
A mesh processing library
Paolo Cignoni

ISTI – CNR

Intro
¤  Intro

¤  Capabilities

¤  Design/Structure

¤  Examples

What
¤  A C++ template based library

¤  Include only, no compilation hassle

¤  Research Driven Library
¤  The most amatorial professional library

¤  A rather rich and hopefully easy to use library for mesh
processing

¤  The core of the well known MeshLab system.

Where
¤  Main site:

¤  http://vcg.sf.net

¤  The code
¤  No rigid release scheme

¤  Just the svn tree.

¤  svn checkout svn://svn.code.sf.net/p/vcg/code/trunk vcg-code

¤  (the status of the lib at meshlab releases is rather solid)

¤  Documentation by doxygen on the web

¤  A bunch of small samples
¤  vcglib/apps/sample

Capabilities
¤  VCG library feature a large number of different algorithms

¤  In the next slides a fast browsing of some of the most known
things in the library

Simplification
¤  Fairly generic edge collapse simplification algorithms

¤  Probably one of the reason meshlab is famous.

¤  Link conditions for topology preserving
¤  Two optimized specializations

¤  Quadric error (with a few minor variants)

¤  Quadric error with texture coords optimization.

Sampling
¤  A variety of algorithm for distributing points over the surface of

a mesh
¤  a reasonably practical and fast adaptive poisson sampling

algorithm.

¤  Unbiased montecarlo

¤  Useful for computing sampled integral measures over meshes

Cleaning
¤  A variety of tools for correcting small annoying things

¤  Duplicated, unreferenced mesh elements

¤  Merging of close vertices

¤  Small hole filling

¤  Non manifold detection and correction

¤  Split of non manifold vertexes

¤  Heuristic Deletion of isolated non manifold faces

Color Processing
¤  VCG support color in various format

¤  Per vertex

¤  Per face

¤  Per wedge

¤  As texture

¤  Provides tools for converting from a representation to another
one.

Measuring
¤  Integral measures

¤  Volume, barycenter inertia tensor

¤  Distance between surfaces
¤  Sampled Hausdorff distance

¤  Distance and intersesction between a lot of geometric
elements
¤  (point-triangle, triangle-triangle etc)

Smoothing
¤  A number of sophisticated noise removal tools.

¤  Basic laplacian (with or without cotangent weighting)

¤  Taubin smoothing

¤  Two step feature preserving smoothing.

¤  A number of smoothing algorithms can also be applied to
various attributes like color, normal, scalar field over the mesh

Texturing
¤  Support of per vertex and per wedge text coords

¤  Conversion between representations

¤  Packing algorithms

¤  Various texture optimization

Remeshing
¤  Subdivision surfaces

¤  (loop, butterfly)

¤  Generic

¤  Define your own predicate to decide if an edge has to be split
and where.

¤  Ball Pivoting surface reconstruction

¤  Clustering simplification

¤  Marching cubes

Spatial Indexing
¤  Uniform Grid

¤  Very good if your query points are quite near to the surface

¤  Kd-tree
¤  Perfect for point clouds

¤  Hierarchies of Bounding Volumes

File Format
¤  VCGLib provides importer and exporter for several file formats:

¤  import:
¤  PLY, STL, OFF, OBJ, 3DS, COLLADA, PTX, V3D, PTS, APTS, XYZ, GTS, TRI,

ASC, X3D, X3DV, VRML, ALN

¤  export:
¤  PLY, STL, OFF, OBJ, 3DS, COLLADA, VRML, DXF, GTS, U3D, IDTF, X3D

¤  Caveat it flattens everything to a polygon soup.
¤  No scene graph information is retained for the most complex

formats

Basic Concepts: The Mesh
¤  encode a mesh in several ways,

¤  the most common is a vector of vertices and vector of
triangles.

¤  The following line is an example of the definition of a VCG
type of mesh:

class MyMesh :  
 public vcg::tri::TriMesh<  
 std::vector<MyVertex>,  
 std::vector<MyFace> ,  
 std::vector<MyEdge> > {};

¤  you need only to derive from vcg::tri::TriMesh and to provide
the type of containers of the elements

Basic Concepts: The simplexes 1
¤  The face, the edge and the vertex type are the crucial bits to

understand in order to be able to take the best from VCG Lib.

