Spatial Search Data Structures

Corso di dottorato: Geometric Mesh Processing

Fabio Ganovelli
fabio.ganovelli@isti.cnr.it

Problem statement

- Let m be a mesh:
\square Which is the mesh element closest to a given point p ?
\square Which are the elements inside a given region?
\square Which elements are intersected by a given ray r ?
- Let m ' be another mesh:
\square Do m and m ' intersect? If so, where?
- A spatial search data structure helps to answer efficiently to these questions

Motivations

- Picking on a point
- Selecting a region

Motivations ${ }^{\text {cntd }}$

- Ray tracing: shoot a ray for each pixel, see what it hits, possibly recur, compute pixel color
- Involves plenty of ray-objects intersections

Motivations ${ }^{\text {cntd }}{ }^{\text {cntd }}$

- Collision detection: in dynamic scenes, moving objects can collide.

Motivations ${ }^{\text {cntd }}{ }^{\text {cntd }}$ cntd

- Without any spatial search data structure the solutions to these problems require $O(n)$ time, where n is the numbers of primitives ($O\left(n^{2}\right)$ for the collision detection)
- Spatial data structure can make it (average) constant
\square..or average logarithmic

Uniform Grid (1/4)

- Description: the space including the object is partitioned in cubic cells; each cell contains references to "primitives" (i.e. triangles)
- Construction.

Primitives are assigned to:
\square The cell containing their feature point (e.g. barycenter or one of their vertices)
\square The cells spanned by the primitives

Uniform Grid (2/4)

- Closest element (to point p):
\square Start from the cell containing p
\square Check for primitives inside growing spheres centered at p
\square At each step the ray increases to the border of visited cells
- Cost.
\square Worst: O(\#cells+n)
\square Average; O(1)

Uniform Grid (3/4)

- Intersection with a ray:
\square Find all the cells intersected by the ray
\square For each intersected cell, test the intersection with the primitives referred in that cell
\square Avoid multiple testing by flagging primitives that have been tested (mailboxing)
- Cost:
\square Worst: $O(\#$ cells $+n$)
\square Aver: $\quad O(\sqrt[d]{\# \text { cells }}+\sqrt[d]{n})$

Uniform Grid (4/4)

- Memory occupation: $O(\#$ cells $+n)$
- Pros:
\square Easy to implement
\square Fast query
- Cons:
\square Memory consuming
\square Performance very sensitive to distribution of the primitives.

Spatial Hashing (1/2)

- The same as uniform grid, except that only non empty cells are allocated

Spatial Hashing (2/2)

- Cost: same as UG, except that in worst case the access to a cell is O (\#cells) because of collisions
- Memory occupation:
\square Worst. : $O(\#$ cells $)$
\square Aver. : $O\left(\left(\frac{\# \text { cells }}{\text { Vol }}\right)^{\frac{2}{3}} \cdot S\right) \quad \mathrm{S}$: surface, Vol:Volume
- Pros:
\square Easy to implement
\square Fast query if good hashing is done
\square Less memory consuming
- Cons:
\square Performance very sensitive to distribution of the primitives.

Beyond UG

- Uniform grids are input insensitive
- What's the best choice for the example below?

Spatial Search Data Structure

Hierarchical Indexing of Space

- Divide et impera strategies:
\square The space is partitioned in sub regions
\square..recursively

Hierarchical Indexing of Space

- Divide et impera strategies:
\square The space is partitioned in sub regions
\square..recursively

Spatial Search Data Structure

Hierarchical Indexing of Space

- Divide et impera strategies:
\square The space is partitioned in sub regions
\square..recursively

Spatial Search Data Structure

Hierarchical Indexing of Space

- Divide et impera strategies:
\square The space is partitioned in sub regions
\square..recursively

Spatial Search Data Structure

Basic Facts

- The queries correspond to a visit of the tree
\square The complexity is sublinear in the number of nodes (logarithmic)
\square The memory occupation is linear
- A hierarchical data structure is characterized by:
\square Number of children per node
\square Spatial region corresponding to a node

Binary Space Partition-Tree (BSP) (1/3)

- Description:
\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
\square therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP) (1/3)

- Description:
\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
\square therefore a node always corresponds to a convex region
(1)

Binary Space Partition-Tree (BSP) (1/3)

- Description:

\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
\square therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP) (1/3)

- Description:
\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP) (1/3)

- Description:
\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
\square therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP) (1/3)

- Description:
\square It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
\square therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP) (1/3)

