Spatial Search Data Structures

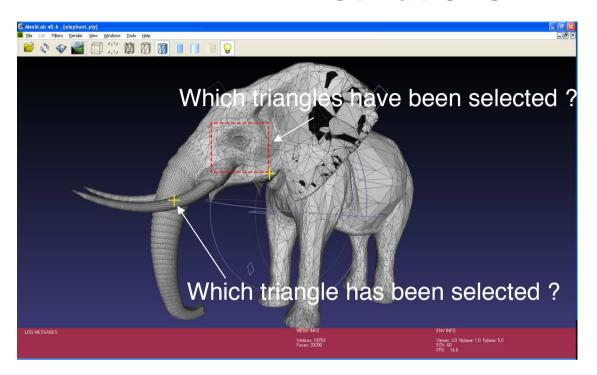
Corso di dottorato: Geometric Mesh Processing

Fabio Ganovelli fabio.ganovelli@isti.cnr.it Spatial Search Data Structure

Problem statement

- Let *m* be a mesh:
 - \square Which is the mesh element closest to a given point p?
 - □ Which are the elements inside a given region?
 - □ Which elements are intersected by a given ray r?
- Let m' be another mesh:
 - \square Do m and m' intersect? If so, where?
- A spatial search data structure helps to answer efficiently to these questions

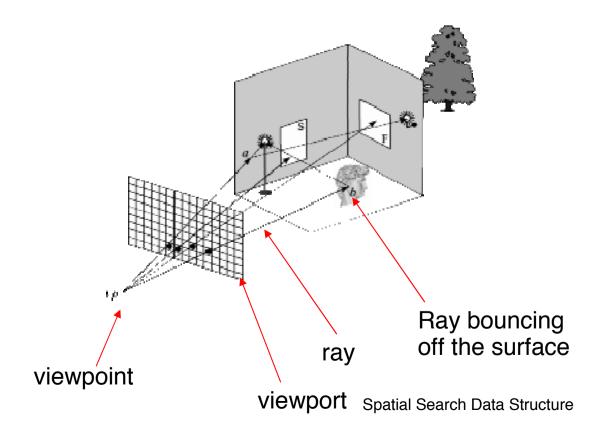
Motivations



- Picking on a point
- Selecting a region

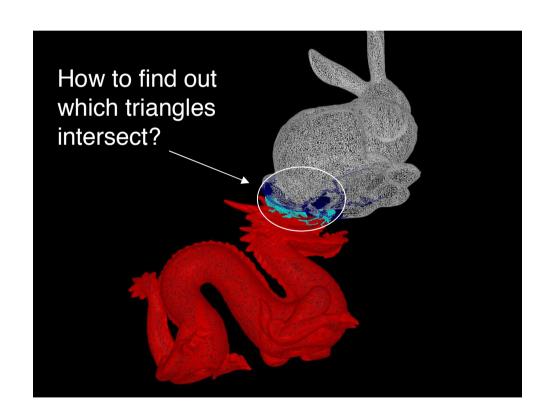
Motivations^{cntd}

- Ray tracing: shoot a ray for each pixel, see what it hits, possibly recur, compute pixel color
- Involves plenty of ray-objects intersections



Motivations^{cntd}^{cntd}

Collision detection: in dynamic scenes, moving objects can collide.



Motivations^{cntd}^{cntd}

- Without any spatial search data structure the solutions to these problems require *O*(*n*) time, where *n* is the numbers of primitives (*O*(*n*²) for the collision detection)
- Spatial data structure can make it (average) constant
 - ..or average logarithmic

Uniform Grid (1/4)

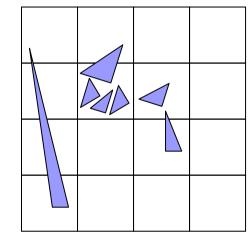
- **Description**: the space including the object is partitioned in cubic cells; each cell contains references to "primitives" (i.e. triangles)
- Construction.

Primitives are assigned to:

☐ The cell containing their feature point (e.g. barycenter

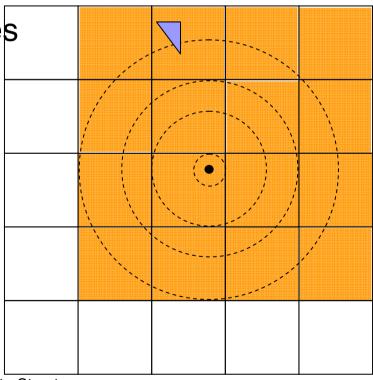
or one of their vertices)

☐ The cells spanned by the primitives



Uniform Grid (2/4)

- Closest element (to point p):
 - □ Start from the cell containing p
 - Check for primitives inside growing spheres centered at p
 - At each step the ray increases to the border of visited cells
- Cost.
 - □ Worst: O(#cells+n)
 - □ Average; O(1)



Spatial Search Data Structure

Uniform Grid (3/4)

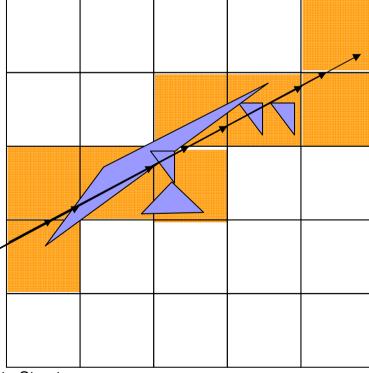
Intersection with a ray:

- ☐ Find all the cells intersected by the ray
- □ For each intersected cell, test the intersection with the primitives referred in that cell
- Avoid multiple testing by flagging primitives that have been tested (mailboxing)

Cost:

□ Worst: O(#cells + n)

 \square Aver: $O(\sqrt[d]{\# cells} + \sqrt[d]{n})$



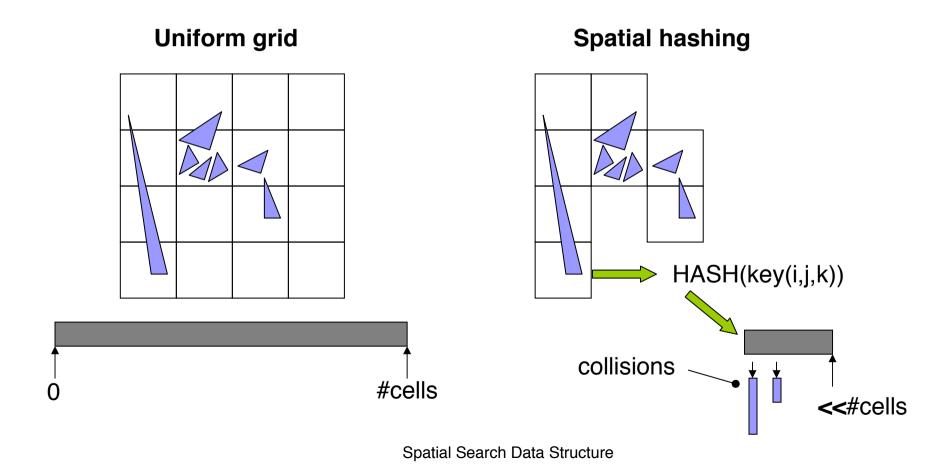
Spatial Search Data Structure

Uniform Grid (4/4)

- Memory occupation: O(#cells + n)
- Pros:
 - □ Easy to implement
 - □ Fast query
- Cons:
 - Memory consuming
 - □ Performance **very** sensitive to distribution of the primitives.

