Spatial Search Data

Structures

Corso di dottorato: Geometric Mesh Processing

Fabio Ganovelli

fabio.ganovelli@isti.cnr.it
Spatial Search Data Structure

"
Problem statement

m Let mbe a mesh:
Which is the mesh element closest to a given point p?
Which are the elements inside a given region?
Which elements are intersected by a given ray r?
m Let m’be another mesh:
Do m and m’intersect? If so, where?

m A spatial search data structure helps to answer
efficiently to these questions

Spatial Search Data Structure

" A
Motivations

€ Meshiab v0.6 - [elephant.
@ Fie Filters Render

1 * Picking on a point
_ﬁ%ve been selected * - Selecting a region

Spatial Search Data Structure

"
Motivationscntd

m Ray tracing: shoot a ray for each pixel, see what
it hits, possibly recur, compute pixel color

m Involves plenty of ray-objects intersections

. ----EM'--...
_ Q-ﬁ;
[

b

T,

T
o -

Ray bouncing
ray off the surface

viewpoint
VIEeWpOrt spatial Search Data Structure

" A
Motivationscntd©nd

m Collision detection: in dynamic scenes, moving
objects can collide.

How to find out
which triangles
intersect?

Spatial Search Data Structure

Motivationgentacntd®™

m Without any spatial search data structure the
solutions to these problems require O(n) time,
where n is the numbers of primitives (O(n?) for
the collision detection)

m Spatial data structure can make it (average)
constant

..0r average logarithmic

Spatial Search Data Structure

" J
Uniform Grid (1/4)

m Description: the space including the object is
partitioned in cubic cells; each cell contains
references to “primitives” (i.e. triangles)

m Construction.
Primitives are assignhed to:

The cell containing their feature point (e.g. barycenter

or one of their vertices)

The cells spanned by the primitives |\ i

AP
V=

Spatial Search Data Structure

"
Uniform Grid (2/4)

m Closest element (to point p):
Start from the cell containing p

Check for primitives inside growing spheres centered
at p

At each step the ray increases N
to the border of visited cells .

m Cost.

Worst: O(#cells+n) -

Average; O(1)

Spatial Search Data Structure

" J
Uniform Grid (3/4)

m Intersection with a ray:
Find all the cells intersected by the ray

For each intersected cell, test the intersection with the
primitives referred in that cell

Avoid multiple testing by

flagging primitives that o
have been tested %ﬁ/
(mailboxing) _—

m Cost: /

Worst: O(#cells + n)
Aver: O #cells +4/n) /

Spatial Search Data Structure

"
Uniform Grid (4/4)

m Memory occupation: O#cells + n)
m Pros:

Easy to implement

Fast query
m Cons:

Memory consuming

Performance very sensitive to distribution of the
primitives.

Spatial Search Data Structure

" J
Spatial Hashing (1/2)

m The same as uniform grid, except that only non
empty cells are allocated

Uniform grid Spatial hashing
\ 4 \ 4
Pap| < Pap|<
TN Y
U > HASH(key(i,],k))

N\
— collisions \.T

0 #eells ﬂ <<#cells

Spatial Search Data Structure

" A
Spatial Hashing (2/2)

m Cost: same as UG, except that in worst case the access
to a cell is O(#cells) because of collisions

m Memory occupation:

Worst. : O(#cells) ,

Aver. : 0((#cellsj3 -S) S:surface,Vol: Volume

Vol
m Pros: ¢

Easy to implement
Fast query if good hashing is done
Less memory consuming

m Cons:
Performance very sensitive to distribution of the primitives.

Spatial Search Data Structure

"
Beyond UG

m Uniform grids are input insensitive
m What’s the best choice for the example below?