- Query: is the point p inside a primitive?
\square Starting from the root, move to the child associated with the half space containing the point
\square When in a leaf node, check all the primitives
- Cost:
\square Worst: $O(n)$
\square Aver: $O(\log n)$

BSP tree

BSP-Tree For Rendering

- ordering primitives back-to-front

BSP-Tree For Rendering

- Not so fast: set of polygons not always separable by a plane

Binary Space Partition-Tree (BSP) (3/3)

- Auto-partition :

use the extension of primitives as partition planes
\square Store the primitive used for PP in the node

Bulding a BSP-Tree

- Building a BSP-tree requires to choose the partition plane
- Choose the partition plane that:
\square Gives the best balance ?
\square Minimize the number of splits ?
$\square \ldots$...it depends on the application
- Cost of a BSP-Tree

$$
C(T)=1+P\left(T_{L}\right) C\left(T_{L}\right)+P\left(T_{R}\right) C\left(T_{R}\right)
$$

Probability that $\mathrm{T}_{\mathrm{L}[\mathrm{R}]}$ is visited if T has been visited

Bulding a BSP-Tree: example

$C(T)=1+P\left(T_{L}\right) C\left(T_{L}\right)+P\left(T_{R}\right) C\left(T_{R}\right)$
$C(T)=1+\quad\left|S_{L}\right|^{\alpha}+\quad\left|S_{R}\right|^{\alpha}+\beta s$
$S_{L[R]}=$ number of primitives in the left $[$ right $]$ subtree
$s \quad=$ number of primitives split by the chosen plane

- α, β used for tuning

Big alpha, small beta yield a balanced tree (good for in/out test)
\square Big beta, small alpha yield a smaller tree (good for visibility order)

Binary Space Partition-Tree (BSP)

- Memory occupation: $O(n)$
\square For each node:
- (d+1) floatig point numbers (in d dimensions)
- 2 pointers to child node
- Cost of descending the three:
\square d products, d summations (dot product d+1 dim.)
$\square 1$ random memory access (follow the pointer)
- Less general data structures can be faster/ less memory consuming

kd-tree

- Kd-tree : k dimensions tree
- È una specializzazione dei BSP in cui i piani di partizione sono ortogonali a uno degli assi principali
- Scelte:
\square L'asse su cui piazzare il piano
\square II punto sull'asse in cui piazzare il piano
- Vantaggi sui BSP:
\square determinare in quale semispazio risiede un punto costa un confronto
\square La memorizzazione del piano richiede un floating point + qualche bit

kD-Trees: esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

Costruire un kD-tree

- Dati:
\square axis-aligned bounding box ("cell")
\square lista di primitive geometriche (triangoli)
- Operazioni base
\square Prendi un piano ortogonale a un asse e dividi la cella in due parti (in che punto?)
\square Distribuire le primitive nei due insiemi risultanti
\square Ricorsione
\square Criterio di terminazione (che criterio?)
- Esempio: se viene usato per il ray-tracing, si vuole ottimizzare per il costo dell'intersezione raggio primitiva

Costruire un kD-tree efficiente per RayCast

- In che punto dividere la cella?
\square Nel punto che minimizza il costo
- Quanto è il costo? Riprendiamo la formula per I BSP $\operatorname{Cost}($ cell $)=1+$

Prob $($ left_cell \mid cell $) \operatorname{Cost}($ Left $)+$
Prob(right_cell \mid cell $) \operatorname{Cost}($ Right $)$

Prob(left_cell|cell)Cost(Left)

- Sapendo che il raggio interseca la cella cell, qual'è la probabilità che intersechi la cella left_cell ??

Prob(left_cell|cell)

$\operatorname{Prob}[$ cell \mid left_cell $]=\frac{\# \text { raggicheintersecanoleft_cell }}{\# \text { raggicheintersecano cell }}$

Ogni raggio che interseca una cella corrisponde a una coppia di punti sulla sua superficie.
Contiamo le coppie di punti sulla superficie delle celle
$\operatorname{Prob}\left[c e l l \mid l e f t _c e l l\right]=\frac{\int_{\sigma(\text { left_cell })}\left(\int_{\sigma\left(l e f t _c e l l\right)} d a\right.}{\int_{\sigma(\text { cell })}\left(\int_{\sigma \$ p a d i a l} d a\right) d a}$ \$earch Data Structure

$$
\text { cost }\left(l e f t _c e l l\right)
$$

- Sapendo che il raggio interseca la cella left_cell, qual'è il costo di testare l'intersezione con i triangoli?
- Si approssima con il numero di triangoli che toccano la cella

$$
\operatorname{Cost}(\text { left_cell })=4
$$

[^0]
Esempio

- Come si suddivide la cella qui sotto?