Spatial Hashing (1/2)

The same as uniform grid, except that only non empty cells are allocated



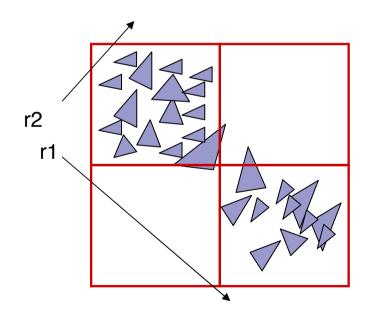
Spatial Hashing (2/2)

- Cost: same as UG, except that in worst case the access to a cell is *O(#cells)* because of collisions
- Memory occupation:

 - □ Worst.: O(#cells)□ Aver.: $O(\left(\frac{\#cells}{Vol}\right)^{\frac{2}{3}} \cdot S)$ S: surface, Vol: Volume
- Pros:
 - Easy to implement
 - □ Fast query if good hashing is done
 - Less memory consuming
- Cons:
 - Performance very sensitive to distribution of the primitives.

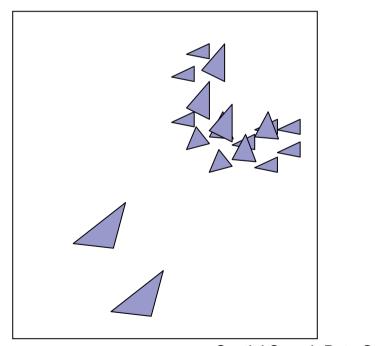
Beyond UG

- Uniform grids are input insensitive
- What's the best choice for the example below?



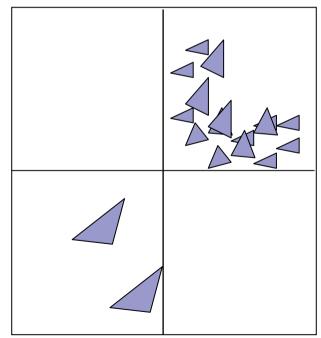


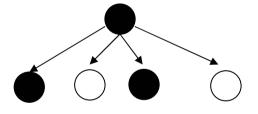
- Divide et impera strategies:
 - ☐ The space is partitioned in sub regions
 - □ ..recursively



Spatial Search Data Structure

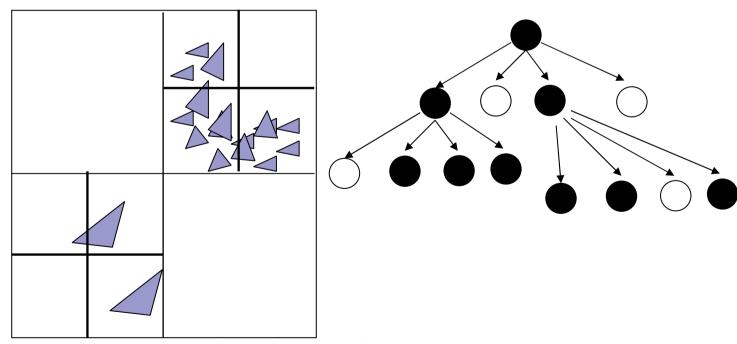
- Divide et impera strategies:
 - ☐ The space is partitioned in sub regions
 - □ ..recursively





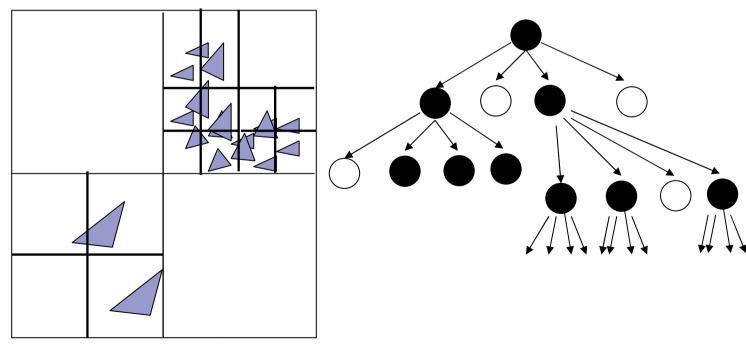
Spatial Search Data Structure

- Divide et impera strategies:
 - ☐ The space is partitioned in sub regions
 - □ ..recursively



Spatial Search Data Structure

- Divide et impera strategies:
 - ☐ The space is partitioned in sub regions
 - □ ..recursively

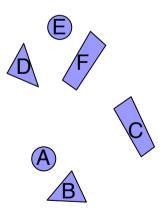


Spatial Search Data Structure

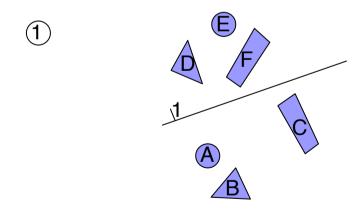
Basic Facts

- The queries correspond to a visit of the tree
 - □ The complexity is sublinear in the number of nodes (logarithmic)
 - □ The memory occupation is linear
- A hierarchical data structure is characterized by:
 - □ Number of children per node
 - □ Spatial region corresponding to a node

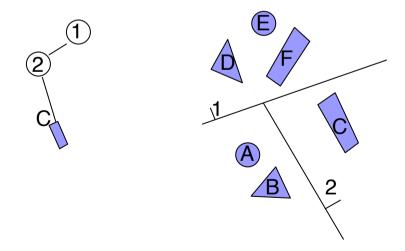
- □ It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region



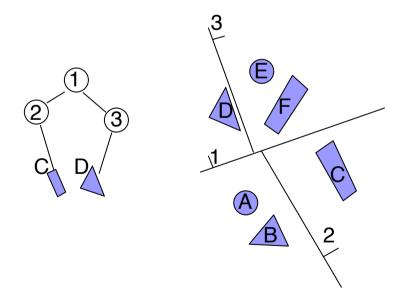
- □ It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region



