Discrete Differential Geometry

Paolo Cignoni

paolo.cignoni@isti.cnr.it
http://vcg.isti.cnr.it/~cignoni

Normal

- Let's consider 2 manifold surface S in R^{3}
\square Suppose to have a mapping $R^{2} \rightarrow R^{3}$

$$
S(u, v) \Rightarrow R^{3}
$$

-Then we can define the normal for each point of the surface as:

$$
\mathbf{n}=\left(\mathbf{x}_{u} \times \mathbf{x}_{v}\right) /\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|
$$

Where $X \cup$ and $X v$ are vectors on tangent space

Normal

\square Normal $\quad \mathbf{n}=\left(\mathbf{x}_{u} \times \mathbf{x}_{v}\right) /\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|$

Normals on triangle meshes

Computed per-vertex and interpolated over the faces

* Common: consider the tangent plane as the average among the planes containing all the faces incident on the vertex

$$
\begin{aligned}
& n_{v}=\frac{1}{\# N(v)} \sum_{f \in N(v)} n_{f} \\
& N(v)=\{f: f \text { coface of } v\}
\end{aligned}
$$

Normals on triangle meshes

Does it work? Yes, for a "good" tessellation *Small triangles may change the result dramatically
Weighting by area, angle, edge len helps
Note: if you get the normal as cross product of adj edges, if you leave it un-normalized its length is twice the area of the triangle -> you can get the area weighting for free

Curvature

\square Define a tangent vector $\mathbf{t}=\cos \phi \frac{\mathbf{x}_{u}}{\left\|\mathbf{x}_{u}\right\|}+\sin \phi \frac{\mathbf{x}_{v}}{\left\|\mathbf{x}_{v}\right\|}$

Curvature

- Consider the plane along n, t and the 2D curve defined on it

Curvature in 2D

\square The curvature of C at P is then defined to be the reciprocal of the radius of osculating circle at point P.

The osculating circle of a curve C at a given point P is the circle that has the same tangent as C at point P as well as the same curvature.

Just as the tangent line is the line best approximating a curve at a point P, the osculating circle is the best circle that approximates the curve at P

Main curvature directions

\square For each direction \boldsymbol{t}, we define a curvature value.

- Let's consider the two directions \mathbf{k}_{1} and $\mathbf{k}_{\mathbf{2}}$ where the curvature values are maximum and minimum
- Orient them such that the cross product is along the normal

Gaussian curvature

DDefined as $K=k_{1} \bullet \mathrm{k}_{2}$

- >0 when the surface is a sphere
- 0 if locally flat
- <0 for hyperboloids

Gaussian curvature

\square A point x on the surface is called:

- elliptic if $K>0$
(k_{1} and k_{2} have the same sign)
- hyperbolic if $K<0$
(k_{1} and k_{2} have opposite sign)
- parabolic if $\mathrm{K}=0$
(exactly one of k_{1} and k_{2} is zero)
- planar if $K=0$
(equivalently $\mathrm{k}_{1}=\mathrm{k}_{2}=0$).
parabolic

elliptic

hyperbolic

planar

Different classes distributed on the surface

elliptic

parabolic

hyperbolic

planar

Developable surfaces

- Developable surface $\Leftrightarrow K=0$
$\square F l a t t e n i g n ~ i n t r o d u c e ~ n o ~ d i s t o r t i o n ~$

Gaussian Curvature: intrinsic / extrinsic

-Gaussian curvature is an intrinsic properties of the surface (even if we defined in an extrinsic way)

- It is possible to determine it by moving on the surface keeping the geodesic distance constant to a radius r and measuring the circumference $C(r)$:

$$
K=\lim _{r \rightarrow 0} \frac{6 \pi r-3 C(r)}{\pi r^{3}}
$$

Mean Curvature

$\square H=\left(k_{1}+k_{2}\right) / 2$

- Measure the divergence of the normal in a local neighborhood of the surface
-The divergence div $_{\mathbf{s}}$ is an operator that measures a vector field's tendency to originate from or converge upon a given point

Divergence

- Imagine a vector field represents water flow:
- If divs is a positive number, then water is flowing out of the point.
- If $\mathbf{d i v}_{\mathbf{s}}$ is a negative number, then water is flowing into the point.