¤  A vertex, an edge, a face and a tetrahedron are just an user
defined (possibly empty) collection of attributes
¤  For example a vertex could contain position normal color etc.

¤  To build an simplex class you just derive from the base simplex
templated with the desired attributes:

class MyVertex2 :  
 public vcg::Vertex< MyUsedTypes,  
 vcg::vertex::Coord3f,  
 vcg::vertex::Color4b,  
 vcg::vertex::CurvatureDirf,  
 vcg::vertex::Normal3f,  
 vcg::vertex::BitFlags >{};

Basic Concepts: The simplexes 2
¤  Caveat first of all you have to pre-declare what are the

intended names for the various pieces

struct MyUsedTypes : public  
 vcg::UsedTypes<  
 vcg::Use<MyVertex> ::AsVertexType,  
 vcg::Use<MyEdge> ::AsEdgeType,  
 vcg::Use<MyFace> ::AsFaceType>{};

¤  In this way when you are declaring a vertex you alredy know
what are the types involved in mixed relations like the vertex
type adjacency

Basic Concepts: Using the mesh
¤  Most of the stuff in the library came in the shape of static

templated class;

¤  Most of the time you see stuff like

vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalized(m);

Capabilities
¤  We could continue…

¤  MeshLab filters
¤  Exposed more than a hundred high level filtering tools.

¤  Most of them directly maps into vcg libs functions or classes.

Example 1: trimesh_base
¤  Basic example of minimal use

¤  Load a mesh and just dump some info about it

¤  Note that also the mesh loading is done by mean of
templated class.

Basic Concept: Adjacency
¤  Vertex, Edge and triangle can store different topological info:

¤  The most common is the VertexRef field of the face, that store
for each triangular face three ptr to its vertexes

¤  Other commonly used relations are

¤  FF face face relation

¤  VF vertex face relation

¤  tri::UpdateTopology<MyMesh>::FaceFace(m);

¤  tri::UpdateTopology<MyMesh>::VertexFace(m);

Basic Concept: Adjacency
¤  FF relation works for non manifold situations

faces around an edge are ring connected

¤  VF relation does not involve
any dynamic allocation,
the chain of face is distributed
onto the involved face

Basic Concepts: Navigating
¤  The Pos is the VCG Lib implementation of the Cell-Tuple

and it abstracts the concept of position over a mesh

¤  A Pos in a triangle mesh is a triple made of
 pos = (v,e,f)

¤  For manifold meshes there are flip operators
that allow easy navigation on the mesh
¤  FlipV, FlipE, FlipF

¤  Each flip operator, applied to a pos
simply changes only the indicated element
¤  c2 = c1.FlipV()
¤  c0 = c1.FlipE()
¤  c3 = c0.FlipF()

Basic Concept: Navigating
¤  There are also classical retrieval functions:

¤  vcg::face::VFOrderedStarFF
¤  Compute the ordered set of faces adjacent to a given vertex

using FF adiacency

¤  vcg::face::VVStarVF

¤  vcg::face::VFStarVF

¤  vcg::face::VFExtendedStarVF

¤  vcg::face::EFStarFF

Example 2: trimesh_topology
¤  Note the face::FFAdj component in the face

¤  Note on marking
¤  Simplex can have a mark component (face::Mark) that offers

O(1) unmark of the whole mesh. Implemented by mean of
counters, useful to avoid the usually required O(n) clearing.

¤  If your simplex has bitflags, you have also standard visiting/
selection bits

Basic Concept: Allocation
¤  Simplex are kept into vectors

¤  Relations are kept by mean of pointers

¤  Pay attention to reallocations…
¤  Always use the library functions to manage the simplex vectors

MyMesh::VertexIterator vi = tri::Allocator<MyMesh>::AddVertices(m,3);

 MyMesh::FaceIterator fi = tri::Allocator<MyMesh>::AddFaces(m,1);

Basic Concept: De-Allocation
¤  The library adopts a Lazy Deletion Strategy

¤  i.e. the elements in the vector that are deleted are only flagged
as deleted, but they are still there.

