
Spatial Search Data Structure

Spatial Search Data
Structures

Fabio Ganovelli
fabio.ganovelli@isti.cnr.it

Corso di dottorato: Geometric Mesh Processing

Spatial Search Data Structure

Problem statement

! Let m be a mesh:
" Which is the mesh element closest to a given point p?
" Which are the elements inside a given region?
" Which elements are intersected by a given ray r?

! Let m’ be another mesh:
" Do m and m’ intersect? If so, where?

! A spatial search data structure helps to answer
efficiently to these questions

Spatial Search Data Structure

Motivations

Which triangle has been selected ?

Which triangles have been selected ?
• Picking on a point
• Selecting a region

Spatial Search Data Structure

Motivationscntd

! Ray tracing: shoot a ray for each pixel, see what
it hits, possibly recur, compute pixel color

! Involves plenty of ray-objects intersections

viewport
viewpoint

ray
Ray bouncing
off the surface

Spatial Search Data Structure

Motivationscntdcntd

! Collision detection: in dynamic scenes, moving
objects can collide.

How to find out
which triangles
intersect?

Spatial Search Data Structure

Motivationscntdcntdcntd

! Without any spatial search data structure the
solutions to these problems require O(n) time,
where n is the numbers of primitives (O(n2) for
the collision detection)

! Spatial data structure can make it (average)
constant
" ..or average logarithmic

Spatial Search Data Structure

Uniform Grid (1/4)

! Description: the space including the object is
partitioned in cubic cells; each cell contains
references to “primitives” (i.e. triangles)

! Construction.
Primitives are assigned to:
" The cell containing their feature point (e.g. barycenter

or one of their vertices)
" The cells spanned by the primitives

Spatial Search Data Structure

Uniform Grid (2/4)

! Closest element (to point p):
" Start from the cell containing p
" Check for primitives inside growing spheres centered

at p
" At each step the ray increases

to the border of visited cells
! Cost.

" Worst: O(#cells+n)
" Average; O(1)

Spatial Search Data Structure

Uniform Grid (3/4)

! Intersection with a ray:
" Find all the cells intersected by the ray
" For each intersected cell, test the intersection with the

primitives referred in that cell
" Avoid multiple testing by

flagging primitives that
have been tested
(mailboxing)

! Cost:
" Worst:
" Aver:)#(dd ncellsO +

)(# ncellsO +

Spatial Search Data Structure

Uniform Grid (4/4)

! Memory occupation:
! Pros:

" Easy to implement
" Fast query

! Cons:
" Memory consuming
" Performance very sensitive to distribution of the

primitives.

)(# ncellsO +

Spatial Search Data Structure

Spatial Hashing (1/2)

! The same as uniform grid, except that only non
empty cells are allocated

Uniform grid Spatial hashing

0 #cells

HASH(key(i,j,k))

collisions
<<#cells

Spatial Search Data Structure

Spatial Hashing (2/2)

! Cost: same as UG, except that in worst case the access
to a cell is O(#cells) because of collisions

! Memory occupation:

" Worst. :

" Aver. :
! Pros:

" Easy to implement
" Fast query if good hashing is done
" Less memory consuming

! Cons:
" Performance very sensitive to distribution of the primitives.

)(#cellsO

 Volume :Vol surface, :S)#(
3
2

S
Vol
cellsO ⋅








Spatial Search Data Structure

Beyond UG

! Uniform grids are input insensitive
! What’s the best choice for the example below?

r1
r2 r2

r1

Spatial Search Data Structure

Hierarchical Indexing of Space

! Divide et impera strategies:
" The space is partitioned in sub regions
" ..recursively

Spatial Search Data Structure

Hierarchical Indexing of Space

! Divide et impera strategies:
" The space is partitioned in sub regions
" ..recursively

Spatial Search Data Structure

Hierarchical Indexing of Space

! Divide et impera strategies:
" The space is partitioned in sub regions
" ..recursively

Spatial Search Data Structure

Hierarchical Indexing of Space

! Divide et impera strategies:
" The space is partitioned in sub regions
" ..recursively