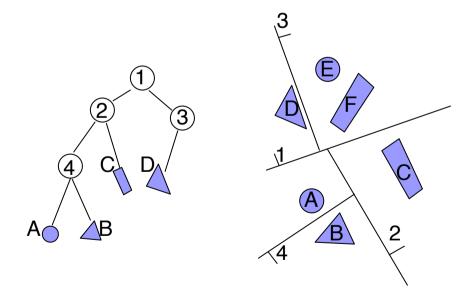
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region



- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region



- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region

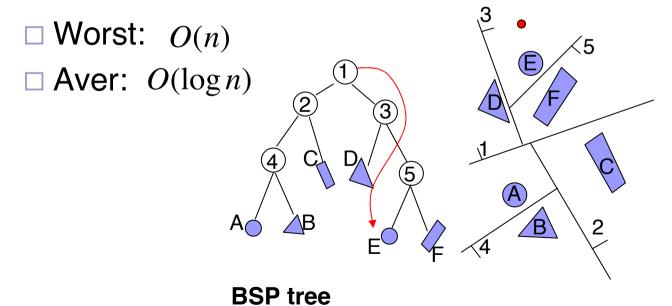


- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- □ therefore a node always corresponds to a convex region



- Query: is the point p inside a primitive?
 - Starting from the root, move to the child associated with the half space containing the point
 - ☐ When in a leaf node, check all the primitives

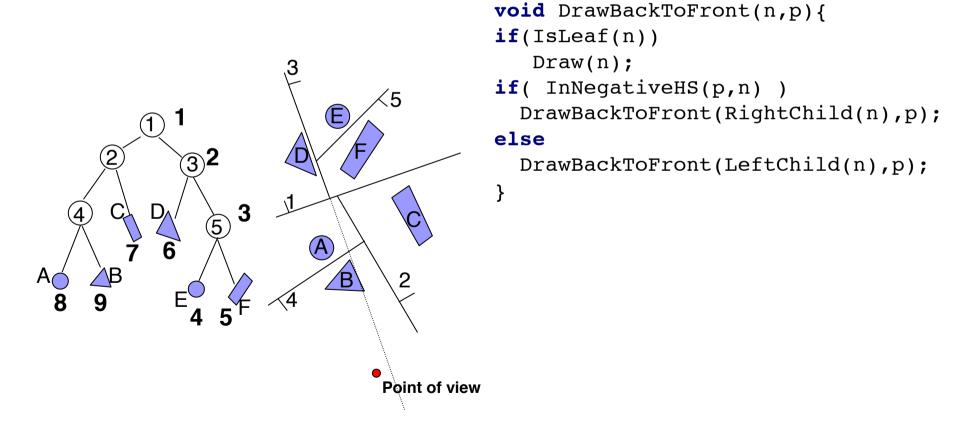
Cost:



Spatial Search Data Structure

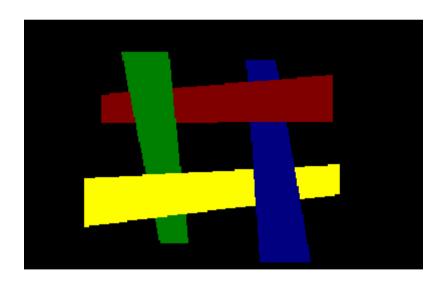
BSP-Tree For Rendering

ordering primitives back-to-front



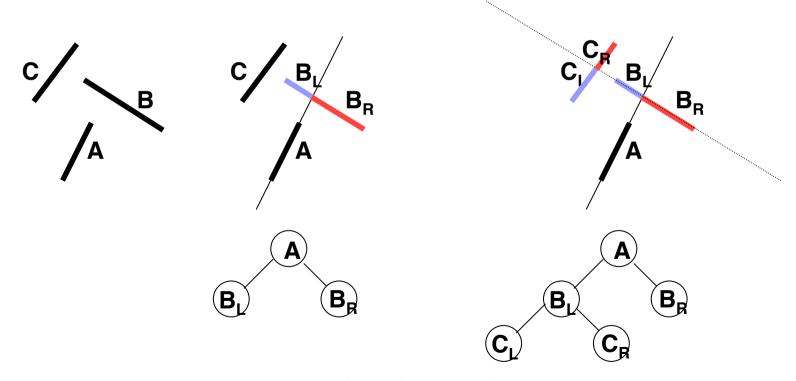
BSP-Tree For Rendering

Not so fast: set of polygons not always separable by a plane



Auto-partition :

- □ use the extension of primitives as partition planes
- □ Store the primitive used for PP in the node



Spatial Search Data Structure

Bulding a BSP-Tree

- Building a BSP-tree requires to choose the partition plane
- Choose the partition plane that:
 - ☐ Gives the best balance?
 - Minimize the number of splits ?
 - □it depends on the application

Cost of visiting $T_{L[r]}$ $C(T) = 1 + P(T_L) C(T_L) + P(T_R) C(T_R)$

Probability that $T_{L[R]}$ is visited if T has been visited

Bulding a BSP-Tree: example

$$C(T) = 1 + P(T_L) C(T_L) + P(T_R) C(T_R)$$

$$C(T) = 1 + \left| S_L \right|^{\alpha} + \left| S_R \right|^{\alpha} + \beta s$$

 $S_{L[R]}$ = number of primitives in the left [right] subtree

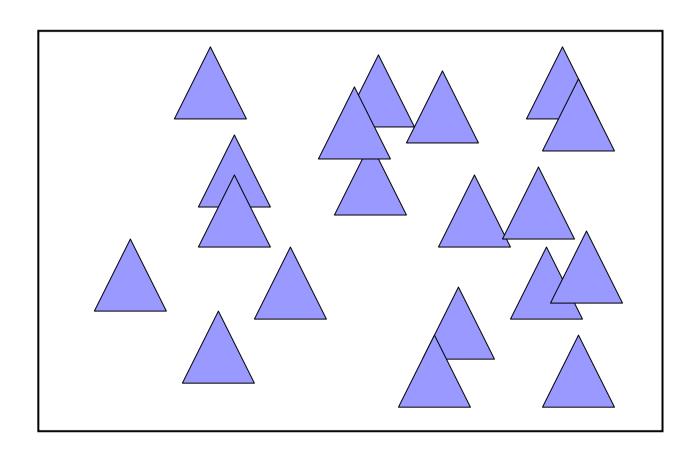
s = number of primitives split by the chosen plane

