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Problem Statement

Given a Point cloud 𝑃 = 𝑝!, … , 𝑝" , 𝑝# ∈
ℝ$, find the mesh 𝑀 that it represents

• Q1: It is a very ill posed problem, what 
does represents means?

• Q2: why do we care about this problem?



Motivations

• A1: Ideally, we want to find the surface which 
sampling produced the input problem

• A2: Every device or methods produces a 
discrete puntual sampling  of the surface
– Laser scanning
– Image based techniques
– Computerized Axial Tomography / simulation 

data
... So that is what we are dealing with
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Explicit and Implicit Methods

Explicit methods
Build a tessellation over the 
point cloud. The points map to 
vertices of the mesh

Implicit Methods
1. Define the surface implicitly, as the 

zeroes of a function 𝑓!: ℝ" → ℝ"

2. Tessellate {𝑓!(𝑥) =0}
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Explicit and Implicit Methods

Explicit methods
Build a triangulation over the 
point cloud. The points map to 
vertices of the mesh

• less robust to noise
• require a dense and even 

sampling
• Generally easier to 

implement

Implicit Methods
1. Define the surface 

implicitly, as the zeroes of a 
function 𝑓!: ℝ" → ℝ"

2. Tessellate {𝑓!(𝑥) =0}

• more robust to noise
• more resilient to noise and 

uneven sampling
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Volumetric methods

• define a distance field from the surface

• return  the isosurface for 0



Marching Cubes:isosurfaces from volume 
data [Lorensen87] :

Output: a surface with scalar value a and non null gradient (the 
isosurface)

Input:
- a regular 3D grid where each node is associated with a scalar 
value f (i.e. a scalar field)
- a scalar value a

The value at p is obtained by trilinear interpolation of the 
values of the vertices of the grid cell contained  in
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Marching Cube: configurations

• All configurations: 2^8=256, but only 14 considering rotations, 
mirroring and complement



Marching Cube: LookUp Table

0 1

23

4 5

67

7 6  5  4  3  2  1 0
10000000

0    : nil
1    : {e0,e4,e8}
2    : ….
3    : ….

….
…

255: nil

LookUpTable

For each combination of field value respect to the threshold, store 
the corresponding triangolation.



Marching Cubes: pros/issues

• Pros:
– Quite easy to implement
– Fast and not memory consuming
– Very robust
..then why from ‘87  zillions papers where published ?

Issues:
• Consistency. Guarantee a  C0 and  manifold result: ambiguous 
cases
• Correctness: return a good approximation of the “real” surface
• Mesh complexity: the number of triangles does not depend on 
the shape of the isosurface
• Mesh quality: arbitrarily ugly triangles



Marching Cubes: ambiguous cases

?



Marching Tetrahedra

• Tetrahedral cells (instead of cubical)
• Only 3 configurations (from the  2^4 permutation of grid values)
• No ambiguities but it may be “less” correct



Marching Tetrahedra

• Original approach [Treece99]: cubic cells are partitioned in  5 (o 6) 
tetrahedra.
• Subdivision determines topology

• Body centered cubic lattice: one more sample in the middle of 
the cubic cell 
– Unique subdivision
– Equal tetrahedral
– Better surface (better triangles)



T(x,y,z) = axyz + bxy + cyz + dxz + ex + f y + gz + h

Resolving ambiguities

• The value of the scalar function inside each cell is interpolated 
by the (known) value of its 8 corners

𝑎 = 𝑣1 + 𝑣3 + 𝑣4 + 𝑣6 − 𝑣0 − 𝑣7 − 𝑣5 − 𝑣2
𝑏 = 𝑣0 + 𝑣2 − 𝑣1 − 𝑣3
𝑐 = 𝑣0 + 𝑣7 − 𝑣4 − 𝑣3
𝑑 = 𝑣0 + 𝑣5 − 𝑣1 − 𝑣4
𝑒 = 𝑣1 − 𝑣0
𝑓 = 𝑣3 − 𝑣0
𝑔 = 𝑣4



𝛼

𝛼

Saddle points 

𝑇(0, 𝑦, 𝑧)= 𝑐𝑦𝑧 + 𝑓𝑦 + 𝑔𝑧 + ℎ

)𝑇(0, 𝑦′,𝑧′

Field value on a cell’s face )𝜕𝑇(0, 𝑦′,𝑧′
𝜕𝑦 = 𝑐𝑧′ + 𝑓 = 0 ⇒ z′ = −

𝑑
𝑐

)𝜕𝑇(0, 𝑦′,𝑧′
𝜕𝑧 = 𝑐𝑦′ + 𝑔 = 0 ⇒ y′ = −

𝑔
𝑐



ELUT: Exhaustive LUT [Cignoni00]

…..