Spatial Search Data Structure

Basic Facts

! The queries correspond to a visit of the tree
" The complexity is sublinear in the number of nodes

(logarithmic)
" The memory occupation is linear

! A hierarchical data structure is characterized by:
" Number of children per node
" Spatial region corresponding to a node

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/3)

! Description:
" It’s a binary tree obtained by recursively partitioning the

space in two by a hyperplane
" therefore a node always corresponds to a convex

region

E

D F

A
C

B

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/3)

! Description:
" It’s a binary tree obtained by recursively partitioning the

space in two by a hyperplane
" therefore a node always corresponds to a convex region

1 E

D F

A
C

B

1

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/3)

! Description:
" It’s a binary tree obtained by recursively partitioning

the space in two by a hyperplane
" therefore a node always corresponds to a convex

region

1
2

E

D F

A
C

B

C 1

2

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/3)

! Description:
" It’s a binary tree obtained by recursively partitioning

the space in two by a hyperplane
" therefore a node always corresponds to a convex

region

1
2 3

E

D F

A
C

B

C D 1

2

3

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/ 3)

1
2 3

4

E

D F

A
C

BA B

C D 1

2

3

4

! Description:
" It’s a binary tree obtained by recursively partitioning

the space in two by a hyperplane
" therefore a node always corresponds to a convex

region

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/ 3)

1
2 3

4

E

D F

A
C

BA B

C D

E F

1

2

3

4

5

5

! Description:
" It’s a binary tree obtained by recursively partitioning

the space in two by a hyperplane
" therefore a node always corresponds to a convex

region
BSP tree

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (1/ 3)

! Query: is the point p inside a primitive?
" Starting from the root, move to the child associated

with the half space containing the point
" When in a leaf node, check all the primitives

! Cost:
" Worst:
" Aver: 1

2 3

4

E

D F

A
C

BA B

C D

E F

1

2

3

4

5

5

BSP tree

)(nO
)(lognO

Spatial Search Data Structure

BSP-Tree For Rendering

! ordering primitives back-to-front

1
2 3

4

E

D F

A
C

BA B

C D

E F

1

2

3

4

5

5
1

2

3

4 5

67

8 9

Point of view

void DrawBackToFront(n,p){
if(IsLeaf(n))

Draw(n);
if(InNegativeHS(p,n))

DrawBackToFront(RightChild(n),p);
else

DrawBackToFront(LeftChild(n),p);
}

Spatial Search Data Structure

BSP-Tree For Rendering

! Not so fast: set of polygons not always
separable by a plane

Spatial Search Data Structure

Binary Space Partition-Tree (BSP) (3/3)

! Auto-partition :
" use the extension of primitives as partition planes
" Store the primitive used for PP in the node

A

B
C

A

BR

C

A

BL

BL BR

A

BR

CL

A

BL

BL BR

CR

CL CR

Spatial Search Data Structure

Bulding a BSP-Tree

! Building a BSP-tree requires to choose the
partition plane

! Choose the partition plane that:
" Gives the best balance ?
" Minimize the number of splits ?
" …..it depends on the application

! Cost of a BSP-Tree

)()()()(1)(RRLL TCTPTCTPTC ++=

Probability that TL[R] is visited
if T has been visited

Cost of visiting TL[r]

Spatial Search Data Structure

Bulding a BSP-Tree: example

planechosenthebysplitprimitivesofnumbers
subtreerightlefttheinprimitivesofnumberS

sSSTC

TCTPTCTPTC

RL

RL

RRLL

=

=

+++=

++=

][
1)(

)()()()(1)(

][

β
αα

!

