
OpenGL

Framebuffer Objects

Marco Di Benedetto

Visual Computing Laboratory – ISTI – CNR, Italy

OpenGL Roadmap

 1.0 - Jan 1992 - First Version

 1.1 - Jan 1997 - Vertex Arrays, Texture Objects

 1.2 - Mar 1998 - 3D Texturing, Separate Specular Color, Vertex Array draw element range

 1.2.1 - Oct 1998 - Multi-Texturing

 1.3 - Aug 2001 - Compressed Textures, Cube Maps, Multi-Sampling

 1.4 – Jul 2002 – Depth Textures, HW Shadowing, Separate Blend, Extended Texture Addressing

 1.5 – Jul 2003 – Vertex Buffer Objects, Occlusion Queries, Extended Shadow Functions

 2.0 – Sep 2004 – Vertex and Fragment Shaders, Multiple Render Targets, Separate Stencil

 2.1 – Jul 2006 – Pixel Buffer Objects, sRGB

 3.0 – Jul 2008 – Framebuffer Objects, HW Instancing, Vertex Array Objects

 3.1 – Mar 2009 – Texture and Uniform Buffer Objects, Integer Textures, Fast Buffer Copy (OpenCL)

 3.2 – Aug 2009 – Geometry Shaders, Multisampled Textures, Synch and Fence Objects

 3.3 – Mar 2010 – Sampler Objects, Profiles Introduction

 4.0 – Mar 2010 - Tessellation Shaders, Per-Sample Fragment Shaders, Shader Subroutines, Double

Precision

M. Di Benedetto - OpenGL: Evolution through Revolution 2

The Abstract Graphics Pipeline

M. Di Benedetto - OpenGL: Evolution through Revolution 3

Application

Vertex Processing

Primitive Assembly

& Rasterizer

Fragment Processing

Pixel Processing

Framebuffer

1. The application specifies vertices & connectivity.

2. The VP transforms vertices and compute attributes.

3. Geometric primitives are assembled and rasterized,

attributes are interpolated. Culling occurs here.

4. The FP computes final “pixel” color.

5. The PP (output merger) writes pixels onto the FB after

stencil/depth test, color blending.

Introductory Example

 Scenario:

 We must draw a control room with a live action security camera TV

 The camera is recording a scene simulated by our system

 We must be able to draw the TV while it is showing a dynamic,

computer-generated scene

 In practice:

 Render the scene as seen by the security camera

 Use the result of the rendering as a texture mapped on the TV screen

M. Di Benedetto - OpenGL: Evolution through Revolution 4

Use the Color Buffer as a Texture

 We want to be able to use the framebuffer content as a texture

 OpenGL can do this since v1.0

 glCopyTexImage2D() : copy the content of the color buffer to a texture

 Problems

 Pixel Ownership Test: if the window we are rendering to is partially

occluded by something (e.g. other overlapping windows), the occluded

pixels will not be written

 holes in the texture

 We must pay a copy operation

M. Di Benedetto - OpenGL: Evolution through Revolution 5

Render-to-Texture (RTT)

 Ideally, we want to draw directly on the texture to avoid

windows-manager issues and memory copy operations

 Early solution: PBuffers

 Framebuffers that can be used as textures

 PBuffers have their own OpenGL context data must be shared

 GL context switches slow synchronization slow slow slow ...

 ... but the idea was good!

 Modern solution: Framebuffer Objects

 Draw directly into a texture

M. Di Benedetto - OpenGL: Evolution through Revolution 6

The Framebuffer

 A set of ancillary buffers: Color - Depth - Stencil

 Double Buffering

 If we render several objects, one at a time, directly on the memory

region used by the screen, we may experience flickering in the image

 To avoid flickering, rendering is done on a back (frame)buffer (which is

not visible), while the screen shows the front (frame)buffer

 When rendering is done, buffers are swapped (or flipped)

 the screen can present the completely composed image at once

 OpenGL defines:

 Main front/back buffers

 Left and Right front/back buffers (for stereo rendering)

 Auxiliary buffers (how many is implementation dependent)

M. Di Benedetto - OpenGL: Evolution through Revolution 7

Framebuffer Object (FBO)

 Simply put, the result of a rendering is written in a memory region

 Historically, the front and back buffers are the regions of memory chips

written by the graphics hardware accelerator and read by the screen

interface

 Texture images are regions of the graphics memory

 With OpenGL FBOs we can tell the hardware:

 “this is your framebuffer (color, depth, stencil) memory pointer, write there”

 We can render-to-texture!