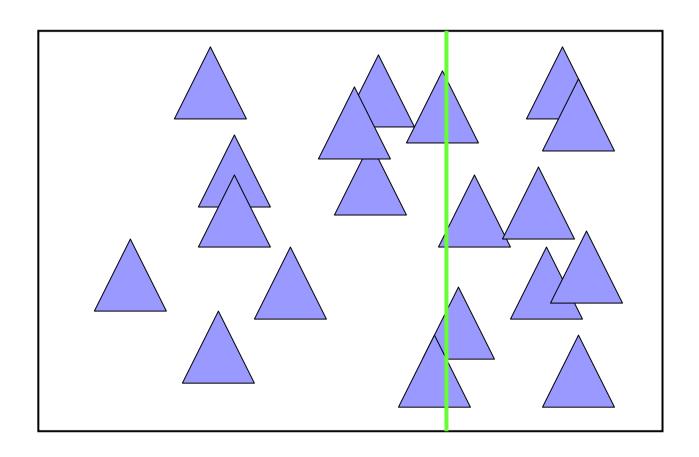
- \blacksquare α, β used for tuning
 - □ Big alpha, small beta yield a balanced tree (good for in/out test)
 - □ Big beta, small alpha yield a smaller tree (good for visibility order)

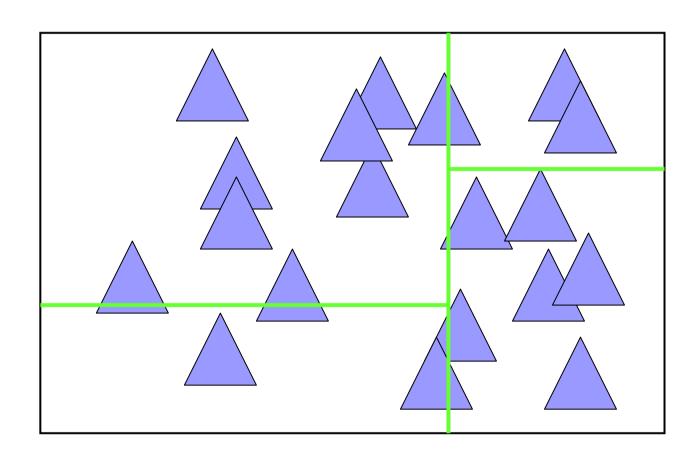
- Memory occupation: O(n)
 - □ For each node:
 - (d+1) floatig point numbers (in d dimensions)
 - 2 pointers to child node
- Cost of descending the three:
 - □ d products, d summations (dot product d+1 dim.)
 - □ 1 random memory access (follow the pointer)
- Less general data structures can be faster/ less memory consuming

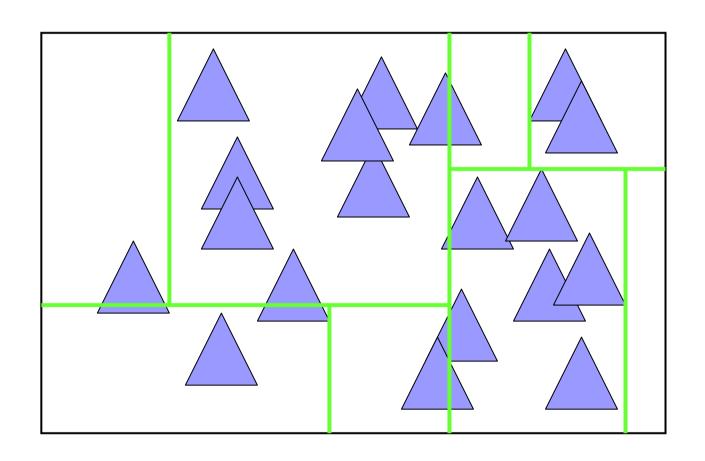
kd-tree

- Kd-tree : k dimensions tree
- È una specializzazione dei BSP in cui i piani di partizione sono ortogonali a uno degli assi principali
- Scelte:
 - ☐ L'asse su cui piazzare il piano
 - ☐ Il punto sull'asse in cui piazzare il piano
- Vantaggi sui BSP:
 - determinare in quale semispazio risiede un punto costa un confronto
 - La memorizzazione del piano richiede un floating point + qualche bit









Costruire un kD-tree

- Dati:
 - □ axis-aligned bounding box ("cell")
 - □ lista di primitive geometriche (triangoli)
- Operazioni base
 - Prendi un piano ortogonale a un asse e dividi la cella in due parti (in che punto?)
 - □ Distribuire le primitive nei due insiemi risultanti
 - □ Ricorsione
 - □ Criterio di terminazione (che criterio?)
- Esempio: se viene usato per il ray-tracing, si vuole ottimizzare per il costo dell'intersezione raggio primitiva

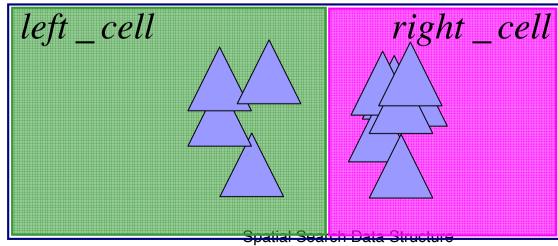
Costruire un kD-tree efficiente per RayCast

- In che punto dividere la cella?
 - □ Nel punto che minimizza il costo
- Quanto è il costo? Riprendiamo la formula per I BSP

$$Cost(cell) = 1 +$$

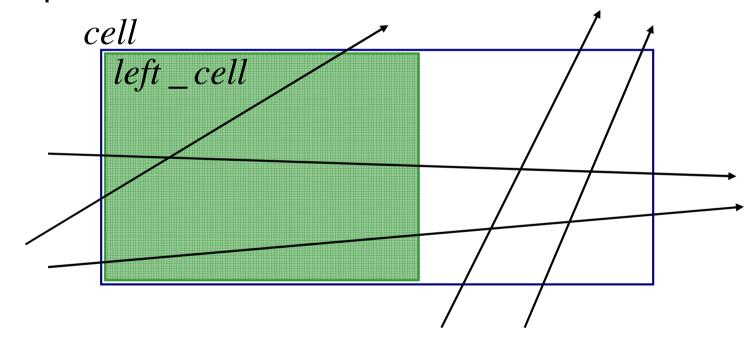
```
Prob(left_cell | cell) Cost(Left) +
Prob(right_cell | cell) Cost(Right)
```

cell



Prob(left_cell | cell) Cost(Left)

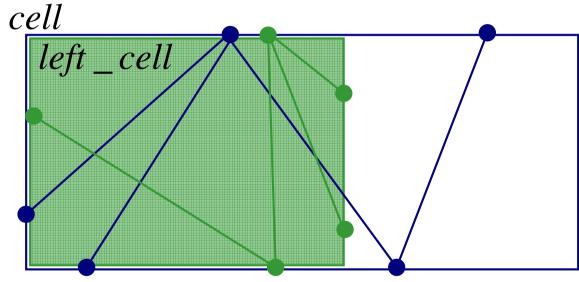
Sapendo che il raggio interseca la cella cell, qual'è la probabilità che intersechi la cella left_cell ??