A
AA\

< 4

A

r2 S :1

r2 1
/ 7 A
r1 A@ r1 ER=Spaa AmmY
1 \
A=

D

Spatial Search Data Structure

" J
Hierarchical Indexing of Space

m Divide et impera strategies:
The space is partitioned in sub regions
..recursively

=4
$4,n
|
A

Spatial Search Data Structure

" J
Hierarchical Indexing of Space

m Divide et impera strategies:
The space is partitioned in sub regions
..recursively

4 R
%ﬁﬁﬁﬁ é ® O

Spatial Search Data Structure

"
Hierarchical Indexing of Space

m Divide et impera strategies:
The space is partitioned in sub regions
..recursively

7 s /‘\6&‘\@
ERCCLLISE

Spatial Search Data Structure

"
Hierarchical Indexing of Space

m Divide et impera strategies:
The space is partitioned in sub regions
..recursively

{

2
/E\

\ﬁ\ AN

CONLY
Wi A

A

Spatial Search Data Structure

" A
Basic Facts

m The queries correspond to a visit of the tree
The complexity is sublinear in the number of nodes
(logarithmic)
The memory occupation is linear

m A hierarchical data structure is characterized by:
Number of children per node
Spatial region corresponding to a node

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/3)

m Description:

It’s a binary tree obtained by recursively partitioning the
space in two by a hyperplane

therefore a node always corresponds to a convex
region

'Y 4
. O

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/3)

m Description:

It’s a binary tree obtained by recursively partitioning the
space in two by a hyperplane

therefore a node always corresponds to a convex region

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/3)

m Description:

It’s a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/3)

m Description:

It’s a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/ 3)

m Description:

It’s a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex

region
3
@ ®
/@/ “® Aﬁ
;D\C DA/ ! .
AQ 4B

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/ 3)

m Description:

It’s a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region
BSP tree

&

AQ 4B EQ

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/ 3)

m Query: is the point p inside a primitive?
Starting from the root, move to the child associated
with the half space containing the point

When in a leaf node, check all the primitives

m Cost:
3

Worst: O(n) '@ c
Aver: O(logn) o N Q (?
o
© &

/| 1
AjD\ AIS

BSP tree

Spatial Search Data Structure

"
BSP-Tree For Rendering

m ordering primitives back-to-front

void DrawBackToFront(n,p){
if(IsLeaf(n))

3 Draw(n);
5 if(InNegativeHS(p,n))
DrawBackToFront (RightChild(n),p);
else

DrawBackToFront (LeftChild(n),p);

)

\
2
. @@
@

'
P'Q__int of view

Spatial Search Data Structure

"
BSP-Tree For Rendering

m Not so fast: set of polygons not always
separable by a plane

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (3/3)

m Auto-partition :
use the extension of primitives as partition planes
Store the primitive used for PP in the node

Spatial Search Data Structure

" J
Bulding a BSP-Tree

m Building a BSP-tree requires to choose the
partition plane

m Choose the partition plane that:
Gives the best balance ?

Minimize the number of splits ?
.....It depends on the application

Cost of visiting T

m Cost of a BSP-Tree /\
CT)=1+P(T,) C(T,)+ P(IT) C(T)

Probability that T, 5, is visited
if T has been visited

Spatial Search Data Structure

"
Bulding a BSP-Tree: example

C(T)=1+PT,) C(T,)+ P(Ty) C(Ty)
CT)=1+ ||+ S+ B
S, x) = number of primitivesintheleft[right] subtree

s =number of primitives split bythe chosen plane

B «,f used for tuning

Big alpha, small beta yield a balanced tree (good for
In/out test)

Big beta, small alpha yield a smaller tree (good for
visibility order)

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP)

m Memory occupation: O(n)

For each node:

m (d+1) floatig point numbers (in d dimensions)
= 2 pointers to child node

m Cost of descending the three:
d products, d summations (dot product d+1 dim.)
1 random memory access (follow the pointer)

m Less general data structures can be faster/ less
memory consuming

Spatial Search Data Structure

"
kd-tree

m Kd-tree : k dimensions tree

m E una specializzazione dei BSP in cui i piani di
partizione sono ortogonali a uno degli assi principali

m Scelte:

L’asse su cui piazzare il piano

Il punto sull’asse in cui piazzare il piano
m Vantaggi sui BSP:

determinare in quale semispazio risiede un punto costa un
confronto

La memorizzazione del piano richiede un floating point +
qualche bit

Spatial Search Data Structure

"

kD-Trees: esempio

Spatial Search Data Structure

"

kD-Trees : esempio

"

kD-Trees : esempio

A
4

Spatial Search Data Structure

"

kD-Trees : esempio

Spatial Search Data Structure

" A
Costruire un kD-tree

m Dati:

axis-aligned bounding box (“cell”)

lista di primitive geometriche (triangoli)
m Operazioni base

Prendi un piano ortogonale a un asse e dividi la cella in
due parti (in che punto?)

Distribuire le primitive nei due insiemi risultantsi
Ricorsione
Criterio di terminazione (che criterio?)

m Esempio: se viene usato per il ray-tracing, si vuole

ottimizzare per il costo dell'intersezione raggio
primitiva

Spatial Search Data Structure

"

Costruire un kD-tree efficiente per RayCast

m In che punto dividere la cella?
1 Nel punto che minimizza il costo

m Quanto € il costo? Riprendiamo la formula per | BSP
Cost(cell) =1+

cell

" A
Prob(left _cell | cell) Cost(Left)

m Sapendo che il raggio interseca la cella cell, qual’e
la probabilita che intersechi la cella left_cell ?7?

cell

.
left _cell
£/

/,/
- / /
/7

[
g

B
>

Spatial Search Data Structure

" A
Prob(left _cell |l cell)

Problcell | left _ cell]= " 488t cheintersecanoleft _cel

#raggicheintersecano cell

cell

Ogni raggio che
left - Cell interseca una cella
corrisponde a una
coppia di punti sulla
sua superficie.
Contiamo le coppie di
punti sulla superficie
delle celle

| Ja

a
o(left_cell) O(Zeftcell)jd _ Area(left_cell)2 _ Area(left _cell)

Area(cell)’ Area(cell)
I [Idajda

o(cell) \ oSgtjal pearch Data Structure

Prob[cell | left _cell]=

"
cost(left _ cell)

m Sapendo che il raggio interseca la cella left_cell,
qual’e il costo di testare l'intersezione con i triangoli?

m Si approssima con il numero di triangoli che toccano
la cella

cell

Cost(left _cell) =4

Spatial Search Data Structure

" JEEE
Esempio

m Come si suddivide la cella qui sotto?

A

Spatial Search Data Structure

A meta

A

m Non tiene conto delle probabilita
m Non tiene conto dei costi

Spatial Search Data Structure

"
Nel punto mediano

A

ST

m Rende uguali i costi di left_cell e right_cell
m Non tiene conto delle probabilita

Spatial Search Data Structure

" A
Ottimizzando il costo

A

m Separa bene spazio vuoto
m Distribuisce bene la complessita

Spatial Search Data Structure

"
Range Query with kd-tree

m Query: return the primitives inside a given box

m Algorithm:
Compute intersection between the node and the box

If the node is entirely inside the box add all the primitives
contained in the node to the result

If the node is entirely outside the box return
If the nodes is partially inside the box recur to the children

m Cost: if the leaf nodes contain one primitive and the tree

IS balanced: s
O(n 4 +k)

n number of primitives, d dimension
s O(n*?) possible results

Spatial Search Data Structure

"
Nearest Neighbor with kd-tree

m Query: return the nearest primitive to a given point ¢

m Algorithm:
Find the nearest neighbor in the leaf containing c

If the sphere intersect the region boundary, check the primitives
contained in intersected cells

Spatial Search Data Structure

" A
Quad-Tree (2d)

m The plane is recursively subdivided in 4 subregions by
couple of orthogonal planes

