AN

LIBRARY

A mesh processing library

Paolo Cignoni

ISTI = CNR



INtro

Intro
Capabilities
Design/Structure

Examples



A C++ template based library
O Include only, no compilation hassle

Research Driven Library
O The most amatorial professional library

A rather rich and hopefully easy to use library for mesh
processing

The core of the well known MeshLab system.



Main site:

O http://vca.sf.net

The code

O Norigid release scheme

O Just the svn free.

O svn checkout svn://svn.code.sf.net/p/vcg/code/trunk vcg-code
(the status of the lib at meshlab releases is rather solid)

Documentation by doxygen on the web

A bunch of small samples
O vcglib/apps/sample



Capabillities

VCG library feature a large number of different algorithms

In the next slides a fast browsing of some of the most known
things in the library



Simplification

Fairly generic edge collapse simplification algorithms

Probably one of the reason meshlab is famous.

Link condifions for topology preserving

O Two optimized specializations
Quadric error (with a few minor variants)
Quadric error with texture coords optimization.



Nelgglelllgle

O A variety of algorithm for distributing points over the surface of
a mesh

O areasonably practical and fast adaptive poisson sampling
algorithm.

O Unbiased montecarlo
O Useful for computing sampled integral measures over meshes




Cleaning

A variety of tools for correcting small annoying things
O Duplicated, unreferenced mesh elements
O Merging of close vertices
O Small hole filling
O Non manifold detection and correction
Split of non manifold vertexes
Heuristic Deletion of isolated non manifold faces



Color Processing

VCG support color in various format
O Per vertex

O Perface

O Perwedge

O As texture

Provides tools for converting from a representation to another
one.



Measuring

Integral measures
O Volume, barycenter inertia tensor

Distance between surfaces
O Sampled Hausdorff distance

Distance and intersesction between a lot of geometric
elements

O (point-triangle, triangle-triangle etc)



Nggleleligligle

A number of sophisticated noise removal tools.

Basic laplacian (with or without cotangent weighting)
Taubin smoothing
Two step feature preserving smoothing.

A number of smoothing algorithms can also be applied to
various attributes like color, normal, scalar field over the mesh




O Support of per vertex and per wedge text coords
O Conversion between representations
O Packing algorithms

O Various texture optimization




Remeshing

Subdivision surfaces
O (loop, butterfly)
O Generic

Define your own predicate to decide if an edge has to be split
and where.

Ball Pivoting surface reconstruction
Clustering simplification

Marching cubes



Spatial Indexing

Uniform Grid
O Very good if your query points are quite near to the surface

Kd-tree
O Perfect for point clouds

Hierarchies of Bounding Volumes



File Format

VCGLib provides importer and exporter for several file formats:

Import:

O PLY, STL, OFF, OBJ, 3DS, COLLADA, PTX, V3D, PTS, APTS, XYZ, GIS, TR,
ASC, X3D, X3DV, VRML, ALN

export:
O PLY, STL, OFF, OBJ, 3DS, COLLADA, VRML, DXF, GTS, U3D, IDTF, X3D

Caveat it flattens everything to a polygon soup.

O No scene graph information is retained for the most complex
formats



Basic Concepts: The Mesh

encode a mesh in several ways,

the most common is a vector of vertices and vector of
triangles.

The following line is an example of the definition of a VCG
type of mesh:

class MyMesh :
public vcg::tri::TriMesh<
std: :vector<MyVertex>,
std: :vector<MyFace> ,
std: :vector<MyEdge> > {};

you need only to derive from vcg::tri::-TriMesh and to provide
the type of containers of the elements



Basic Concepts: The simplexes |

The face, the edge and the vertex type are the crucial bits to
understand in order to be able to take the best from VCG Lib.

A vertex, an edge, a face and a tetrahedron are just an user
defined (possibly empty) collection of attributes

O For example a vertex could contain position normal color etc.

To build an simplex class you just derive from the base simplex
templated with the desired attributes:

class MyVertex2
public vcg::Vertex< MyUsedTypes,
vcg::vertex::Coord3f,
vcg::vertex::Color4db,
vcg: :vertex: :CurvatureDirf,
vcg::vertex::Normal3f,
vcg::vertex::BitFlags >{};



Basic Concepts: The simplexes 2

Caveat first of all you have to pre-declare what are the
iInNfended names for the various pieces

struct MyUsedTypes : public
vcg: :UsedTypes<

vcg: :Use<MyVertex> : :AsVertexType,
vcg: :Use<MyEdge> : :AsEdgeType,
vcg: :Use<MyFace> : :AsFaceType>{};

In this way when you are declaring a vertex you alredy know
what are the types involved in mixed relations like the vertex
type adjacency



Basic Concepfts: Using the mesh

Most of the stuff in the library came in the shape of static
templated class;

Most of the time you see stuff like

vcg:tri;:UpdateNormal<MyMesh>::PerVertexNormalized(m);



Capabillities

We could continue...

MeshLab filters

O Exposed more than a hundred high level filtering tools.
O Most of them directly maps into veg libs functions or classes.



Example 1: trimesh_base

Basic example of minimal use
Load a mesh and just dump some info about it

Note that also the mesh loading is done by mean of
templated class.



