Revolution 9

VBO Example

M. Di Benedetto - OpenGL: Evolution through Revolution 10

// vertex array

float positions[] = { ... };

glVertexPointer(3, GL_FLOAT, 3*sizeof(float), positions);

// vbo

// creation & fill

Gluint positionVBO = 0;

glGenBuffer(1, &positionVBO);

glBindBuffer(GL_ARRAY_BUFFER, positionVBO);

glBufferData(GL_ARRAY_BUFFER, vertCount*3*sizeof(float),

positions, GL_STATIC_DRAW);

...

// usage

glBindBuffer(GL_ARRAY_BUFFER, positionVBO);

glVertexPointer(3, GL_FLOAT, 3*sizeof(float), 0);

A note on GL objects usage pattern

 Bind to EDIT / Bind to USE

 All subsequent calls refer to the bound object

 Complicates development of layered libraries

 1. Query the current bound object

 2. Bind the object to edit

 3. Edit the object

 4. Bind the previously bound one

 What if, when editing, the GL calls simply take the referred object as

a parameter? (like C functions acting on structs)

 GL_EXT_direct_state_access comes to help

 John Carmack (id Software) as a main contributor & promoter;

hopefully moved into core specifications the next release

M. Di Benedetto - OpenGL: Evolution through Revolution 11

The Abstract Graphics Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 12

1. The application specifies vertices & connectivity.

2. The VP transforms vertices and compute attributes.

3. Geometric primitives are assembled and rasterized,

attributes are interpolated. Culling occurs here.

4. The FP computes final “pixel” color.

5. The PP (output merger) writes pixels onto the FB after

stencil/depth test, color blending.

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

Some Fixed Function Limitations

 glVertex/Normal/Color/TexCoord: we have only 4 vertex attributes,

each directing its data stream into a fixed block of computation

 Semantic is fixed because calculations are fixed (lighting eq., texturing)

 If we need, say, per-vertex tangent space for bump maps?

Even if we had it, we cannot use it

 glMaterial, glLight: emission, ambient, diffuse, specular

 Directly derived from the Phong model, no way to implement fancy/more

complex lighting models

 glTexImage: textures are raw containers of color

 Texel color is added, multiplied, ..., to the frag final color

 A specular map for simulating inhomogeneously specular surfaces?

 Anisotropic materials (velvet) ?

M. Di Benedetto - OpenGL: Evolution through Revolution 13

The OpenGL Programmable Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 14

1. The application specifies vertices & connectivity.

2. The VP runs a general purpose program for each vertex.

The Vertex Shader is mandate to output position.

3. A Geometry Shader can be optionally run to modify or

kill the assembled primitive or emit new ones (GL 3).

4. The FP runs a general purpose program for each frag.

The Fragment Shader is mandate to output a color.

5. The PP (output merger) writes pixels onto the FB after

stencil/depth test, color blending.

5.1. The output merger can be told to operate on one

or more textures at the same time,

rather than the screen framebuffer.

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

The Program Model

 Creation

 Create a vertex, a fragment and optionally a geometry shader object

 Specify the shader source code as a string, compile it

 Create a program object

 Attach shaders to program

 Specify how vertex attributes are mapped to vertex shader input

 Specify how fragment shader outputs are mapped to framebuffer

 Link program

 Usage

 Bind Program (program 0 FF)

 Set program input arguments (they are global variables in shaders)

 Draw as usual

M. Di Benedetto - OpenGL: Evolution through Revolution 15

Example: Vertex Shader

M. Di Benedetto - OpenGL: Evolution through Revolution 16

uniform mat4 u_model_view_projection_matrix;

uniform mat3 u_view_space_normal_matrix;

in vec4 a_position;

in vec3 a_normal;

in vec2 a_texcoord;

out vec3 v_normal;

out vec2 v_texcoord;

void main(void)

{

v_normal = u_view_space_normal_matrix * a_normal;

v_texcoord = a_texcoord;

gl_Position = u_model_view_projection_matrix * v_position;

}

Example: Fragment Shader

M. Di Benedetto - OpenGL: Evolution through Revolution 17

uniform vec3 u_view_space_light_position;

uniform vec3 u_color;

uniform sampler2D s_texture;

in vec3 v_normal;

in vec2 v_texcoord;

out vec4 o_color;

void main(void)

{

vec3 normal = normalize(v_normal);

float lambert = dot(normal, u_view_space_light_position);

vec3 texcolor = texture(s_texture, v_texcoord);

o_color = vec4(texcolor * lambert, 1.0);

}

What went out of core specs

 Immediate Mode (glBegin/End, glVertex, ...)

 Everything through data pointers

 Vertex attributes semantic

 glVertex/Normal/...Pointer generic glVertexAttribPointer(index, ...);

 Must link index with VS in parameter

 Display Lists

 Matrix stacks

 We have to calculate by hand our matrices, no native push/pop

 Specify through uniforms

 Lighting stuff

 No concept of light sources or material

 Specify through uniforms

M. Di Benedetto - OpenGL: Evolution through Revolution 18

General considerations

 Immediate Mode is the most flexible way but it’s slow

 Display Lists overcome rendering speed limitations

 But are very very slow to compile!

 VBOs are the fastest way

 But updating them is not easy

 Every vertex attributes must be fetched from (client)buffers

 Forget calculations in place like in IM, we have to compute AND store

them

 We have to implement matrices and matrix stacks

 Easy, several libs available

 Light sources must be accounted inside shaders

 A variable # of lights means procedurally generate and compile shaders

code or use uber shaders

M. Di Benedetto - OpenGL: Evolution through Revolution 19

What’s more in OpenGL 3

 Most things are meaningful for real-time games

 Transform feedback: catch output generated from geometry shaders

and reinject them into the pipe (also for physical sims)

 Extended occlusion queries (from GL 1.5)

 Synchronization objects

 Facilities for interoperability with OpenCL

 Framebuffer objects: render-to-texture

 Sampler objects: decouple texture images from their sampling

M. Di Benedetto - OpenGL: Evolution through Revolution 20

And GL 4.0

 New PATCH primitive

 Tessellator

M. Di Benedetto - OpenGL: Evolution through Revolution 21

Whath we’ll see in the tutorial

 Define and update an indexed triangle mesh

 Use several mesh rendering/update strategies from GL 1.0 to 3.0

 Fixed function configuration and its programmable counterpart

M. Di Benedetto - OpenGL: Evolution through Revolution 22

The Framework: Base Classes

 Mesh

 Holds vertex & connectivity information

 Knows how to render/update its data with the GL system

 Builder

 A simple objects which construct the initial state of a Mesh

 Updater

 A simple object which knows how to update/animate mesh vertices

 Renderer

 Sets up and control the rendering environment

M. Di Benedetto - OpenGL: Evolution through Revolution 23

The Framewark: Specialized Classes

 MeshImmediateMode

 MeshDisplayList

 MeshVertexArray

 MeshVertexBuffer

 BuilderGrid

 RendererFixed

 RendererProgrammable

M. Di Benedetto - OpenGL: Evolution through Revolution 24

What we will do

 Under the hood a window with a GL context is created with GLUT

 We have to deal with four event handlers:

 Initialize(): application startup

 Finalize(): application termination

 Update(dt): called before rendering

 Draw(): the actual rendering process

M. Di Benedetto - OpenGL: Evolution through Revolution 25

Tutorial

M. Di Benedetto - OpenGL: Evolution through Revolution 26

EOF

M. Di Benedetto - OpenGL: Evolution through Revolution 27