Region Quad-tree Point Quad-tree
(@) (@)
(@) (@) O
(@) (@)
o " ° © o
(@) (@) (@) (@)
(@) (@)
(@) (@)
° (@) (@) (@) (@)

Spatial Search Data Structure

"
Quad-Tree (2d): examples

m Widely used:

1 Keeping level of detail of images

ErEEEEEEEEEEEET EE N

. EEEEEEEEEEEEEE L
EEEEEEEEEEEEEEEE P

EEE 0L EEE -map

EEN S EEE level 3

BE - - ‘38 P mep

T . EEE level 2 MIP-map

HEE N H "N level 4
RN HEHEEE 42 SE= MIP-map
|| | S o | level 1

MIP-map
level O

Spatial Search Data Structure

" A
Quad-Tree (2d): examples

m Widely used:
Terrain rendering: each cross in the quatree is associated with a
height value
N
I
VANV NA N

Spatial Search Data Structure

" A
Oct-Tree (3d)

m [The same as quad-tree but in 3 dimensions

(oot

O
-f/ // //.a
T _
{1 level) ¢
’ i1
e H]]L”]

- (7 levels)
s

Spatial Search Data Structure

" A
Oct-Tree (3d) : Examples

m Processing of Huge Meshes (ex: simplification)
m Problem: mesh do not fit in main memory
m Arrange the triangles in a oct-tree

david.oct - Octiee
Fle Edt View Hep

Dles|@] || Bl el] o] o]] N o]
EEAMEE o|[EH [w0le| (]]RIE| [AlAlS
== 5 ! o

.

— —— =
Ready (Curk: 13 [t 083 [2C: 001

Spatial Search Data Structure

" A
Oct-Tree (3d) : Examples

m Extraction of isosurfaces on large dataset
Build an octree on the 3D dataset
Each node store min and max value of the scalar field

When computing the isosurface for alpha, nodes whose interval
doesn’t contain alpha are discarded

il
b
14 1)

Spatial Search Data Structure

"
Advantages of quad/oct tree

m Position and size of the cells are implicit

They can be explored without pointers (convenient if the
hierarchies are complete) by using a linear array where:

Children(i) = 4i+1,..4*({+1)
Parent(i) =Li/ 4J

quadtree

Children(i) = 8i+1,..8*(+1)
Parent(i) =|i/8

octree

Spatial Search Data Structure

Qe
Z-Filling Curves

m Position and size of the cells are implicit
They can be indexed to preserve locality, i.e.

Spatially close — closein memory

1 Z-Filling curve
Y
10 | @D
(0,0) (0,1)

Easy conversion between
position in space and
order in the curve

Just use the 0..1
coordinates as bits

00011011

Spatial Search Data Structure

"

Z-Filling Curves

m Position and size of the cells are implicit
1 They can be indexed to preserve locality, i.e.

Spatially close — closein memory

Z-Filling curve

1.1)
\%

1.0)

-

0,0)

gy

10) i
00)

(Y

(1.0)

(0,0)

1)

()

(0,0)

i B 3

()

xL

Spatial Search Data Structure

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

- S
Z-Filling Curves

m Conversion from spatial coordinates to index.
Write the coord values in binary
Interleave the bits

X = b b’ bl b’

y = b b b; . b
id = b b b b b b .. b b

Spatial Search Data Structure

"

Hierarchical Z-Filling Curves

oD 303 0 S
: — R o oo i
, \'\. :__ '|E__ 1&3__\5'..:_'_
— — eI el Bl
. e - - -
T RS S0 505 A
. O ARG
", - e X -
L I M - 1'.:"1-.|I_"1-"._"

Spatial Search Data Structure

Bounding Volumes Hierarchies

e If a volume B includes a volume A, it is
called bounding volume for A

e No object can intersect A without

intersecting B

e If two bounding volumes do not overlap,
the same hold for the volumes included

The Principle

e What if they do overlap?
o Refine.