Minimal surface and minimal area surfaces

- A surface is minimal iff $\mathrm{H}=0$ everywhere
\square All surfaces of minimal AREA (subject to boundary constraints) have H= 0 (not always true the opposite!)
-The surface tension of an interface, like a soap bubble, is proportional to its mean curvature

Then... finally...

\square Red >0 Blue < 0, not the same scale

mean

gaussian

min

max

Some math.... Gradient and divergence

\square Given a function $\mathbf{F}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ (our surface) the gradient of \mathbf{F} is the vector field $\boldsymbol{\nabla F}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ defined by the partial derivatives:

$$
\nabla F(x, y)=\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)
$$

-Intuitively: At the point p_{0}, the vector $\nabla F\left(p_{0}\right)$ points in the direction of greatest change of F .

Some math.... Gradient and divergence

-Example :

Some math.... Gradient and divergence

\square Given a function $\mathbf{F}\left(\mathbf{F}_{1}, \mathbf{F}_{\mathbf{2}}\right): \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ the divergence of \mathbf{F} is the function div: $\mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ defined as:

$$
\operatorname{div} F(x, y)=\partial F_{1} / \partial x+\partial F_{2} / \partial y
$$

- Intuitively: At the point p_{0}, the divergence $\operatorname{div} F\left(p_{0}\right)$ is a measure of the extent to which the flow (de)compresses at p_{0}.

Some math.... Gradient and divergence

Some math.... Laplacian

\square Given a function $\mathbf{F}\left(\mathbf{F}_{1}, \mathbf{F}_{\mathbf{2}}\right): \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$
the Laplacian of \mathbf{F} is the function $\boldsymbol{\Delta} \mathbf{F}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ defined by the divergence of the gradient of the partial derivatives:

$\Delta F=\operatorname{div}(\nabla F(x, y))=\partial^{2} F / \partial x^{2}+\partial^{2} F / \partial y^{2}$

-Intuitively: The Laplacian of F at the point p_{0} measures the extent to which the value of F at p_{0} differs from the average value of F its neighbors.

Discrete Laplacian

- Cotangent formula

$$
\Delta_{\mathcal{S}} f(v):=\frac{2}{A(v)} \sum_{v_{i} \in \mathcal{N}_{1}(v)}\left(\cot \alpha_{i}+\cot \beta_{i}\right)\left(f\left(v_{i}\right)-f(v)\right)
$$

Discrete Curvatures

- Mean Curvature $H=\left\|\Delta_{\mathcal{S}} \mathbf{x}\right\|$
- Gaussian Curvature $G=\left(2 \pi-\sum_{j} \theta_{j}\right) / A$

- Principal Curvatures

$$
\kappa_{1}=H+\sqrt{H^{2}-G}
$$

$$
\kappa_{2}=H-\sqrt{H^{2}-G}
$$

Mean curvature on a triangle mesh

$$
H(p)=\frac{1}{2 A} \sum\left(\cot \alpha_{i}+\cot \beta_{i}\right)\left\|p-p_{i}\right\|
$$

where α_{j} and β_{j} are the two angles opposite to the edge in the two triangles having the edge $e_{i j}$ in common
A is the sum of the areas of the triangles

Gaussian curvature on a triangle mesh

It's the angle defect over the area

$$
\kappa_{G}\left(v_{i}\right)=\frac{1}{3 \mathrm{~A}}\left(2 \pi-\sum_{t_{i} a d j v_{i}} \theta_{j}\right)
$$

Gauss-Bonnet Theorem: The integral of the Gaussian Curvature on a closed surface depends on the Euler number

$$
\int_{S} \kappa_{G}=2 \pi \chi
$$

Discrete Curvatures

\square Problems:

- Depends on triangulation!
- Very sensitive to Noise...