Face saddle points
body saddle point

ELUT:
For each ambiguous configuration determines the coherent 
internal triangulation looking at the saddle points



Adaptive triangulation

• Refine for better approximation (re-evaluate scalar field) 



Extended MC [Kobbelt01]

D2Y > 0

X

Y

D1X < 0 D3X > 0
D1Y < 0

Surface

Exact intersection
point



MC

normal
tangent element

normal

tangent element

Reconstructed
surface



Extended MC

Marching Cubes Extended Marching Cubes



Dual Marching Cubes [Nielson04]

• one vertex for each patch generated by  MC
• One  quad for each intersected edge (the 4 vertices associated 

to the patches of the cells sharing the edge)
• Tends to improve triangles quality

Vertex of the dual MC Vertex of the MC



Dual Marching Cubes:Primal Contouring 
of Dual Grids [Shaeffer04]

• Partition the space with an Octree
• Build the dual grid
• Run MC on the dual grid (consider non hexahedral cells as HC 

with collapsed edges)



From point cloud to a scalar field…

Problem: given a set of points 𝑥T, … , 𝑥U , define

so that S interpolates/approximates the point cloud

Normals are often either assumed or computed from the 
point cloud

𝑓 𝑥 = 𝜑 𝑥T, … , 𝑥U

S = x f x = 𝛼}



Normals (1/2)

• Normals are important to define the surface

• Most of methods for building a surface from point 
cloud compute the normal on the points



Normals (2/2)

• Use  PCA [Hoppe92]

• 𝐂() is symmetric → real eigenvalues and orthogonal 
eigenvectors

• take the eigenvector corresponding to the smallest eigenvalue 
as normal direction
– Check that the smallest eigenvalue is unique
– Check that the other two are similar 

𝐴
= 𝜋𝑟*𝑝𝐩!

𝐂() =0
!

𝐪! 𝐪!+
𝐂!" =

%
#

𝑞#$
% %

#

𝑞#!𝑞#" %
#

𝑞#!𝑞##

%
#

𝑞#"𝑞#! %
#

𝑞#"
% %

#

𝑞#"𝑞##

%
#

𝑞##𝑞#! %
#

𝑞##𝑞#" %
#

𝑞##
%

𝐪! = 𝐩! − 𝑐 𝑐



VCG Reconstruction/[Curless96]

¤ Suppose we do have aligned range maps

¤ We want to get a nice ISOSurface

1. Compute signed distance field from each range 
map

2. Average them

3. Extract the isosurface



VCG Reconstruction/[Curless96]

¤ Surfaces with Normals



VCG Reconstruction/[Curless96]

¤ Compute Distance Fields (signed)



VCG Reconstruction/[Curless96]

¤ Average Distance Fields!



VCG Reconstruction: Issue

¤ This simple averaging can cause abrupt jumps



VCG Reconstruction (Use of geodesic) 

¤ This simple averaging can cause abrupt jumps

¤ Solution: Weight the averaging by geodesic distance 
to border



Metaballs [Blinnn92,Wyvill86]

• 𝑓 is the sum of function that have maximum in the points and 
decay with the distance

𝑓 𝑥 = ∑! 2
,!

-!
− 3 ,"

-"
+ 1 , 𝑟 = 𝑥 − 𝑥! ,	R=	support	radius

𝑥!

𝑥𝑓 𝑥! = 1 𝑓 𝑅 = 0

𝑓′ 𝑥! = 0 𝑓′ 𝑅 = 0



Radial Basis Functions (RBF)

Solutions that follow the general scheme:

weights: 𝜔! ∈ ℝ
RBF: 𝜑:ℝ → ℝ
p a	polynome		

𝑓 𝑥 = p x +0
!
𝜔!𝜑( 𝑥 − 𝑥! )

𝑓 𝑥! = 𝑓!



Radial Basis Functions (RBF)[Carr01]

𝑓 𝑥 = p x +0
!
𝜔!𝜑( 𝑥 − 𝑥! ) , 𝜔! ∈ ℝ

𝜑:ℝ → ℝ

p a polynome𝐴 P
P% 0

𝜔
𝑐 = 𝐹

0
𝐹 = 𝑓 𝑥" , … , 𝑓 𝑥# $

𝐴!% = 𝜑 𝑥% − 𝑥!
p: basis for all polynomials of degree k
𝑃!% = 𝑝%(𝑥!)