Spatial Search Data Structure

A metà

- Non tiene conto delle probabilità
- Non tiene conto dei costi

Nel punto mediano

- Rende uguali i costi di left_cell e right_cell
- Non tiene conto delle probabilità

Ottimizzando il costo

- Separa bene spazio vuoto
- Distribuisce bene la complessità

Range Query with kd-tree

- Query: return the primitives inside a given box
- Algorithm:
\square Compute intersection between the node and the box
\square If the node is entirely inside the box add all the primitives contained in the node to the result
\square If the node is entirely outside the box return
\square If the nodes is partially inside the box recur to the children
- Cost: if the leaf nodes contain one primitive and the tree is balanced:

$$
O\left(n^{1-\frac{1}{d}}+k\right)
$$

n number of primitives, d dimension

- $O\left(n^{2 d}\right)$ possible results

Nearest Neighbor with kd-tree

- Query: return the nearest primitive to a given point c
- Algorithm:
\square Find the nearest neighbor in the leaf containing c
\square If the sphere intersect the region boundary, check the primitives contained in intersected cells

Quad-Tree (2d)

- The plane is recursively subdivided in 4 subregions by couple of orthogonal planes

Region Quad-tree

Point Quad-tree

Quad-Tree (2d): examples

- Widely used:
\square Keeping level of detail of images

MIP-map
level 1

$$
\begin{gathered}
\text { MIP-map } \\
\text { level } 0
\end{gathered}
$$

Spatial Search Data Structure

Quad-Tree (2d): examples

- Widely used:
\square Terrain rendering: each cross in the quatree is associated with a height value

Spatial Search Data Structure

Oct-Tree (3d)

- The same as quad-tree but in 3 dimensions

Spatial Search Data Structure

Oct-Tree (3d) : Examples

- Processing of Huge Meshes (ex: simplification)
- Problem: mesh do not fit in main memory
- Arrange the triangles in a oct-tree

Spatial Search Data Structure

Oct-Tree (3d) : Examples

- Extraction of isosurfaces on large dataset
\square Build an octree on the 3D dataset
\square Each node store min and max value of the scalar field
\square When computing the isosurface for alpha, nodes whose interval doesn't contain alpha are discarded

Advantages of quad/oct tree

- Position and size of the cells are implicit
\square They can be explored without pointers (convenient if the hierarchies are complete) by using a linear array where:
quadtree

$$
\text { Children }(i)=4 i+1, \ldots, 4 *(i+1)
$$

$$
\operatorname{Parent}(i)=\lfloor i / 4\rfloor
$$

octree

$$
\text { Children }(i)=8 i+1, \ldots, 8^{*}(i+1)
$$

$$
\operatorname{Parent}(i)=\lfloor i / 8\rfloor
$$

Z-Filling Curves

- Position and size of the cells are implicit
\square They can be indexed to preserve locality, i.e.
Spatially close \rightarrow close in memory

Easy conversion between position in space and order in the curve

Just use the $0 . .1$ coordinates as bits 00011011

Z-Filling Curves

- Position and size of the cells are implicit
\square They can be indexed to preserve locality, i.e.
Spatially close \rightarrow close in memory

0000 0001

Z-Filling Curves

- Conversion from spatial coordinates to index.
\square Write the coord values in binary
\square Interleave the bits

$$
\begin{array}{rllllllllll}
x & = & & b_{0}^{x} & & b_{1}^{x} & & b_{2}^{x} & \ldots & & b_{n}^{x} \\
y & = & b_{0}^{y} & & b_{1}^{y} & & b_{2}^{y} & & \ldots & b_{n}^{y} & \\
i d & = & b_{0}^{y} & b_{0}^{x} & b_{1}^{y} & b_{1}^{x} & b_{2}^{y} & b_{2}^{x} & \ldots & b_{n}^{y} & b_{n}^{x}
\end{array}
$$

Hierarchical Z-Filling Curves

Spatial Search Data Structure

Bounding Volumes Hierarchies

- If a volume B includes a volume A, it is called bounding volume for A
- No object can intersect A without intersecting B
- If two bounding volumes do not overlap, the same hold for the volumes included

The Principle

- What if they do overlap?
- Refine.

Questions!

- What kind of Bounding Volumes?
- What kind of hierarchy?
- How to build the hierarchy?
- How to update (if needed) the hierarchy?
- How to transverse the hierarchy?