M

Prob(left_cell | cell)

$$Prob[cell | left_cell] = \frac{\# raggiche intersecano \, left_cell}{\# raggiche intersecano \ cell}$$



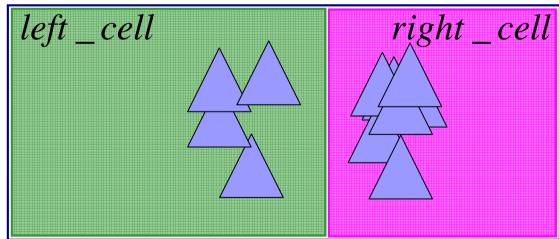
Ogni raggio che interseca una cella corrisponde a una coppia di punti sulla sua superficie.
Contiamo le coppie di punti sulla superficie delle celle

$$\operatorname{Prob}[\operatorname{cell} \mid \operatorname{left_cell}] = \frac{\int\limits_{\sigma(\operatorname{left_cell})}^{\int} \int\limits_{\sigma(\operatorname{left_cell})}^{\int} \operatorname{da}}{\int\limits_{\sigma(\operatorname{cell})}^{\int} \int\limits_{\sigma(\operatorname{left_cell})}^{\int} \operatorname{da}} = \frac{\operatorname{Area}(\operatorname{left_cell})^2}{\operatorname{Area}(\operatorname{cell})^2} = \frac{\operatorname{Area}(\operatorname{left_cell})}{\operatorname{Area}(\operatorname{cell})}$$

cost(left_cell)

- Sapendo che il raggio interseca la cella left_cell, qual'è il costo di testare l'intersezione con i triangoli?
- Si approssima con il numero di triangoli che toccano la cella

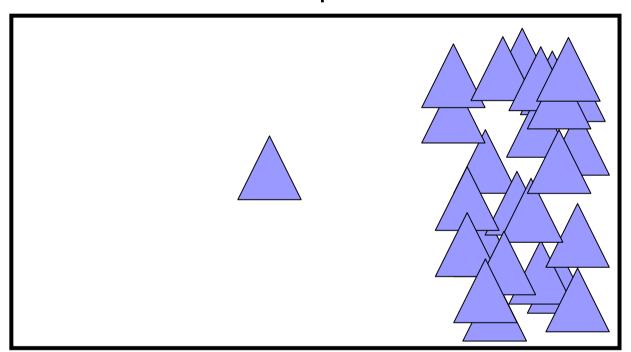
cell



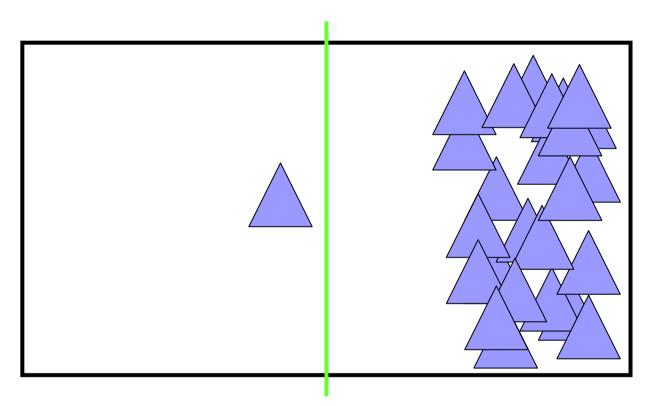
$$Cost(left_cell) = 4$$

Esempio

■ Come si suddivide la cella qui sotto?

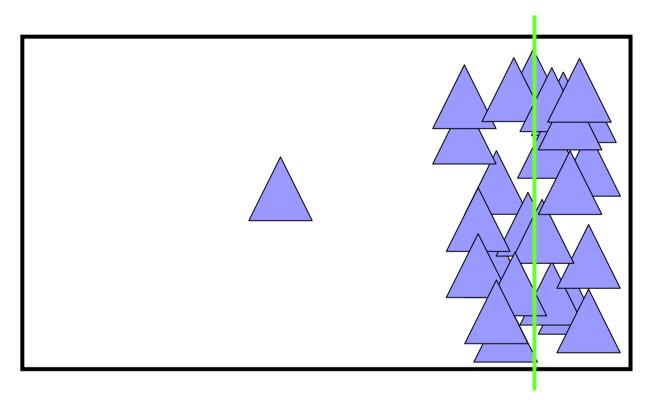


A metà



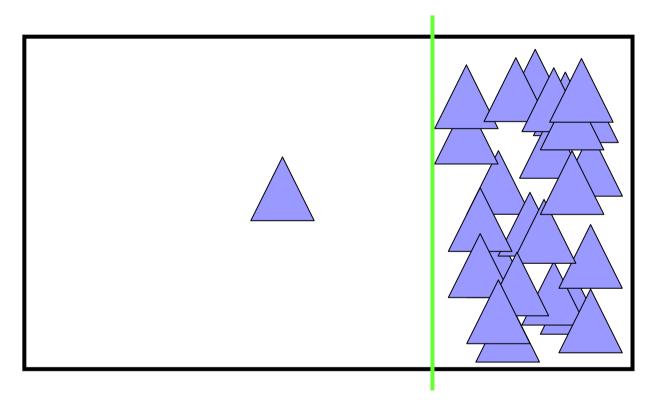
- Non tiene conto delle probabilità
- Non tiene conto dei costi

Nel punto mediano



- Rende uguali i costi di *left_cell* e *right_cell*
- Non tiene conto delle probabilità

Ottimizzando il costo



- Separa bene spazio vuoto
- Distribuisce bene la complessità

Range Query with kd-tree

- Query: return the primitives inside a given box
- Algorithm:
 - □ Compute intersection between the node and the box
 - ☐ If the node is entirely inside the box add all the primitives contained in the node to the result
 - ☐ If the node is entirely outside the box return
 - ☐ If the nodes is **partially** inside the box recur to the children
- **Cost:** if the leaf nodes contain one primitive and the tree is balanced: $1-\frac{1}{2}$

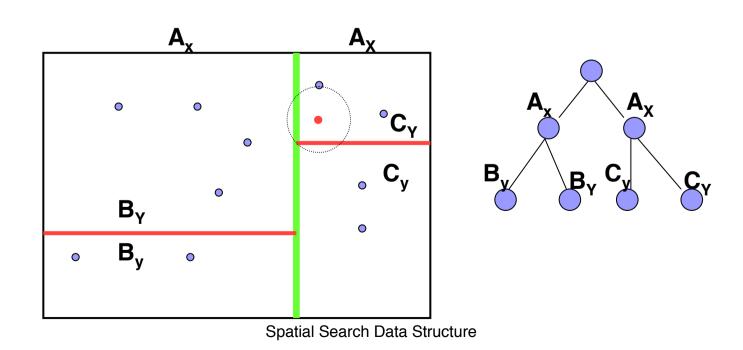
 $O(n^{1-\frac{1}{d}}+k)$

n number of primitives, d dimension

lacksquare $O(n^{2d})$ possible results

Nearest Neighbor with kd-tree

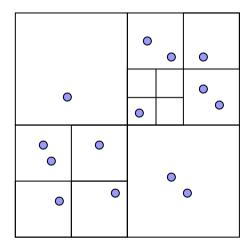
- Query: return the nearest primitive to a given point c
- Algorithm:
 - ☐ Find the nearest neighbor in the leaf containing c
 - If the sphere intersect the region boundary, check the primitives contained in intersected cells