𝑝 = {1, 𝑥, 𝑦, 𝑧}  d=3, m=1
𝑝 = {1, 𝑥, 𝑦, 𝑥p, 𝑥𝑦, 𝑦p} d=2, m=2
𝑝 = {1, 𝑥, 𝑥p, 𝑥"} d=1, m=3

Examples of polynomial basis:



Example

𝜑(|𝑥", 𝑥"|)
𝜑(|𝑥&, 𝑥"|)
𝜑(|𝑥', 𝑥"|)
𝑝"(𝑥")
𝑝&(𝑥")

𝜑(|𝑥", 𝑥&|)
𝜑(|𝑥&, 𝑥&|)
𝜑(|𝑥', 𝑥&|)
𝑝"(𝑥&)
𝑝&(𝑥&)

𝜑(|𝑥", 𝑥'|)
𝜑(|𝑥&, 𝑥'|)
𝜑(|𝑥', 𝑥'|)
𝑝"(𝑥')
𝑝&(𝑥')

𝑝"(𝑥")
𝑝"(𝑥&)
𝑝"(𝑥')
0
0

𝑝&(𝑥")
𝑝&(𝑥&)
𝑝&(𝑥')
0
0

𝜔"
𝜔&
𝜔'
𝑐"
𝑐&

=

𝑓"
𝑓&
𝑓'
0
0

𝑃 = {1, 𝑥}
𝜑 𝑑 = 𝑑



Example

0 1 4 1 −2
1 0 3 1 −1
4 3 0 1 2
1 1 1 0 0
−2 −1 2 0 0

𝜔&
𝜔*
𝜔.
𝑐&
𝑐*

=

−2
−1
1
0
0

𝜔&
𝜔*
𝜔.
𝑐&
𝑐*

=

0.125
−0.166
0.0416
−0.5
0.75

⇒

𝑓 𝑥 = −0.5 + 0.75 𝑥 + 0.125 |𝑥 + 2| − 0.166|𝑥 + 1 + 0.0416 𝑥 − 2| =

= −0.334 + 0.66 𝑥 + 0.166 𝑥 + 2 − 0.166 (|𝑥 + 1|)

⇒

𝜑(|𝑥", 𝑥"|)
𝜑(|𝑥&, 𝑥"|)
𝜑(|𝑥', 𝑥"|)
𝑝"(𝑥")
𝑝&(𝑥")

𝜑(|𝑥", 𝑥&|)
𝜑(|𝑥&, 𝑥&|)
𝜑(|𝑥', 𝑥&|)
𝑝"(𝑥&)
𝑝&(𝑥&)

𝜑(|𝑥", 𝑥'|)
𝜑(|𝑥&, 𝑥'|)
𝜑(|𝑥', 𝑥'|)
𝑝"(𝑥')
𝑝&(𝑥')

𝑝"(𝑥")
𝑝"(𝑥&)
𝑝"(𝑥')
0
0

𝑝&(𝑥")
𝑝&(𝑥&)
𝑝&(𝑥')
0
0

𝜔"
𝜔&
𝜔'
𝑐"
𝑐&

=

𝑓"
𝑓&
𝑓'
0
0



Example

⇒

𝑓 𝑥 = −0.5 + 0.75 𝑥 + 0.125 |𝑥 + 2| − 0.166|𝑥 + 1 + 0.0416 𝑥 − 2|

= −0.334 + 0.66 𝑥 + 0.166 𝑥 + 2 − 0.166 (|𝑥 + 1|)

𝑥' = −2
f' = −2

𝑥' = −1
f' = −1

𝑥' = 2
f' = 1



Radial Basis Functions (RBF)

• Several possible choices for 𝜑 and p:
– 𝜑 𝑑 = 𝑑, 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
– 𝜑 𝑑 = 𝑑&, 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
– 𝜑 𝑑 = 𝑑', 𝑙𝑖𝑛𝑒𝑎𝑟/𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
– 𝜑 𝑑 = 𝑑&log(𝑑), 𝑙𝑖𝑛𝑒𝑎𝑟/𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙
– ….