Curvature via Surface Fitting

- The radius r of the neighborhood of each point p is used as a scale parameter
- 1. gather all faces in a local neighborhood of radius r
- 2. set an axis $\mathbf{w}=\frac{1}{n_{v}} \sum_{i=1}^{n} \mathbf{n}_{i}$
- where n_{v} is the number of vertices gathered and n_{i} is the surface normal at each such vertex

Curvature via Surface Fitting

- 3. discard all vertices v_{i} such that $n_{i} \cdot w<0$
- 4. set a local frame (u, v, w) where u and v are any two orthogonal unit vectors lying on the plane orthogonal to w , and such that the frame is right-handed
- 5. express all vertices of the neighborhood in such a local frame with origin at p
- 6. fit to these points a polynomial of degree two through p (least squares fitting)

$$
f(u, v)=a u^{2}+b v^{2}+c u v+d u+e v
$$

- Curvatures at pare computed analytically via first and second fundamental forms of f at the origin

curvature via surface fitting

- Curvatures extracted at different scales

Curvature Directions(VCG)

Both per Face and per Vertex

class MyTriVertex:public vcg::Vertex<TriUsedTypes...,vcg::vertex: CurvatureDird, ... >\{\};
class MyTriFace:public vcg::Face<TriUsedTypes..., vcg::face::CurvatureDird,... >\{\};

Access main directions

```
MyTriVertex *v= ...;
Vcg::Point3d Dir1=v->PD1();
Vcg::Point3d Dir2=v->PD2();
ScalarType Norm1=v->K1();
ScalarType Norm2=v->K2();
```

Accessing mean and gaussian

```
MyTriVertex *v= ...;
Vcg::Point3d Dir1=v->Kh();
Vcg::Point3d Dir2=v->Kg();
```


Draw

\#include <wrap/gl/gl_field.h> vcg: : GLField<MyTriMesh>: :GLDrawFaceField(m);

Discrete Curvature Mean \& Gaussian (VCG)

vcg/complex/algorithms/update/curvature.h

```
namespace vcg {
namespace tri
{
    template <class MeshType>
    class UpdateCurvature
    {
        void MeanAndGaussian(MeshType & m)
    };
}
}
```


- Noisy result
- Dependent on the triangulation

Screen Space Mean Curvature

// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/) \#extension GL_OES_standard_derivatives : enable

varying vec3 normal;
varying vec3 vertex;
void main() \{
vec3 $\mathrm{n}=$ normalize(normal);
// Compute curvature
vec3 $\mathrm{dx}=\mathrm{dFdx}(\mathrm{n})$;
vec3 dy = dFdy(n);
vec3 $\mathrm{xneg}=\mathrm{n}-\mathrm{dx}$;
vec 3 xpos $=n+d x ;$
vec3 yneg = n - dy;
vec3 ypos $=n+d y$;
float depth $=$ length $($ vertex $)$;
float curvature $=(\operatorname{cross}(x n e g, x p o s) \cdot y-\operatorname{cross}(y n e g, y p o s) \cdot x) * 4.0 /$ depth;
// Compute surface properties
vec3 light = vec3(0.0);
vec3 ambient $=$ vec3(curvature +0.5);
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
float shininess $=0.0$;
// Compute final color
float \cos Angle $=\operatorname{dot}(\mathrm{n}$, light);
gl_FragColor.rgb = ambient + diffuse * $\max (0.0, \operatorname{cosAngle})+$ specular * pow(max(0.0, cosAngle), shininess);
\}

Curvature: Questions?

Geometry process \& VCGLib course - Day 4

Nico Pietroni (nico.pietroni@isti.cnr.it)