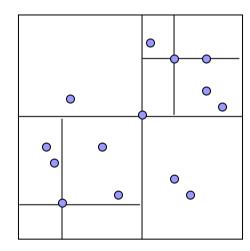
Quad-Tree (2d)

■ The plane is recursively subdivided in 4 subregions by couple of orthogonal planes

Region Quad-tree

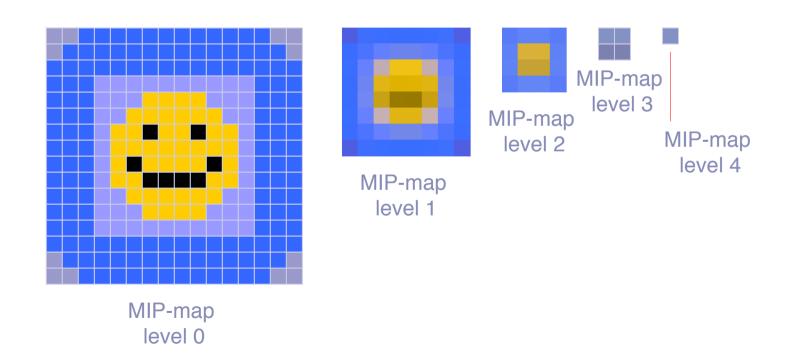


Point Quad-tree



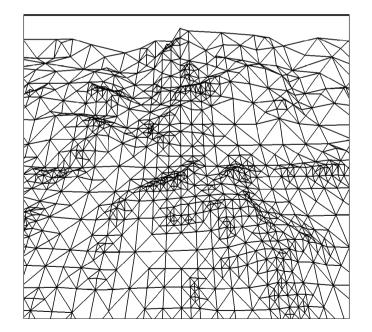
Quad-Tree (2d): examples

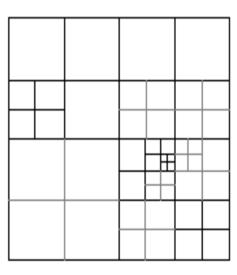
- Widely used:
 - □ Keeping level of detail of images



Quad-Tree (2d): examples

- Widely used:
 - Terrain rendering: each cross in the quatree is associated with a height value

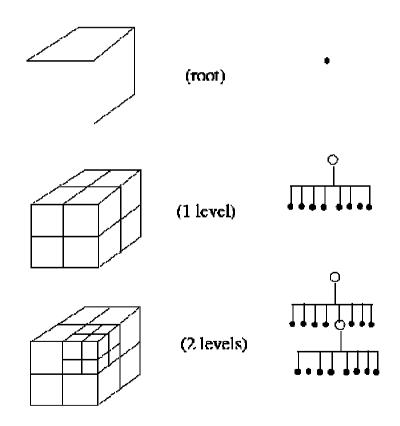




Spatial Search Data Structure

Oct-Tree (3d)

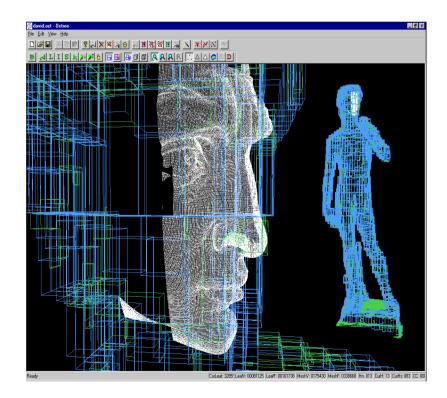
■ The same as quad-tree but in 3 dimensions



Spatial Search Data Structure

Oct-Tree (3d): Examples

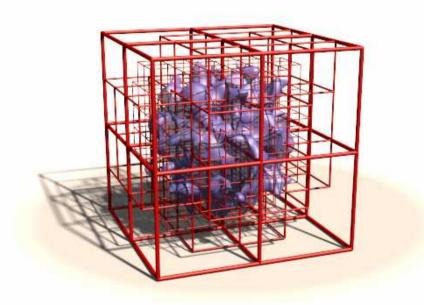
- Processing of Huge Meshes (ex: simplification)
- Problem: mesh do not fit in main memory
- Arrange the triangles in a oct-tree



Spatial Search Data Structure

Oct-Tree (3d): Examples

- Extraction of isosurfaces on large dataset
 - Build an octree on the 3D dataset
 - □ Each node store min and max value of the scalar field
 - When computing the isosurface for alpha, nodes whose interval doesn't contain alpha are discarded



Advantages of quad/oct tree

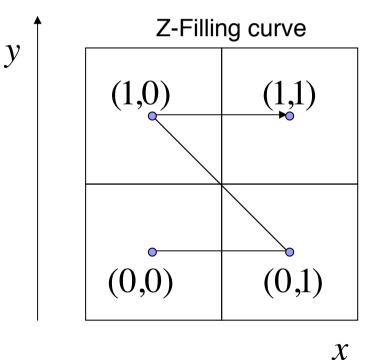
- Position and size of the cells are implicit
 - ☐ They can be explored without pointers (convenient if the hierarchies are complete) by using a linear array where:

octree
$$Children(i) = 8i + 1,...,8*(i+1)$$
$$Parent(i) = \lfloor i/8 \rfloor$$

Z-Filling Curves

- Position and size of the cells are implicit
 - ☐ They can be indexed to preserve locality, i.e.

 $Spatially close \rightarrow close in memory$



Easy conversion between position in space and order in the curve

Just use the 0..1 coordinates as bits

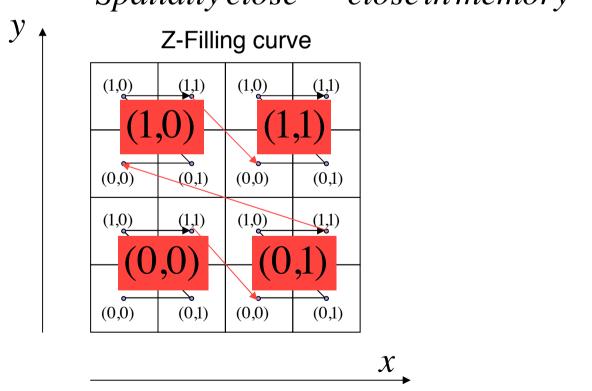
00 01 10 11

Spatial Search Data Structure

Z-Filling Curves

- Position and size of the cells are implicit
 - □ They can be indexed to preserve locality, i.e.