• Issue 1: if functions have unbounded support, i.e. nonzero 
everywhere, the matrix will always be dense
– Expensive to solve when n increase…

• Issue 2: the whole surface is influenced by each single input 
point



Bounded RBD [Morse01]

• The value of f is determined only locally (withing the radius 1)
– Use  𝜑 𝑑/𝑅 to adapt to the point cloud resolution

• The resulting matrix is sparse
• The fitting is local

𝜑 𝑑 = r 1 − 𝑑
/𝑃 𝑑 , 𝑑 < 1

0, 𝑑 ≥ 1
P(d)	=	polynome		with	degree	6	



Bounded RBD

• The value of f is determined only locally (withing the radius 1)
– Use  𝜑 𝑑/𝑅 to adapt to the point cloud resolution

• The resulting matrix is sparse
• The fitting is local

𝜑 𝑑 = 𝑓 𝑥 = r 1 − 𝑑
/𝑃 𝑑 , 𝑑 < 1

0, 𝑑 ≥ 1
P(d)	=	polynome		with	degree	6	



Bounded RBF 

• The value of f is determined only locally (withing the radius 1)
– Use  𝜑 𝑑/𝑅 to adapt to the point cloud resolution

• The resulting matrix is sparse
• The fitting is local

More issues:
• Still hard to represent sharp features, anisotropic basis functions 

may be used [Dinh01]

𝜑 𝑑 = r 1 − 𝑑
/𝑃 𝑑 , 𝑑 < 1

0, 𝑑 ≥ 1
P(d)	=	polynome		with	degree	6	



Partition of Unity

• 𝑓 𝑥 is defined globally as the weighted sum of local functions 
that describe (implicitly) the surface

• Each 𝑖 corresponds to a region of ℝ' where the function is 
described by 𝑓!(𝑥)

• The sum of the weights is 1 everywhere:

– Which is obtained by normalization 

𝑓 𝑥 =0
!
𝜑! 𝑥 𝑄! (𝑥)

0
!
𝜑! 𝑥 = 1

𝜑! 𝑥 = 0!(2)
∑!0!(2)

𝜔! 𝐱 𝑠. 𝑡. Ω ⊂ ⋃! 𝑠𝑢𝑝𝑝(𝜔!)



Multilevel PoUI [Ohtake03]

• Starting from the bounding box of the point cloud, build an 
octree

• The rule for creating the children of a node is:
Can we define an implicit surface with the point corresponding 
to the cell as:

𝑓 𝑥 =R
!
𝜑! 𝑥 𝑄! (𝑥)

– for 𝑄! (𝑥) in a set of predefined shape functions 
– With and approsimation error less than 𝜀 ?



Multilevel PoUI [Ohtake03]

• (simplified) Example

𝑓 𝑥 =0
!
𝜑! 𝑥 𝑄! (𝑥)

𝑄! 𝑥 = 𝐵𝐱 + 𝐜

𝜀 = 0
#

|𝑄! 𝑝# |

shape

approx

𝐵𝐱 + 𝐜=0

𝑄!(𝑝#)
𝑝#

Error is big, split



Multilevel PoUI [Ohtake03]

• (simplified) Example

𝑓 𝑥 =0
!
𝜑! 𝑥 𝑄! (𝑥)

𝑄! 𝑥 = 𝐵𝐱 + 𝐜

𝜀 = 0
#

|𝑄! 𝑝# |

shape

approx OK

OK

split

split



Multilevel PoUI [Ohtake03]

• (simplified) Example

𝑓 𝑥 =0
!
𝜑! 𝑥 𝑄! (𝑥)

𝑄! 𝑥 = 𝐵𝐱 + 𝐜

𝜀 = 0
#

|𝑄! 𝑝# |

shape

approx Split

Split



Multilevel PoUI [Ohtake03]

• (simplified) Example

𝑓 𝑥 =0
!
𝜑! 𝑥 𝑄! (𝑥)

𝑄! 𝑥 = 𝐵𝐱 + 𝐜

𝜀 = 0
#

|𝑄! 𝑝# |

shape

approx



Multilevel PoUI
• Subdivide the domain with an octree
• Fit the points within each cell with a function 𝑄!(𝑥), either:

– A quadric (for noisy and  unbounded regions)

– A bivariate (u,v) quadratic polynomial in  a local coordinate 
system (for smooth patch)

𝑄! 𝐱 = 𝐱𝐓𝐀𝐱 + 𝐛𝐓𝐱 + 𝐜

𝑄! 𝐱 = 𝑤 − [𝑢, 𝑣]𝐓A 𝑢
𝑣 +𝐛𝐓 𝑢

𝑣 + c

𝑢, 𝑣, 𝑤 + point expressed in a local frame



Multilevel PoUI
• Subdivide the domain with an octree
• Fit the points within each cell with a function 𝑄!(𝑥), either:

– A quadric (for noisy and  unbounded regions)
– A bivariate (u,v) quadratic polynomial in  a local coordinate 

system (for smooth patch)
– A piecewise quadratic surface (for sharp features)

• Blending PU:

𝜔! 𝑥 = 𝑏
3|𝑥 − 𝑐!|
2𝑅!