M. Di Benedetto - OpenGL: Evolution through Revolution 8

FBO

 A FBO is enhough flexible to hold just the ancillary buffers it needs

 Any combination of color/depth/stencil

 Some actual implementation have depth-stencil buffers tied

 Render Targets: what a FBO can contain

 Textures

 Renderbuffers (for texture formats that are not writable)

 Steps:

 Create the FBO

 Attach textures or renderbuffers to attachment points

 Bind as the target framebuffer

M. Di Benedetto - OpenGL: Evolution through Revolution 9

FBO

M. Di Benedetto - OpenGL: Evolution through Revolution 10

// construction at application init

GLuint fbo = 0;

glGenFramebuffers(1, &fbo);

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_tex, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color_tex, 0);

const Glenum draw_buffers[] = { GL_COLOR_ATTACHMENT0 };

glDrawBuffers(sizeof(draw_buffers)/ sizeof(draw_buffers[0]), draw_buffers));

glBindFramebuffer(GL_FRAMEBUFFER, 0); // rebind main framebuffer (screen)

// usage

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

draw_texture_content();

glBindFramebuffer(GL_FRAMEBUFFER, 0);

// render scene and use color_tex

render_scene();

// destruction at application exit

glDeleteFramebuffers(1, &fbo);

fbo = 0;

Multiple Render Targets (MRT)

 FBOs can contain multiple color buffers

 The actual composition is

 A set of N color buffers (N is implementation dependent)

 Zero or one depth buffer

 Zero or one stencil buffer

 What it means

 We have one depth/stencil buffer

 We can output simultaneously N different color values

 Fragment shader:

 gl_FragData[i] outputs to ith color target

 gl_FragColor is an alias for gl_FragData[0]

M. Di Benedetto - OpenGL: Evolution through Revolution 11

FBO - MRT

M. Di Benedetto - OpenGL: Evolution through Revolution 12

// construction at application init

GLuint fbo = 0;

glGenFramebuffers(1, &fbo);

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth_tex, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, color_tex0, 0);

glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, color_tex1, 0);

const Glenum draw_buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };

glDrawBuffers(sizeof(draw_buffers)/ sizeof(draw_buffers[0]), draw_buffers));

glBindFramebuffer(GL_FRAMEBUFFER, 0); // rebind main framebuffer (screen)

// usage

glBindFramebuffer(GL_FRAMEBUFFER, fbo);

draw_textures_content();

glBindFramebuffer(GL_FRAMEBUFFER, 0);

// render scene and use color_tex0 and color_tex1

render_scene();

// destruction at application exit

glDeleteFramebuffers(1, &fbo);

fbo = 0;

FBO Usage

 Introductory Example

 The target color texture will be used as the TV texture

 Deferred Shading:

 Pixels are written several times in a complex scene (depth complexity)

 The closest one contributes to the final image

 What if we perform complex calculations (e.g. lighting) just on visible

pixels?

M. Di Benedetto - OpenGL: Evolution through Revolution 13

Deferred Shading

 Multipass rendering algorithm

 For each pixel, store in a set of textures all the values we need for

our calculations

 Normals - Vertex position - Base color

 The set of textures we render to is called G-Buffer

 For each light source and for each pixel (full screen pass) fetch data

from the G-Buffer and use them for lighting calculations

M. Di Benedetto - OpenGL: Evolution through Revolution 14

Deferred Shading

M. Di Benedetto - OpenGL: Evolution through Revolution 15

Base Color

Normal

Depth

G-Buffer

Final Composed Image

Other Usages

 Post processing

 Draw into a texture, then use image processing techniques

 Apply edge detection to perform selective antialiasing

 Procedural textures

 Screen Space Ambient Occlusion

 …

M. Di Benedetto - OpenGL: Evolution through Revolution 16

Render to Texture Arrays

 GL_TEXTURE_2D_ARRAY: a stack of 2D textures

 The active layer can be selected in the Geometry Shader

M. Di Benedetto - OpenGL: Evolution through Revolution 17

// when creating the FBO

glFramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, color_tex_array, 0);

// geometry shader

// . . .

gl_Layer = 0;

gl_Position = …;

EmitVertex();

EndPrimitive();

gl_Layer = 1;

gl_Position = …;

EmitVertex();

EndPrimitive();

EOF

M. Di Benedetto - OpenGL: Evolution through Revolution 18