 $Spatially close \rightarrow close in memory$



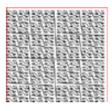
Z-Filling Curves

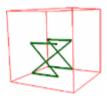
- Conversion from spatial coordinates to index.
 - □ Write the coord values in binary
 - Interleave the bits

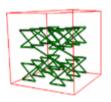
$$x = b_0^x b_1^x b_2^x ... b_n^x$$
 $y = b_0^y b_1^y b_2^y ... b_n^y$
 $id = b_0^y b_0^x b_1^y b_1^x b_2^y b_2^x ... b_n^y$

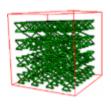
Hierarchical Z-Filling Curves

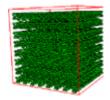








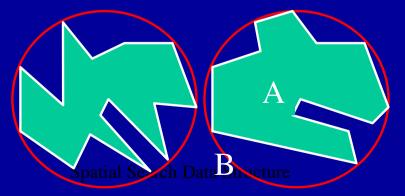






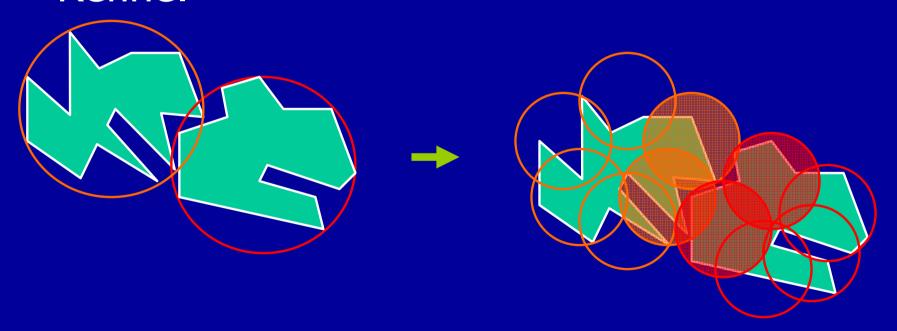
Bounding Volumes Hierarchies

- If a volume B includes a volume A, it is called *bounding volume* for A
- No object can intersect A without intersecting B
- If two bounding volumes do not overlap, the same hold for the volumes included



The Principle

- What if they do overlap?
- Refine.



Spatial Search Data Structure

Questions!

- What kind of Bounding Volumes?
- What kind of hierarchy?
- How to build the hierarchy?
- How to update (if needed) the hierarchy?
- How to transverse the hierarchy?

All the literature on CD for non-convex objects is about answering these questions.

atial Search Data Structure

Cost

$$T_c = N_v^* C_v + N_n^* C_n + N_s^* C_s$$

- v: visited nodes
- n: couple of bounding volumes tested for overlap
- s: couple of polygons tested for overlap
- N: number of
- C: Cost

BHV - Desirable Properties (2)

- The hierarchy should be able to be constructed in an automatic predictable manner
- The hierarchical representation should be able to approximate the original model to a high degree or accuracy
 - allow quick localisation of areas of contact
 - reduce the appearance of object repulsion

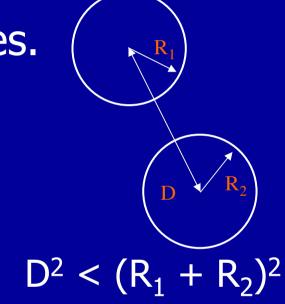
BHV - Desirable Properties

- The hierarchy approximates the bounding volume of the object, each level representing a tighter fit than its parent
- For any node in the hierarchy, its children should collectively cover the area of the object contained within the parent node
- The nodes of the hierarchy should fit

Sphere-Tree

[O'Rourke and Badler 1979, Hubbard 1995a & 1996, Palmer and Grimsdale 1995, Dingliana and O'Sullivan 2000]

- Nodes of BVH are spheres.
- Low update cost C_u
 - translate sphere center
- Cheap overlap test C_v



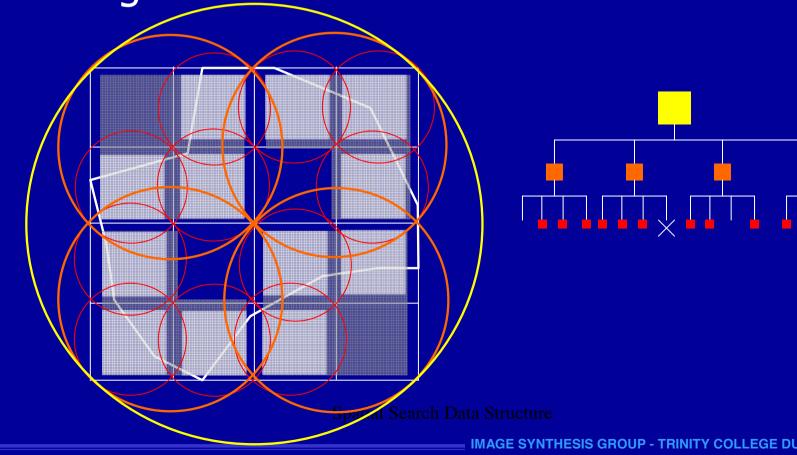
- Slow convergence to object geometry
 - Relatively high N_{ν} & N_{ν}

1**3**5

Sphere-Tree Construction

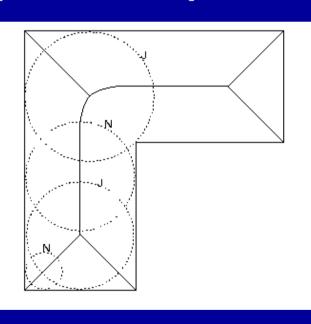
Dingliana and

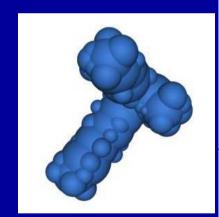
Spheres placed around the boxes of a regular oct-tree

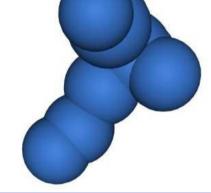


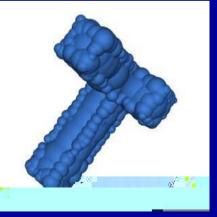
Sphere-Tree Construction Hubbard 1995a &

 Spheres placed along the Medial-Axis (transform)









Axis-Aligned Bounding Box

[van den Bergen 1997]

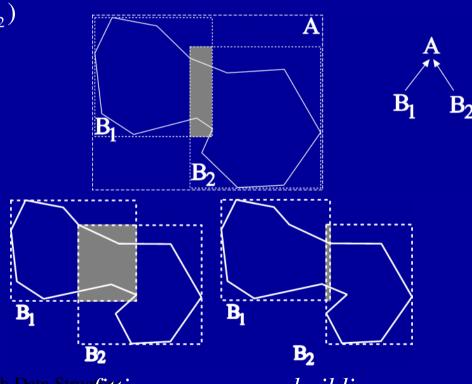
- The bounding volumes are axis aligned boxes (in the *object* coordinate system)
- The hierarchy is a binary tree (built top down)
- Split of the boxes along the longest edge at the median (equal number of polygons in both children)

Axis-Aligned Bounding Box

- The hierarchy of boxes can be quickly updated :
- let Sm(R) be the smallest AABB of a region R and r_1, r_2 two regions.