𝑅! = 0.75 ∗ 𝑑𝑖𝑎𝑔



Results 

Distance field from range maps [Levoy] MPU implicits



Moving Least Square Reconstruction

min6∈∏"# 0
!
𝑓 𝑥! − 𝑓! ∏9

: :polynomes degree m in d-dimension

min6$%∈∏"# 0
!
𝜃 𝑥! − �𝑥 𝑓 𝑥! − 𝑓! 𝑥̅: fixed point

min6%∈∏"# 0
!
𝜃( 𝑥! − 𝑥 ) 𝑓2 𝑥! − 𝑓!

LS
Least square

WLS
Weighted
Least square

MLS
Moving
Least square



Moving Least Square Reconstruction 
[Alexa01]

• Iterative approach: project the points near the surface onto the 
surface (??)

min; ∑!$&< (𝑔 𝑥! , 𝑦! − 𝑓)* 𝜃( 𝑝! − 𝑞 )

Move r to 𝑞 + 𝑔 0,0 𝑛

1.

2.

3.

min=,> ∑!$&< 𝑛, 𝑝! − 𝑟 − 𝑡𝑛 * 𝜃( 𝑝! − 𝑟 − 𝑡𝑛 )



Moving Least Square Reconstruction 
[Alexa01]

• Iterative approach: project the points near the surface onto the 
surface (??)

min; ∑!$&< (𝑔 𝑥! , 𝑦! − 𝑓)* 𝜃( 𝑝! − 𝑞 )

Move r to 𝑞 + 𝑔 0,0 𝑛

1.

2.

3.

Squared distance between 𝑝! and the plane 𝑛, 𝑡
Non linear problemmin=,> ∑!$&< 𝑛, 𝑝! − 𝑟 − 𝑡𝑛 * 𝜃( 𝑝! − 𝑟 − 𝑡𝑛 )



Moving Least Square Reconstruction 
[Alexa01]

min=,> ∑!$&< 𝑛, 𝑝! − 𝑟 − 𝑡𝑛 * 𝜃( 𝑝! − 𝑟 − 𝑡𝑛 )

min; ∑!$&< (𝑔 𝑥! , 𝑦! − 𝑓!)* 𝜃( 𝑝! − 𝑞 )

Move r to 𝑞 + 𝑔 0,0 𝑛

1.

2.

3.

𝑓! = 𝑛 � (𝑝! − 𝑞)

𝑔:ℝ* ⟹ℝ approximates point set in the local
reference system centered in q

Known from 1.
Non linear problem

• Iterative approach: project the points near the surface onto the 
surface

• Repeat 1-3 until stationary point (r projects on itself)



Moving Least Square Reconstruction

Irregular sampling as 
acquired by a laser scanner

After MLS reconstruction



Moving Least Square Reconstruction

𝜃 𝑑 = 𝑒(
()

*) h is related to the spacing between samples

Smaller h Larger h



Algebraic Point Set Surfaces [Guennebaud07]

• Plane fitting problem with MLS:

– Nearby position lead to very different planes estimation
– Opposite sheets of surface considered as one 



Algebraic Point Set Surfaces [Guennebaud07]

• Plane fitting problem with MLS:

– Nearby position lead to very different planes estimation
– Opposite sheets of surface considered as one 



Algebraic Point Set Surfaces [Guennebaud07]

• Main idea: fit spheres insted of planes
– Spheres to define normal at the points
– Spheres to define the surface in the MLS iteration

Plane fitting Sphere fitting



Algebraic Point Set Surfaces [Guennebaud07]

• Sphere fitting
– Geometric fitting is unstable for planar configuration
– Use an algebraic approach, define the surface of the sphere as the 

zeroes of the function 𝑆𝐮 𝐱 : 

– 𝑢* = 0 → 𝑆𝐮 𝐱 = 0 defines a plane

𝑆𝐮 𝐱 = [1, 𝐱𝐓, 𝐱𝐓𝐱] 𝐮, 𝐮 = [u%, … , u@A& ]

𝑆𝐮 𝐱 = 𝑢% + 𝑢&𝑥 + 𝑢*𝑦 + 𝑢.𝑧 + 𝑢B(𝑥* + 𝑦* + 𝑧*)

𝐜 = − &
*C&

𝑢&, 𝑢*, 𝑢. +

𝑟 = 𝐜𝐓𝐜 − 𝑢%/𝑢B

center

radius



Algebraic Point Set Surfaces [Guennebaud07]
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sphere fitting in 
a neighborhood 
of n points

Weighting 
scheme

Sampling radii
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Poisson surface recontruction

n We reconstruct the surface of the model by 
solving for the indicator function of the shape.