" Big alpha, small beta yield a balanced tree (good for
in/out test)

" Big beta, small alpha yield a smaller tree (good for
visibility order)

tuningforusedβα ,

Spatial Search Data Structure

Binary Space Partition-Tree (BSP)

! Memory occupation:
" For each node:

! (d+1) floatig point numbers (in d dimensions)
! 2 pointers to child node

! Cost of descending the three:
" d products, d summations (dot product d+1 dim.)
" 1 random memory access (follow the pointer)

! Less general data structures can be faster/ less
memory consuming

)(nO

Spatial Search Data Structure

kd-tree
! Kd-tree : k dimensions tree
! È una specializzazione dei BSP in cui i piani di

partizione sono ortogonali a uno degli assi principali
! Scelte:

" L’asse su cui piazzare il piano
" Il punto sull’asse in cui piazzare il piano

! Vantaggi sui BSP:
" determinare in quale semispazio risiede un punto costa un

confronto
" La memorizzazione del piano richiede un floating point +

qualche bit

Spatial Search Data Structure

kD-Trees: esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

kD-Trees : esempio

Spatial Search Data Structure

Costruire un kD-tree
! Dati:

" axis-aligned bounding box (“cell”)
" lista di primitive geometriche (triangoli)

! Operazioni base
" Prendi un piano ortogonale a un asse e dividi la cella in

due parti (in che punto?)
" Distribuire le primitive nei due insiemi risultanti
" Ricorsione
" Criterio di terminazione (che criterio?)

! Esempio: se viene usato per il ray-tracing, si vuole
ottimizzare per il costo dell’intersezione raggio
primitiva

Spatial Search Data Structure

Costruire un kD-tree efficiente per RayCast
! In che punto dividere la cella?

" Nel punto che minimizza il costo
! Quanto è il costo? Riprendiamo la formula per I BSP

)()|_Prob(
)()|_Prob(

1)(

RightCostcellcellright
LeftCostcellcellleft

cellCost
+

+=

cell
cellleft _ cellright _

Spatial Search Data Structure

! Sapendo che il raggio interseca la cella cell, qual’è
la probabilità che intersechi la cella left_cell ??

)()|_Prob(LeftCostcellcellleft

cell
cellleft _

Spatial Search Data Structure

)|_Prob(cellcellleft

cell
cellleft _

cellointersecancheraggi
cellleftointersecancheraggicellleftcell

#
#]|Prob[=

Ogni raggio che
interseca una cella
corrisponde a una
coppia di punti sulla
sua superficie.
Contiamo le coppie di
punti sulla superficie
delle celle

)(
)_(

)(
)_(]_|Prob[2

2

)()(

)_()_(

cellArea
cellleftArea

cellArea
cellleftArea

dada

dada

cellleftcell

cell cell

cellleft cellleft
==























=

∫ ∫

∫ ∫

σ σ

σ σ

Spatial Search Data Structure

)_(cellleftcost

cell
cellleft _ cellright _

! Sapendo che il raggio interseca la cella left_cell,
qual’è il costo di testare l’intersezione con i triangoli?

! Si approssima con il numero di triangoli che toccano
la cella

4)_(=cellleftCost

Spatial Search Data Structure

Esempio
! Come si suddivide la cella qui sotto?

Spatial Search Data Structure

A metà

! Non tiene conto delle probabilità
! Non tiene conto dei costi

Spatial Search Data Structure

Nel punto mediano

! Rende uguali i costi di left_cell e right_cell
! Non tiene conto delle probabilità

Spatial Search Data Structure

Ottimizzando il costo

! Separa bene spazio vuoto
! Distribuisce bene la complessità

Spatial Search Data Structure

Range Query with kd-tree
! Query: return the primitives inside a given box
! Algorithm:

" Compute intersection between the node and the box
" If the node is entirely inside the box add all the primitives

contained in the node to the result
" If the node is entirely outside the box return
" If the nodes is partially inside the box recur to the children

! Cost: if the leaf nodes contain one primitive and the tree
is balanced:

n number of primitives, d dimension
! possible results

)(
11

knO d +
−

)(2dnO

Spatial Search Data Structure

Nearest Neighbor with kd-tree
! Query: return the nearest primitive to a given point c
! Algorithm:

" Find the nearest neighbor in the leaf containing c
" If the sphere intersect the region boundary, check the primitives

contained in intersected cells

Ax AX

By

BY

Cy

CY
Ax AX

By BY
Cy CY

Spatial Search Data Structure

Quad-Tree (2d)
! The plane is recursively subdivided in 4 subregions by

couple of orthogonal planes

Region Quad-tree Point Quad-tree

Spatial Search Data Structure

Quad-Tree (2d): examples
! Widely used:

" Keeping level of detail of images

MIP-map
level 0

MIP-map
level 1

MIP-map
level 2

MIP-map
level 3

MIP-map
level 4

Spatial Search Data Structure

Quad-Tree (2d): examples
! Widely used:

" Terrain rendering: each cross in the quatree is associated with a
height value

Spatial Search Data Structure

Oct-Tree (3d)
! The same as quad-tree but in 3 dimensions

Spatial Search Data Structure

Oct-Tree (3d) : Examples
! Processing of Huge Meshes (ex: simplification)
! Problem: mesh do not fit in main memory
! Arrange the triangles in a oct-tree

Spatial Search Data Structure

Oct-Tree (3d) : Examples
! Extraction of isosurfaces on large dataset

" Build an octree on the 3D dataset
" Each node store min and max value of the scalar field
" When computing the isosurface for alpha, nodes whose interval

doesn’t contain alpha are discarded

Spatial Search Data Structure

Advantages of quad/oct tree
! Position and size of the cells are implicit

" They can be explored without pointers (convenient if the
hierarchies are complete) by using a linear array where:

 4/)(
)1(*4,...,14)(

iiParent
iiiChildren

=

++=

 8/)(
)1(*8,...,18)(

iiParent
iiiChildren

=

++=

quadtree

octree

Spatial Search Data Structure

Z-Filling Curves
! Position and size of the cells are implicit

" They can be indexed to preserve locality, i.e.

memoryinclosecloseSpatially →

x

y

)0,0()1,0(

)0,1()1,1(

Z-Filling curve

Easy conversion between
position in space and
order in the curve

Just use the 0..1
coordinates as bits

11100100

Spatial Search Data Structure

Z-Filling Curves
! Position and size of the cells are implicit

" They can be indexed to preserve locality, i.e.

memoryinclosecloseSpatially →

x

y

)0,0()1,0(

)0,1()1,1(

Z-Filling curve

)0,0()1,0(

)0,1()1,1(

)0,0()1,0(

)0,1()1,1(

)0,0()1,0(

)0,1()1,1(

)1,1(

)1,0()0,0(

)0,1(

1111
1011
0111
0011
1110
1010
0110
0010
1101
1001
0101
0001
1100
1000
0100
0000

Spatial Search Data Structure

Z-Filling Curves
! Conversion from spatial coordinates to index.

" Write the coord values in binary
" Interleave the bits

x
n

y
n

xyxyxy

y
n

yyy

x
n

xxx

bbbbbbbbid
bbbby

bbbbx

...

...

...

221100

210

210

=

=

=

Spatial Search Data Structure

Hierarchical Z-Filling Curves

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Bounding Volumes Hierarchies
• If a volume B includes a volume A, it is

called bounding volume for A
• No object can intersect A without

intersecting B
• If two bounding volumes do not overlap,

the same hold for the volumes included

B

A

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

The Principle
• What if they do overlap?
• Refine.

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Questions!
• What kind of Bounding Volumes?
• What kind of hierarchy?
• How to build the hierarchy?
• How to update (if needed) the hierarchy?
• How to transverse the hierarchy?

All the literature on CD for non-convex
objects is about answering these
questions.