All the literature on CD for non-convex objects is about answering these questions.

$$
\begin{gathered}
\text { Cost } \\
\mathrm{T}_{\mathrm{c}}=\mathrm{N}_{\mathrm{v}} * \mathrm{C}_{\mathrm{v}}+\mathrm{N}_{\mathrm{n}}{ }^{*} \mathrm{C}_{\mathrm{n}}+\mathrm{N}_{\mathrm{s}} * \mathrm{C}_{\mathrm{s}}
\end{gathered}
$$

v : visited nodes
n : couple of bounding volumes tested for overlap
s: couple of polygons tested for overlap
N : number of
C: Cost

BHV - Desirable Properties (2)

- The hierarchy should be able to be constructed in an automatic predictable manner
- The hierarchical representation should be able to approximate the original model to a high degree or accuracy
- allow quick localisation of areas of contact
- reduce the appearance of object repulsion

BHV - Desirable Properties

- The hierarchy approximates the bounding volume of the object, each level representing a tighter fit than its parent
- For any node in the hierarchy, its children should collectively cover the area of the object contained within the parent node
- The nodes of the hierarchy should fit

Sphere-Tree

[O’Rourke and Badler 1979 , Hubbard 1995a \& 1996, Palmer and Grimsdale 1995, Dingliana and O'Sullivan 2000]

- Nodes of BVH are spheres.
- Low update cost C_{u}
- translate sphere center
- Cheap overlap test C_{v}

$$
D^{2}<\left(R_{1}+R_{2}\right)^{2}
$$

- Slow convergence to object geometry
- Relatively high $N_{u} \& N_{v}$

Sphere-Tree Construction

- Spheres placed around the boxes of a regular oct-tree

Sphere-Tree Construction mand max

- Spheres placed along the Medial-Axis (transform)

Axis-Aligned Bounding Box
 [van den Bergen 1997]

- The bounding volumes are axis aligned boxes (in the object coordinate system)
- The hierarchy is a binary tree (built top down)
- Split of the boxes along the longest edge at the median (equal number of polygons in both children)

Axis-Aligned Bounding Box

- The hierarchy of boxes can be quickly updated :
- let $\operatorname{Sm}(R)$ be the smallest AABB of a region R and r_{1}, r_{2} two regions,

$$
\operatorname{Sm}\left(\operatorname{Sm}\left(r_{1}\right) \cup \operatorname{Sm}\left(r_{2}\right)\right)=\operatorname{Sm}\left(r_{1} \cup r_{2}\right)
$$

- The hierarchy is updated in $O(n)$ time
- Note: this is not the same as rebuilding the hierarchy

AABB - Overlap

If two convex polyhedra do not overlap, then there exists a direction L such that their projections on L do not overlap. L is called Separating Axis

Separating Axis Theorem: L can only be one of the following:

- Normal to a face of one of the polyedra
- Normal to 2 edges, one for each polyedron

AABB - Overlap

Ex: There are 15 possible axes for two boxes: 3 faces from each box, and 3×3 edge direction combinations

Note: SA is a normal to a face 75\% of the times

Trick: Ignore the tests on the edges!

Object Oriented Bounding Box

- Better coverage of object than AABB
- Quadratic convergence
- Update cost C_{u} is relatively high
- reorient the boxes as objects ratate
- Overlap cost C_{v} is high
- Separating Axis Test tests for oxerrap of box's projection onto 15 test axes

Oriented Bounding Box

Building an OBB

- The OBB fitting problem requires finding the orientation of the box that best fits the data
- Principal Components Analysis:
- Point sample the convex hull of the geometry to be bound
- Find the mean and covariance matrix of the samples
- The mean will be the center of the box
- The eigenvectors of the covariance matrix are the principal directions - they are used for the axes of the box
- The principle directions tend to align along the longest axis, then the next longest that is orthogonal, and then the other orthogonal axis

Principal Component Analysis

$c=\frac{1}{3 n} \sum_{h=1}^{n} p^{h}$
$\operatorname{Cov}_{i j}=\frac{1}{3 n} \sum_{h=1}^{n}\left(p_{i}^{h}-c_{i}\right)\left(p_{j}^{h}-c_{j}\right)$
Cov is symmetric \Rightarrow eigen vectors form an orthogonal basis

Discrete Oriented Polytope

- Convex polytope whose faces are oriented normal to kntiretetions:
- Overlap test similar to OBB
- $k / 2$ pairs of co-linear vectors
$-k / 2$ overlap tests
- k-DOP needs to be updated in a similar way as the AABB
- AABB is a 6-DOP

K-Dops examples

Discrete Oriented Polytope
 [Klosowski et al. 1997]

AABB
OBB
6-DOP

[^0]: Spatial Search Data Structure

