
A mesh processing library
Paolo Cignoni

ISTI – CNR

Intro
¤ Intro

¤ Capabilities

¤ Design/Structure

¤ Examples

What
¤ A C++ template based library

¤ Include only, no compilation hassle

¤ Research Driven Library
¤ The most amatorial professional library

¤ A rather rich and hopefully easy to use library for mesh
processing

¤ The core of the well known MeshLab system.

Where
¤ Main site:

¤ http://vcglib.net

¤ The code
¤ No rigid release scheme

¤ Sync with meshlab releases
¤ Just clone the git repo

¤ USE the DEVEL branch
¤ git clone –b devel https://github.com/cnr-isti-

vclab/vcglib.git

¤ Documentation by doxygen on the web

¤ A bunch of small samples
¤ vcglib/apps/sample

http://vcg.sf.net

Capabilities
¤ VCG library feature a large number of different algorithms

¤ In the next slides a fast browsing of some of the most known
things in the library

Simplification
¤ Fairly generic edge collapse simplification algorithms

¤ Probably one of the reason meshlab is famous.

¤ Link conditions for topology preserving
¤ Two optimized specializations

¤ Quadric error (with a few minor variants)
¤ Quadric error with texture coords optimization.

Sampling
¤ A variety of algorithm for distributing points over the surface of

a mesh
¤ a reasonably practical and fast adaptive poisson sampling

algorithm.
¤ Unbiased montecarlo

¤ Useful for computing sampled integral measures over meshes

Cleaning
¤ A variety of tools for correcting small annoying things

¤ Duplicated, unreferenced mesh elements
¤ Merging of close vertices
¤ Small hole filling
¤ Non manifold detection and correction

¤ Split of non manifold vertexes
¤ Heuristic Deletion of isolated non manifold faces

Color Processing
¤ VCG support color in various format

¤ Per vertex
¤ Per face
¤ Per wedge
¤ As texture

¤ Provides tools for converting from a representation to another
one.

Measuring
¤ Integral measures

¤ Volume, barycenter inertia tensor

¤ Distance between surfaces
¤ Sampled Hausdorff distance

¤ Distance and intersection between a lot of geometric
elements
¤ (point-triangle, triangle-triangle etc)

Smoothing
¤ A number of sophisticated noise removal tools.

¤ Basic laplacian (with or without cotangent weighting)

¤ Taubin smoothing

¤ Two step feature preserving smoothing.

¤ A number of smoothing algorithms can also be applied to
various attributes like color, normal, scalar field over the mesh

Texturing
¤ Support of per vertex and per wedge text coords

¤ Conversion between representations

¤ Packing algorithms

¤ Various texture optimization

Remeshing
¤ Subdivision surfaces

¤ (loop, butterfly)
¤ Generic

¤ Define your own predicate to decide if an edge has to be split
and where.

¤ Ball Pivoting surface reconstruction

¤ Clustering simplification

¤ Marching cubes

Spatial Indexing
¤ Uniform Grid

¤ Very good if your query points are quite near to the surface

¤ Kd-tree
¤ Perfect for point clouds

¤ Hierarchies of Bounding Volumes

File Format
¤ VCGLib provides importer and exporter for several file formats:

¤ import:
¤ PLY, STL, OFF, OBJ, 3DS, COLLADA, PTX, V3D, PTS, APTS, XYZ, GTS,

TRI, ASC, X3D, X3DV, VRML, ALN

¤ export:
¤ PLY, STL, OFF, OBJ, 3DS, COLLADA, VRML, DXF, GTS, U3D, IDTF, X3D

¤ Caveat it flattens everything to a polygon soup.
¤ No scene graph information is retained for the most complex

formats
¤ Many file formats require linking to other piece (only the bold ones

are .h pure

Basic Concepts: The Mesh
¤ encode a mesh in several ways,

¤ the most common is a vector of vertices and vector of
triangles.

¤ The following line is an example of the definition of a VCG
type of mesh:

class MyMesh :
public vcg::tri::TriMesh<

std::vector<MyVertex>,
std::vector<MyFace> ,
std::vector<MyEdge> > {};

¤ you need only to derive from vcg::tri::TriMesh and to provide
the type of containers of the elements

Basic Concepts: The simplexes 1
¤ The face, the edge and the vertex type are the crucial bits to

understand in order to be able to take the best from VCG Lib.