Basic Concept:. Adjacency

Vertex, Edge and triangle can store different topological info:

The most common is the VertexRef field of the face, that store
for each triangular face three pir to its vertexes

Other commonly used relations are

FF face face relation

VF vertex face relation

tri::UpdateTopology<MyMesh>::FaceFace(m);

tri::UpdateTopology<MyMesh>::VertexFace(m);



Basic Concept:. Adjacency

FF relation works for non manifold situations
faces around an edge are ring connected

VF relation does not involve
any dynamic allocation,

the chain of face is distributed
onto the involved face

V—fy—fs—f—fp—nil
Bvcg::vert::VFAd]J
BMvcg::face: :VFAd]



Basic Concepfts: Navigating

The Pos is the VCG Lib implementation of the Cell-Tuple
and it abstracts the concept of position over a mesh

A Pos in a triangle mesh is a friple made of
pos = (v,e.f)

For manifold meshes there are flip operators
that allow easy navigation on the mesh

O FlipV, FlipE, FlipF

Each flip operator, applied to a pos
simply changes only the indicated element

O c2 = cl.FlipV()
O cO = cl.F1lipE()
O c3 = c0.FlipF ()




Basic Concept: Navigating

There are also classical retrieval functions:

vcg::face::VFOrderedStarFF

O Compute the ordered set of faces adjacent to a given vertex
using FF adiacency

vcg:.face::VVStarVF
vcg:.face::VFStarVF
vcg::face::VFExtendedStarVF

vcg..face:.EFStarFF



Example 2: trimesh_ftopology

Note the face:.:FFAdj component in the face

Note on marking

O Simplex can have a mark component (face::Mark) that offers
O(1) unmark of the whole mesh. Implemented by mean of
counters, useful to avoid the usually required O(n) clearing.

If your simplex has bitflags, you have also standard visiting/
selection bits



Basic Concept: Allocation

Simplex are kept into vectors

Relations are kept by mean of pointers

Pay attention to reallocations...
O Always use the library functions to manage the simplex vectors

MyMesh: :VertexIterator vi = tri::Allocator<MyMesh>::AddVertices(m,3);

MyMesh: :FaceIterator fi tri::Allocator<MyMesh>: :AddFaces(m,1);



Basic Concept: De-Allocation

The library adopts a Lazy Deletion Strategy

O ie. the elementsin the vector that are deleted are only flagged
as deleted, but they are still there.

O m.vert.size() != m.VN()

O m.face.size() != m.FN()

Therefore when you scan the containers of vertices and faces
you could encounter deleted elements

You can get rid of deleted elements by explicitly calling the
two garbage collecting functions:

vcg::tri::Allocator<MyMesh>: :CompactFaceVector(m);

vcg::tri::Allocator<MyMesh>: :CompactVertexVector(m);



Example 3: frimesh_allocate

Note

How to simply build a minimal mesh from scratch
the use of the PointerUpdater to cope with vector reallocation
The use of explicit function to copy a mesh onto another

The pitfall of having deleted elements



Basic Concept: Reflection

VCG Lib provides a set of functions to implement reflection,
O ie. toinvestigate the type of a mesh at runtime

These functions follow the format
O tri::Has[attribute] (mesh)

O tri::HasPerVertexNormal(m);

O fri::HasPerFaceColor(m);

O eic...

Return a boolean stating if that parficular attribute is present
or not

These functions are not statically typed and need the mesh
object because of optional stuff...

O But they are statically solved if no optional stuff arise in your code



Basic Concept: Requiring data

Reflection is often used to check the availability of
component for a given algorithm

For example

O subdivision surface algorithms require FF adjacency

O Simplification require VF adjacency and per vertex marks
O Etc.

If something is missing an exception is raised

Tri::RequireFFAdjacency(mesh);
O Raise a missing component exception if the FF adj is missing



Basic Concept: Optional Component

Simplex components imply storage
O E.g. FF adjacency means 4 words per face.
O Components are stored into the simplex type

Most components can be done optional

O E.g. you can control the allocation space of that component at
runtime

class CFaceOcft : public vcg::Face< MyUsedTypesOcftf,
vcg::face:: InfoOcf, vcg::face::FFAdjoOcft,
vcg::face::VertexRef, vcg::face::BitFlags,
vcg::face::Normal3fOcf > {};

class CMeshOcf : public vcg::tri::TriMesh<
vcg: :vertex: :vector<CVertex>,
vcg: :face::vector ocf<CFaceOcf> > {};



Basic Concept: Optional Component

Storage of optional component is separated

O E.g. The data for the FF adjacency is stored in a ‘parallel’ vector
alongside the face vector.

Access is exactly the same.
You explicitly control the allocation

assert(tri::HasFFAdjacency(cmof) == false);
cmof.face.EnableFFAdjacency();
assert(tri::HasFFAdjacency(cmof) == true);



Example4: trimesh_optional

Note the different definition of the type
Note the enabling of the needed components

Try to raise exceptions by commenting out the needed
enabling



Basic Concept: User Def Attribute

VCG Lib provides a mechanism to associate user-defined
‘attributes' to the simplicies and to the mesh

Attribute vs Components

O Components are conceptually inside the simplex
(*vi) .N();

O Aftributes need an handle to be accessed

irradHandle[vi];

To use an afttribute

O Build an handle (find or create the aftribute)
O Use the handle to access the data



Basic Concept: User Def Attribute

Getting a named attribute handle

MyMesh: :PerVertexAttributeHandle<float> named hv =
vcg::tri::Allocator<MyMesh>: :GetPerVertexAttribute<float>
(m,std::string("Irradiance"));

Using an handle

MyMesh: :VertexIterator vi; int i = 0;

for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)

{

named hv[vi] = 1.0f; // [] operator takes a iterator
named hv[*vi] = 1.0f; // or a MyMesh::VertexType object
named hv[&*vi]= 1.0f; // or a pointer to it

named hv[i] = 1.0£; // or an integer index

}



Exampleb: trimesh_attribute

Note the creation/test/delete functions

Note the multiple way of accessing thru handles