Questions!

e What kind of Bounding Volumes?
e What kind of hierarchy?
e How to build the hierarchy?

e How to update (if needed) the hierarchy?
e How to transverse the hierarchy?

All the literature on CD for non-convex
objects is about answering these
guestions.

Cost

: visited nodes
. couple of bounding volumes

tested for overlap

. couple of polygons tested for
overlap

: humber of

: Cost

BHV - Desirable Properties (2)

e The hierarchy should be able to be

constructed in an automatic predictable
manner

e The hierarchical representation should
be able to approximate the original
model to a high degree or accuracy

— allow quick localisation of areas of contact
— reduce the appearance of object repulsion

BHV - Desirable Properties

e The hierarchy approximates the
bounding volume of the object, each
level representing a tighter fit than its
parent

e For any node in the hierarchy, its
children should collectively cover the
area of the object contained within the
parent node

e The nodes of the hlerarchy should f|t

Sphere-Tree

[O'Rourke and Badler 1979 , Hubbard 1995a & 1996, Palmer and Grimsdale 1995, Dingliana and O’Sullivan 2000]

e Nodes of BVH are spheres.
e Low update cost C,

— translate sphere center
e Cheap overlap test C,
D2 < (R, + R,)?
e Slow convergence to object geometry
— Relatively high NV, & N,

e Spheres placed around the boxes of a
regular oct-tree

| |

|||||||>|<|||| L

Sphere-Tree Construction

e Spheres placed alon'g the Medial-Axis
(transform)

Axis-Aligned Bounding Box

en Bergen 1997]

e The bounding volumes are axis aligned
boxes (in the object coordinate system)

e The hierarchy is a binary tree (built top

down)

e Split of the boxes along the longest edge
at the median (equal number of polygons
in both children)

Axis-Aligned Bounding Box

e The hierarchy of boxes can be quickly updated :
o et Sm(R) be the smallest AABB of a region R and % - two regions.

Sm(Sm(r,)) U Sm(r,)) = Sm(r, Ur,)

The hierarchy 1s updated in O(n)
time

Note: this i1s not the same as
rebuilding the hierarchy

refitting rebuilding

AABB - Overlap

If two convex polyhedra do not overlap, then there exists a
direction L such that their projections on L do not overlap. L is
called Separating Axis

o

Separating Axis Theorem: L can only be one of the following:
e Normal to a face of one of the polyedra
e Normal to 2 edges, one for each polyedron

AABB - Overlap

Ex: There are 15 possible axes for two boxes: 3 faces from
each box, and 3x3 edge direction combinations

Note: SA 1s a normal to a
face 75% of the times

Trick: Ignore the tests on the
edges!

Object Oriented Bounding Box

[Gottschalk et al. 1996]

e Better coverage of object than
AABB

— Quadratic convergence
o Update cost C,is relatively '_

of box’s projection onto 15 5xes

Oriented Bounding 310)

Building an OBB

e The OBB fitting problem requires finding the orientation of the
box that best fits the data
e Principal Components Analysis:
Point sample the convex hull of the geometry to be bound
Find the mean and covariance matrix of the samples
The mean will be the center of the box

The eigenvectors of the covariance matrix are the principal
directions — they are used for the axes of the box

The principle directions tend to align along the longest axis,
then the next longest that is orthogonal, and then the other

orthogonal axis

Principal Component Analysis

C = LS
3nh1p

COVU’ =—Z(plh _Ci)(p? _Cj)
3n %5

Cov is symmetric = eigen vectors

form an orthogonal basis

Discrete Oriented Polytope

[Klosowski et al. 1997]

* Convex polytope whose faces are
oriented normal to Adieetidns:

e Overlap test similar to OBB
— k/2 pairs of co-linear vectors
—k/2 overlap tests
e k-DOP needs to be updated |n~ & similar.
way as the AABB /O e

e AABB is a 6-DOP

K-Dops examples

Discrete Oriented Polytope

	BEA0B3A9-8FC1-4352-B2E0-E075C8004C34: On