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Cost
Tc = Nv*Cv + Nn*Cn + Ns*Cs

v : visited nodes
n : couple of bounding volumes

tested for overlap
s : couple of polygons tested for

overlap
N: number of
C: Cost

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

BHV - Desirable Properties (2)

• The hierarchy should be able to be
constructed in an automatic predictable
manner

• The hierarchical representation should
be able to approximate the original
model to a high degree or accuracy
– allow quick localisation of areas of contact
– reduce the appearance of object repulsion

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

BHV - Desirable Properties

• The hierarchy approximates the
bounding volume of the object, each
level representing a tighter fit than its
parent

• For any node in the hierarchy, its
children should collectively cover the
area of the object contained within the
parent node

• The nodes of the hierarchy should fit
the original model as tightly as possible

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Sphere-Tree
[O’Rourke and Badler 1979 , Hubbard 1995a & 1996, Palmer and Grimsdale 1995, Dingliana and O’Sullivan 2000]

• Nodes of BVH are spheres.
• Low update cost Cu

– translate sphere center

• Cheap overlap test Cv
D2 < (R1 + R2)2

• Slow convergence to object geometry
– Relatively high Nu & Nv

R1

R2D

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Sphere-Tree Construction Dingliana and

O’Sullivan 2000

• Spheres placed around the boxes of a
regular oct-tree

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Sphere-Tree Construction Hubbard 1995a &

1996,

• Spheres placed along the Medial-Axis
(transform)

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Axis-Aligned Bounding Box
[van den Bergen 1997]

• The bounding volumes are axis aligned
boxes (in the object coordinate system)

• The hierarchy is a binary tree (built top
down)

• Split of the boxes along the longest edge
at the median (equal number of polygons
in both children)

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Axis-Aligned Bounding Box
• The hierarchy of boxes can be quickly updated :
• let be the smallest AABB of a region R and two regions.)(RSm 21 , rr

)())()((2121 rrSmrSmrSmSm ∪=∪

• The hierarchy is updated in O(n)
time

• Note: this is not the same as
rebuilding the hierarchy

rebuildingrefitting

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

AABB - Overlap

If two convex polyhedra do not overlap, then there exists a
direction L such that their projections on L do not overlap. L is
called Separating Axis

Separating Axis Theorem: L can only be one of the following:
• Normal to a face of one of the polyedra
• Normal to 2 edges, one for each polyedron

L

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

AABB - Overlap

Ex: There are 15 possible axes for two boxes: 3 faces from
each box, and 3x3 edge direction combinations

L

Note: SA is a normal to a
face 75% of the times

Trick: Ignore the tests on the
edges!

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

• Better coverage of object than
AABB
– Quadratic convergence

• Update cost Cu is relatively high
– reorient the boxes as objects rotate

• Overlap cost Cv is high
– Separating Axis Test tests for overlap

of box’s projection onto 15 test axes

Object Oriented Bounding Box
[Gottschalk et al. 1996]

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Oriented Bounding Box
[Gottschalk et al. 1996]

AABB

OBB

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Building an OBB

• The OBB fitting problem requires finding the orientation of the
box that best fits the data

• Principal Components Analysis:
– Point sample the convex hull of the geometry to be bound
– Find the mean and covariance matrix of the samples
– The mean will be the center of the box
– The eigenvectors of the covariance matrix are the principal

directions – they are used for the axes of the box
– The principle directions tend to align along the longest axis,

then the next longest that is orthogonal, and then the other
orthogonal axis

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Principal Component Analysis

basisorthogonalanform
vectorseigensymmetricisCov

cpcp
n

Cov

p
n

c

n

h
j

h
ji

h
iij

n

h

h

⇒

−−=

=

∑

∑

=

=

1

1

))((
3
1

3
1

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Discrete Oriented Polytope
[Klosowski et al. 1997]

• Convex polytope whose faces are
oriented normal to k directions:

• Overlap test similar to OBB
– k/2 pairs of co-linear vectors
– k/2 overlap tests

• k-DOP needs to be updated in a similar
way as the AABB

• AABB is a 6-DOP

dn }1,0{ ±∈

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

K-Dops examples

6-dop 14-dop 18-dop 26-dop

Spatial Search Data Structure
IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

Discrete Oriented Polytope
[Klosowski et al. 1997]

AABB OBB 6-DOP

	BEA0B3A9-8FC1-4352-B2E0-E075C8004C34: On

