
OpenGL

Framebuffer Objects

Marco Di Benedetto

Visual Computing Laboratory – ISTI – CNR, Italy

OpenGL Roadmap

 1.0 - Jan 1992 - First Version

 1.1 - Jan 1997 - Vertex Arrays, Texture Objects

 1.2 - Mar 1998 - 3D Texturing, Separate Specular Color, Vertex Array draw element range

 1.2.1 - Oct 1998 - Multi-Texturing

 1.3 - Aug 2001 - Compressed Textures, Cube Maps, Multi-Sampling

 1.4 – Jul 2002 – Depth Textures, HW Shadowing, Separate Blend, Extended Texture Addressing

 1.5 – Jul 2003 – Vertex Buffer Objects, Occlusion Queries, Extended Shadow Functions

 2.0 – Sep 2004 – Vertex and Fragment Shaders, Multiple Render Targets, Separate Stencil

 2.1 – Jul 2006 – Pixel Buffer Objects, sRGB

 3.0 – Jul 2008 – Framebuffer Objects, HW Instancing, Vertex Array Objects

 3.1 – Mar 2009 – Texture and Uniform Buffer Objects, Integer Textures, Fast Buffer Copy (OpenCL)

 3.2 – Aug 2009 – Geometry Shaders, Multisampled Textures, Synch and Fence Objects

 3.3 – Mar 2010 – Sampler Objects, Profiles Introduction

 4.0 – Mar 2010 - Tessellation Shaders, Per-Sample Fragment Shaders, Shader Subroutines, Double

Precision

M. Di Benedetto - OpenGL: Evolution through Revolution 2

The Abstract Graphics Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 3

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

1. The application specifies vertices & connectivity.

2. The VP transforms vertices and compute attributes.

3. Geometric primitives are assembled and rasterized,

attributes are interpolated. Culling occurs here.

4. The FP computes final “pixel” color.

5. The PP (output merger) writes pixels onto the FB after

stencil/depth test, color blending.

Introductory Example

 Scenario:

 We must draw a control room with a live action security camera TV

 The camera is recording a scene simulated by our system

 We must be able to draw the TV while it is showing a dynamic,

computer-generated scene

 In practice:

 Render the scene as seen by the security camera

 Use the result of the rendering as a texture mapped on the TV screen

M. Di Benedetto - OpenGL: Evolution through Revolution 4

Use the Color Buffer as a Texture

 We want to be able to use the framebuffer content as a texture

 OpenGL can do this since v1.0

 glCopyTexImage2D() : copy the content of the color buffer to a texture

 Problems

 Pixel Ownership Test: if the window we are rendering to is partially

occluded by something (e.g. other overlapping windows), the occluded

pixels will not be written

 holes in the texture

 We must pay a copy operation

M. Di Benedetto - OpenGL: Evolution through Revolution 5

Render-to-Texture (RTT)

 Ideally, we want to draw directly on the texture to avoid

windows-manager issues and memory copy operations

 Early solution: PBuffers

 Framebuffers that can be used as textures

 PBuffers have their own OpenGL context  data must be shared

 GL context switches  slow synchronization  slow slow slow ...

 ... but the idea was good!

 Modern solution: Framebuffer Objects

 Draw directly into a texture

M. Di Benedetto - OpenGL: Evolution through Revolution 6

The Framebuffer

 A set of ancillary buffers: Color - Depth - Stencil

 Double Buffering

 If we render several objects, one at a time, directly on the memory

region used by the screen, we may experience flickering in the image

 To avoid flickering, rendering is done on a back (frame)buffer (which is

not visible), while the screen shows the front (frame)buffer

 When rendering is done, buffers are swapped (or flipped)

  the screen can present the completely composed image at once

 OpenGL defines:

 Main front/back buffers

 Left and Right front/back buffers (for stereo rendering)

 Auxiliary buffers (how many is implementation dependent)

M. Di Benedetto - OpenGL: Evolution through Revolution 7

Framebuffer Object (FBO)

 Simply put, the result of a rendering is written in a memory region

 Historically, the front and back buffers are the regions of memory chips

written by the graphics hardware accelerator and read by the screen

interface

 Texture images are regions of the graphics memory

 With OpenGL FBOs we can tell the hardware:

 “this is your framebuffer (color, depth, stencil) memory pointer, write there”

 We can render-to-texture!