¤ A vertex, an edge, a face and a tetrahedron are just an user
defined (possibly empty) collection of attributes
¤ For example a vertex could contain position normal color etc.

¤ To build an simplex class you just derive from the base simplex
templated with the desired attributes:

class MyVertex2 :
public vcg::Vertex< MyUsedTypes,

vcg::vertex::Coord3f,
vcg::vertex::Color4b,
vcg::vertex::CurvatureDirf,
vcg::vertex::Normal3f,
vcg::vertex::BitFlags >{};

Basic Concepts: The simplexes 2
¤ Caveat first of all you have to pre-declare what are the

intended names for the various pieces

struct MyUsedTypes : public
vcg::UsedTypes<

vcg::Use<MyVertex> ::AsVertexType,
vcg::Use<MyEdge> ::AsEdgeType,
vcg::Use<MyFace> ::AsFaceType>{};

¤ In this way when you are declaring a vertex you alredy know
what are the types involved in mixed relations like the vertex
type adjacency

Basic Concepts: Using the mesh
¤ Most of the stuff in the library came in the shape of static

templated class;

¤ Most of the time you see stuff like

vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalized(m);

Capabilities
¤ We could continue…

¤ MeshLab filters
¤ Exposed more than a hundred high level filtering tools.
¤ Most of them directly maps into vcg libs functions or classes.

Example 1: trimesh_base
¤ Basic example of minimal use

¤ Load a mesh and just dump some info about it

¤ Note that also the mesh loading is done by mean of
templated class.

Basic Concept: Adjacency
¤ Vertex, Edge and triangle can store different topological info:

¤ The most common is the VertexRef field of the face, that store
for each triangular face three ptr to its vertexes

¤ Other commonly used relations are

¤ FF face face relation

¤ VF vertex face relation

¤ tri::UpdateTopology<MyMesh>::FaceFace(m);

¤ tri::UpdateTopology<MyMesh>::VertexFace(m);

Basic Concept: Adjacency
¤ FF relation works for non manifold situations

faces around an edge are ring connected

¤ VF relation does not involve
any dynamic allocation,
the chain of face is distributed
onto the involved face

Basic Concepts: Navigating
¤ The Pos is the VCG Lib implementation of the Cell-Tuple

and it abstracts the concept of position over a mesh

¤ A Pos in a triangle mesh is a triple made of
pos = (v,e,f)

¤ For manifold meshes there are flip operators
that allow easy navigation on the mesh
¤ FlipV, FlipE, FlipF

¤ Each flip operator, applied to a pos
simply changes only the indicated element
¤ c2 = c1.FlipV()

¤ c0 = c1.FlipE()

¤ c3 = c0.FlipF()

Basic Concept: Navigating
¤ There are also classical retrieval functions:

¤ vcg::face::VFOrderedStarFF
¤ Compute the ordered set of faces adjacent to a given vertex

using FF adiacency

¤ vcg::face::VVStarVF

¤ vcg::face::VFStarVF

¤ vcg::face::VFExtendedStarVF

¤ vcg::face::EFStarFF

Example 2: trimesh_topology
¤ Note the face::FFAdj component in the face

¤ Note on marking
¤ Simplex can have a mark component (face::Mark) that offers

O(1) unmark of the whole mesh. Implemented by mean of
counters, useful to avoid the usually required O(n) clearing.

¤ If your simplex has bitflags, you have also standard
visiting/selection bits

Basic Concept: Allocation
¤ Simplex are kept into vectors

¤ Relations are kept by mean of pointers

¤ Pay attention to reallocations…
¤ Always use the library functions to manage the simplex vectors

MyMesh::VertexIterator vi = tri::Allocator<MyMesh>::AddVertices(m,3);

MyMesh::FaceIterator fi = tri::Allocator<MyMesh>::AddFaces(m,1);

Basic Concept: De-Allocation
¤ The library adopts a Lazy Deletion Strategy

¤ i.e. the elements in the vector that are deleted are only flagged
as deleted, but they are still there.