 $Sm(Sm(r_1) \cup Sm(r_2)) = Sm(r_1 \cup r_2)$

- The hierarchy is updated in O(n) time
- Note: this is not the same as rebuilding the hierarchy

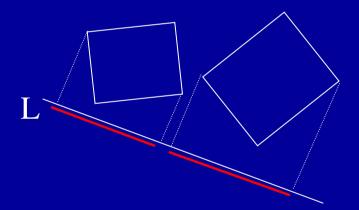


Spatial Search Data Strefitting

rebuilding

AABB - Overlap

If two **convex polyhedra** do not overlap, then there exists a direction L such that their projections on L do not overlap. L is called Separating Axis



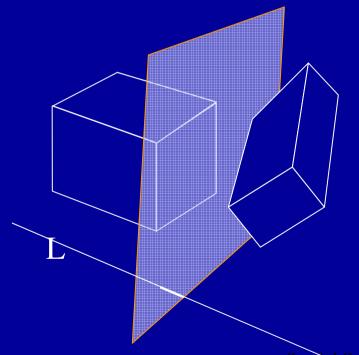
Separating Axis Theorem: L can only be one of the following:

- Normal to a face of one of the polyedra
- Normal to 2 edges, one for each polyedron

Spatial Search Data Structure

AABB - Overlap

Ex: There are 15 possible axes for two boxes: 3 faces from each box, and 3x3 edge direction combinations



Note: SA is a normal to a face 75% of the times

Trick: Ignore the tests on the edges!

Spatial Search Data Structure

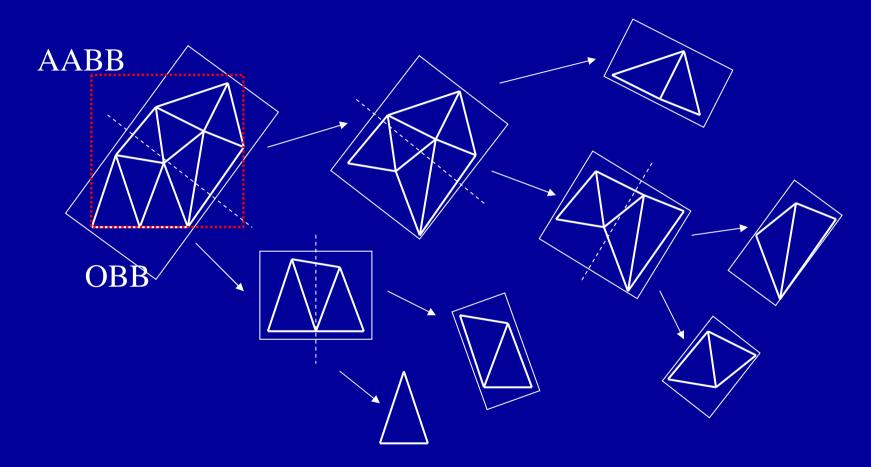
Object Oriented Bounding Box

[Gottschalk et al. 1996]

- Better coverage of object than AABB
 - Quadratic convergence
- Update cost C_u is relatively high
 - reorient the boxes as objects rotate
- Overlap cost C_{ν} is high
 - Separating Axis Test tests for overlap of box's projection onto 15 test axes

Oriented Bounding Box

[Gottschalk et al. 1996]



Building an OBB

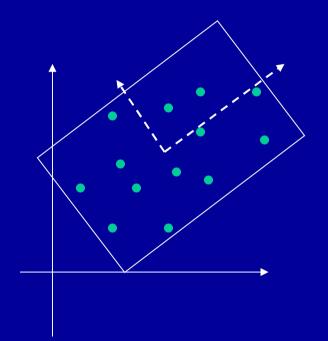
- The OBB fitting problem requires finding the orientation of the box that best fits the data
- Principal Components Analysis:
 - Point sample the convex hull of the geometry to be bound
 - Find the mean and covariance matrix of the samples
 - The mean will be the center of the box
 - The eigenvectors of the covariance matrix are the principal directions – they are used for the axes of the box
 - The principle directions tend to align along the longest axis, then the next longest that is orthogonal, and then the other orthogonal axis

Principal Component Analysis

$$c = \frac{1}{3n} \sum_{h=1}^{n} p^h$$

$$Cov_{ij} = \frac{1}{3n} \sum_{h=1}^{n} (p_i^h - c_i)(p_j^h - c_j)$$

Cov is symmetric \Rightarrow eigen vectors form an orthogonal basis



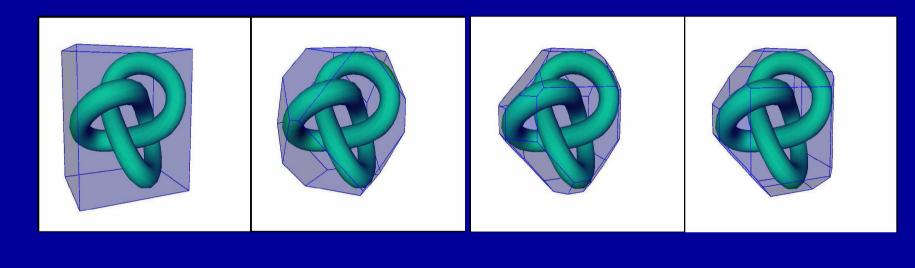
Discrete Oriented Polytope

[Klosowski et al. 1997]

- Convex polytope whose faces are oriented normal to knowledge tions:
- Overlap test similar to OBB
 - -k/2 pairs of co-linear vectors
 - k/2 overlap tests
- k-DOP needs to be updated in a similar way as the AABB
- AABB is a 6-DOP

Spatial Search Data Structure

K-Dops examples



6-dop 14-dop 18-dop 26-dop

Discrete Oriented Polytope

[Klosowski et al. 1997]