( )
î
í
ì

Ï
Î

=
Mp
Mp

pM  if0
 if1

c

cM
Indicator function

0
1

0

00

0

1

1

[credits: from the original Huges Hoppe slides]



Challenge

n How to construct the indicator function?

cM
Indicator functionOriented points

[credits: from the original Huges Hoppe slides]



Gradient Relationship

§ There is a relationship between the normal field 
and gradient of indicator function

ÑcM
Indicator gradient

0 0

0

1

1

1

Oriented points

[credits: from the original Huges Hoppe slides]



Integration

n Represent the normals by a vector field
n Find the function    whose gradient best 

approximates    : 
c

V
!

V
!

V
!

-Ñccmin

[credits: from the original Huges Hoppe slides]



Integration as a Poisson Problem

n Represent the points by a vector field
n Find the function    whose gradient best 

approximates    : 

n Applying the divergence operator, we can 
transform this into a Poisson problem:

c
V
!

V
!

-Ñccmin

( ) VV
!!
×Ñ=DÛ×Ñ=Ñ×Ñ cc           

V
!

[credits: from the original Huges Hoppe slides]



Vector field approximation from samples

• Note: the indicator function is discontinuous, how can 
we compute its gradient?

• Smoothing Filter:

ÑcM
Indicator gradient

0 0

0

0

0

0

𝛻 𝜒� ∗ 6𝐹 𝑞T = 9
��

6𝐹� 𝑞T 𝑁�� 𝑝 𝑑𝑝

Lemma: [kazhdan06]
𝑀 manifold, 𝑁�� 𝑝 surface normal, 
6𝐹 smoothing filter:

6𝐹� 𝑞 = 6𝐹 𝑞 − 𝑝



Vector field approximation from samples

• Note: the indicator function is discontinuous, how can 
we compute its gradient?

• Smoothing Filter:

ÑcM
Indicator gradient

0 0

0

0

0

0

=
�∈�

9
𝒫!

6𝐹� 𝑞 𝑁�� 𝑝 𝑑𝑝 ≈

𝛻 𝜒� ∗ 6𝐹 𝑞T = 9
��

6𝐹� 𝑞T 𝑁�� 𝑝 𝑑𝑝 =

=
�∈�

𝒫� 6𝐹�.� 𝑞 𝑠. 𝑁 𝑑𝑝 ≡ 𝑉



Implementation

Given the Points:
• Set octree
• Compute vector field
• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Adapted Octree

Given the Points:
• Set octree
• Compute vector field
• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function space
– Splat the samples

• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function space
– Splat the samples

• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function space
– Splat the samples

• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function space
– Splat the samples

• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function basis
– Splat the samples

• Compute indicator function
• Extract iso-surface
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Implementation: Vector Field

Given the Points:
• Set octree
• Compute vector field

– Define a function space
– Splat the samples

• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Setting up the minimization problem

• So we have defined the vector field

• ...can’t we just integrate it and get 𝜒?
– No, no guarantees that 𝑉 is curl free

=
�∈�

𝒫� 6𝐹�.� 𝑞 𝑠. 𝑁 𝑑𝑝 ≡ 𝑉



Setting up the minimization problem

• Minimize |Δ𝜒 − 𝛻 𝑉| instead...
• ... More precisely minimize the difference of their 

projections on the basis of functions 𝐹

All the nodes of 
The octree

The unknown

Coefficients producing 𝜒



Implementation: Indicator Function

Given the Points:
• Set octree
• Compute vector field
• Compute indicator function

– Compute divergence
– Solve Poisson equation

• Extract iso-surface

[credits: from the original Huges Hoppe slides]
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Implementation: Indicator Function

Given the Points:
• Set octree
• Compute vector field
• Compute indicator function

– Compute divergence
– Solve Poisson equation

• Extract iso-surface

[credits: from the original Huges Hoppe slides]



Implementation: Surface Extraction

Given the Points:
• Set octree
• Compute vector field
• Compute indicator function
• Extract iso-surface

[credits: from the original Huges Hoppe slides]
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