¤ m.vert.size() != m.VN()

¤ m.face.size() != m.FN()

¤ Therefore when you scan the containers of vertices and faces
you could encounter deleted elements

¤ You can get rid of deleted elements by explicitly calling the
two garbage collecting functions:

vcg::tri::Allocator<MyMesh>::CompactFaceVector(m);

vcg::tri::Allocator<MyMesh>::CompactVertexVector(m);

Example 3: trimesh_allocate
¤ Note

¤ How to simply build a minimal mesh from scratch

¤ the use of the PointerUpdater to cope with vector reallocation

¤ The use of explicit function to copy a mesh onto another

¤ The pitfall of having deleted elements

Basic Concept: Reflection
¤ VCG Lib provides a set of functions to implement reflection,

¤ i.e. to investigate the type of a mesh at runtime

¤ These functions follow the format
¤ tri::Has[attribute](mesh)
¤ tri::HasPerVertexNormal(m);
¤ tri::HasPerFaceColor(m);
¤ etc…

¤ Return a boolean stating if that particular attribute is present
or not

¤ These functions are not statically typed and need the mesh
object because of optional stuff…
¤ But they are statically solved if no optional stuff arise in your code

Basic Concept: Requiring data
¤ Reflection is often used to check the availability of

component for a given algorithm

¤ For example
¤ subdivision surface algorithms require FF adjacency
¤ Simplification require VF adjacency and per vertex marks
¤ Etc.

¤ If something is missing an exception is raised

¤ Tri::RequireFFAdjacency(mesh);
¤ Raise a missing component exception if the FF adj is missing

Basic Concept: Optional Component
¤ Simplex components imply storage

¤ E.g. FF adjacency means 4 words per face.
¤ Components are stored into the simplex type

¤ Most components can be done optional
¤ E.g. you can control the allocation space of that component at

runtime

class CFaceOcf : public vcg::Face< MyUsedTypesOcf,
vcg::face::InfoOcf, vcg::face::FFAdjOcf,
vcg::face::VertexRef, vcg::face::BitFlags,
vcg::face::Normal3fOcf > {};

class CMeshOcf : public vcg::tri::TriMesh<
vcg::vertex::vector<CVertex>,
vcg::face::vector_ocf<CFaceOcf> > {};

Basic Concept: Optional Component
¤ Storage of optional component is separated

¤ E.g. The data for the FF adjacency is stored in a ‘parallel’ vector
alongside the face vector.

¤ Access is exactly the same.

¤ You explicitly control the allocation

assert(tri::HasFFAdjacency(cmof) == false);
cmof.face.EnableFFAdjacency();
assert(tri::HasFFAdjacency(cmof) == true);

Example4: trimesh_optional
¤ Note the different definition of the type

¤ Note the enabling of the needed components

¤ Try to raise exceptions by commenting out the needed
enabling

Basic Concept: User Def Attribute
¤ VCG Lib provides a mechanism to associate user-defined

'attributes' to the simplicies and to the mesh

¤ Attribute vs Components
¤ Components are conceptually inside the simplex

¤ (*vi).N();

¤ Attributes need an handle to be accessed
¤ irradHandle[vi];

¤ To use an attribute
¤ Build an handle (find or create the attribute)
¤ Use the handle to access the data

Basic Concept: User Def Attribute
¤ Getting a named attribute handle

MyMesh::PerVertexAttributeHandle<float> named_hv =
vcg::tri::Allocator<MyMesh>::GetPerVertexAttribute<float>

(m,std::string("Irradiance"));

¤ Using an handle

MyMesh::VertexIterator vi; int i = 0;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)
{
named_hv[vi] = 1.0f; // [] operator takes a iterator
named_hv[*vi] = 1.0f; // or a MyMesh::VertexType object
named_hv[&*vi]= 1.0f; // or a pointer to it
named_hv[i] = 1.0f; // or an integer index

}

Basic Concept: ForEach construct
¤ to traverse all the vertexes of a mesh you can simply write

something like:
ForEachVertex(m, [&](const VertexType &v){

MakeSomethingWithVertex(v);
});

¤ There are similar constructs for edges and faces

¤ Main advantage, avoid verbose checking of deleted
elements

MyMesh::VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)
{

if(!vi->IsD())
{

MakeSomethingWithVertex(v);
}

}

Example5: trimesh_attribute
¤ Note the creation/test/delete functions

¤ Note the multiple way of accessing thru handles