M. Di Benedetto - OpenGL: Evolution through Revolution 8

FBO

 A FBO is enhough flexible to hold just the ancillary buffers it needs

 Any combination of color/depth/stencil

 Some actual implementation have depth-stencil buffers tied

 Render Targets: what a FBO can contain

 Textures

 Renderbuffers (for texture formats that are not writable)

 Steps:

 Create the FBO

 Attach textures or renderbuffers to attachment points

 Bind as the target framebuffer

M. Di Benedetto - OpenGL: Evolution through Revolution 9

FBO

M. Di Benedetto - OpenGL: Evolution through Revolution 10

// construction at application init

GLuint fbo = 0;

glGenFramebuffers(1, &fbo);

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_tex, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color_tex, 0);

const Glenum draw_buffers[] = { GL_COLOR_ATTACHMENT0 };

glDrawBuffers(sizeof(draw_buffers)/ sizeof(draw_buffers[0]), draw_buffers));

glBindFramebuffer(GL_FRAMEBUFFER, 0); // rebind main framebuffer (screen)

// usage

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

draw_texture_content();

glBindFramebuffer(GL_FRAMEBUFFER, 0);

// render scene and use color_tex

render_scene();

// destruction at application exit

glDeleteFramebuffers(1, &fbo);

fbo = 0;

Multiple Render Targets (MRT)

 FBOs can contain multiple color buffers

 The actual composition is

 A set of N color buffers (N is implementation dependent)

 Zero or one depth buffer

 Zero or one stencil buffer

 What it means

 We have one depth/stencil buffer

 We can output simultaneously N different color values

 Fragment shader:

 gl_FragData[i] outputs to ith color target

 gl_FragColor is an alias for gl_FragData[0]

M. Di Benedetto - OpenGL: Evolution through Revolution 11

FBO - MRT

M. Di Benedetto - OpenGL: Evolution through Revolution 12

// construction at application init

GLuint fbo = 0;

glGenFramebuffers(1, &fbo);

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_tex, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color_tex0, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, color_tex1, 0);

const Glenum draw_buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };

glDrawBuffers(sizeof(draw_buffers)/ sizeof(draw_buffers[0]), draw_buffers));

glBindFramebuffer(GL_FRAMEBUFFER, 0); // rebind main framebuffer (screen)

// usage

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

draw_textures_content();

glBindFramebuffer(GL_FRAMEBUFFER, 0);

// render scene and use color_tex0 and color_tex1

render_scene();

// destruction at application exit

glDeleteFramebuffers(1, &fbo);

fbo = 0;

FBO Usage

 Introductory Example

 The target color texture will be used as the TV texture

 Deferred Shading:

 Pixels are written several times in a complex scene (depth complexity)

 The closest one contributes to the final image

 What if we perform complex calculations (e.g. lighting) just on visible

pixels?

M. Di Benedetto - OpenGL: Evolution through Revolution 13

Deferred Shading

 Multipass rendering algorithm

 For each pixel, store in a set of textures all the values we need for

our calculations

 Normals - Vertex position - Base color

 The set of textures we render to is called G-Buffer

 For each light source and for each pixel (full screen pass) fetch data

from the G-Buffer and use them for lighting calculations

M. Di Benedetto - OpenGL: Evolution through Revolution 14

Deferred Shading

M. Di Benedetto - OpenGL: Evolution through Revolution 15

Base Color

Normal

Depth

G-Buffer

Final Composed Image

Other Usages

 Post processing

 Draw into a texture, then use image processing techniques

 Apply edge detection to perform selective antialiasing

 Procedural textures

 Screen Space Ambient Occlusion

 …

M. Di Benedetto - OpenGL: Evolution through Revolution 16

Render to Texture Arrays

 GL_TEXTURE_2D_ARRAY: a stack of 2D textures

 The active layer can be selected in the Geometry Shader

M. Di Benedetto - OpenGL: Evolution through Revolution 17

// when creating the FBO

glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, color_tex_array, 0);

// geometry shader

// . . .

gl_Layer = 0;

gl_Position = …;

EmitVertex();

EndPrimitive();

gl_Layer = 1;

gl_Position = …;

EmitVertex();

EndPrimitive();

EOF

M. Di Benedetto - OpenGL: Evolution through Revolution 18