¤  m.vert.size() != m.VN()
¤  m.face.size() != m.FN()

¤  Therefore when you scan the containers of vertices and faces
you could encounter deleted elements

¤  You can get rid of deleted elements by explicitly calling the
two garbage collecting functions:

vcg::tri::Allocator<MyMesh>::CompactFaceVector(m);

vcg::tri::Allocator<MyMesh>::CompactVertexVector(m);

Example 3: trimesh_allocate
¤  Note

¤  How to simply build a minimal mesh from scratch

¤  the use of the PointerUpdater to cope with vector reallocation

¤  The use of explicit function to copy a mesh onto another

¤  The pitfall of having deleted elements

Basic Concept: Reflection
¤  VCG Lib provides a set of functions to implement reflection,

¤  i.e. to investigate the type of a mesh at runtime

¤  These functions follow the format
¤  tri::Has[attribute](mesh)

¤  tri::HasPerVertexNormal(m);

¤  tri::HasPerFaceColor(m);

¤  etc…

¤  Return a boolean stating if that particular attribute is present
or not

¤  These functions are not statically typed and need the mesh
object because of optional stuff…
¤  But they are statically solved if no optional stuff arise in your code

Basic Concept: Requiring data
¤  Reflection is often used to check the availability of

component for a given algorithm

¤  For example
¤  subdivision surface algorithms require FF adjacency

¤  Simplification require VF adjacency and per vertex marks

¤  Etc.

¤  If something is missing an exception is raised

¤  Tri::RequireFFAdjacency(mesh);
¤  Raise a missing component exception if the FF adj is missing

Basic Concept: Optional Component
¤  Simplex components imply storage

¤  E.g. FF adjacency means 4 words per face.

¤  Components are stored into the simplex type

¤  Most components can be done optional
¤  E.g. you can control the allocation space of that component at

runtime

class CFaceOcf : public vcg::Face< MyUsedTypesOcf,  
 vcg::face::InfoOcf, vcg::face::FFAdjOcf,  
 vcg::face::VertexRef, vcg::face::BitFlags,  
 vcg::face::Normal3fOcf > {};

class CMeshOcf : public vcg::tri::TriMesh<  
 vcg::vertex::vector<CVertex>,  
 vcg::face::vector_ocf<CFaceOcf> > {};

Basic Concept: Optional Component
¤  Storage of optional component is separated

¤  E.g. The data for the FF adjacency is stored in a ‘parallel’ vector
alongside the face vector.

¤  Access is exactly the same.

¤  You explicitly control the allocation

assert(tri::HasFFAdjacency(cmof) == false);  
cmof.face.EnableFFAdjacency();  
assert(tri::HasFFAdjacency(cmof) == true);

Example4: trimesh_optional
¤  Note the different definition of the type

¤  Note the enabling of the needed components

¤  Try to raise exceptions by commenting out the needed
enabling

Basic Concept: User Def Attribute
¤  VCG Lib provides a mechanism to associate user-defined

'attributes' to the simplicies and to the mesh

¤  Attribute vs Components
¤  Components are conceptually inside the simplex

¤  (*vi).N();
¤  Attributes need an handle to be accessed

¤  irradHandle[vi];

¤  To use an attribute
¤  Build an handle (find or create the attribute)

¤  Use the handle to access the data

Basic Concept: User Def Attribute
¤  Getting a named attribute handle

MyMesh::PerVertexAttributeHandle<float> named_hv =  
 vcg::tri::Allocator<MyMesh>::GetPerVertexAttribute<float>  
 (m,std::string("Irradiance"));

¤  Using an handle

MyMesh::VertexIterator vi; int i = 0;  
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)  
{  
 named_hv[vi] = 1.0f; // [] operator takes a iterator  
 named_hv[*vi] = 1.0f; // or a MyMesh::VertexType object  
 named_hv[&*vi]= 1.0f; // or a pointer to it  
 named_hv[i] = 1.0f; // or an integer index  
}

Example5: trimesh_attribute
¤  Note the creation/test/delete functions

¤  Note the multiple way of accessing thru handles

