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Problem Statement

Given a Point cloud P = {py, ..., P}, P; €
R3, find the mesh M that it represents

* QI:It1s a very ill posed problem, what
does represents means?

* Q2: why do we care about this problem?



Motivations

* Al: Ideally, we want to find the surface which
sampling produced the input problem

« A2: Every device or methods produces a
discrete puntual sampling of the surface
— Laser scanning
— Image based techniques

— Computerized Axial Tomography / simulation
data

... So that 1s what we are dealing with




Explicit and Implicit Methods
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Explicit methods Implicit Methods
Build a tessellation over the 1. Define the surface implicitly, as the

zeroes of a function fp: R3 - R3

point cloud. The points map to 2. Tessellate {fp(x) =0}

vertices of the mesh

e




Explicit and Implicit Methods

Explicit methods Implicit Methods
Build a triangulation over the 1. Define the surface
point cloud. The points map to implicitly, as the zeroes of a
vertices of the mesh function fp: R? - R3

2. Tessellate {fp(x) =0}

e Jess robust to noise

e require a dense and even * more robust to noise

sampling e more resilient to noise and

* Generally easier to uneven sampling
implement



Volumetric methods

* define a distance field from the surface

e return the isosurface for 0



Marching Cubes:isosurfaces from volume
data [Lorensen87]:

Input:
- a regular 3D grid where each node is associated with a scalar
value f (i.e. a scalar field)

- a scalar value a

Output: a surface with scalar value a and non null gradient (the
isosurface)

The value at p is obtained by trilinear interpolation of the
values of the vertices of the grid cell contained in

p p
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Marmihr\]g Cgpe: c;\onfigyrations
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 All configurations: 2*8=256, but only 14 considering rotations,
mirroring and complement




Marching Cube: LookUp Table

7 6 LookUpTable
/ / 0 :nil
3 2 E =1 :{e0,e4,e8}
2 ...
3 ...

For each combination of field value respect to the threshold, store
the corresponding triangolation.



Marching Cubes: pros/issues

* Pros:
— Quite easy to implement
— Fast and not memory consuming

— Very robust
..then why from ‘87 zillions papers where published ?

Issues:
« Consistency. Guarantee a C0O and manifold result: ambiguous

cases
« Correctness: return a good approximation of the “real” surface
« Mesh complexity: the number of triangles does not depend on
the shape of the isosurface

* Mesh quality: arbitrarily ugly triangles



Marching Cubes: ambiguous cases

=| simpleWindow |
Front Vertices Back Vertices Cell Sampling Isosurface Rate

| e ez | e [easse] e f[Cie| (W8]

(32767 | [ @ | | 24838|| @ | [W32 (W64 | W3z |[ned4 |

O ® R

| Rotx oty [ I




Marching Tetrahedra

» Tetrahedral cells (instead of cubical)
« Only 3 configurations (from the 2”4 permutation of grid values)
* No ambiguities but it may be “less” correct




Marching Tetrahedra

Original approach [Treece99]: cubic cells are partitioned in 5 (0 6)
tetrahedra.

« Subdivision determines topology

Body centered cubic lattice: one more sample in
the cubic cell

— Unique subdivision
— Equal tetrahedral

— Better surface (better triangles)




Resolving ambiguities

« The value of the scalar function inside each cell is interpolated
by the (known) value of its 8 corners

Q"0 QO T Q

T(xyz) =axyz+ bxy +cyz+ dxz+ex+fy+gz+h
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Saddle points

i ’ aT 0,y 2"
Field value on a cell’s face (a;’ ) _ cZ+f=0=z'= -2
TO,v,z)=cyz+fy+gz+h oT(0,y’z") . , g
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ELUT: Exhaustive LUT [Cignoni00]
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Face saddle points /

body saddle point

ELUT:

For each ambiguous configuration determines the coherent
internal triangulation looking at the saddle points



Adaptive triangulation

 Refine for better approximation (re-evaluate scalar field)
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Extended MC [Kobbelto1]

D2Y >0

Surface

X

Exact intersection
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nogmal
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Extended MC

Marching Cubes Extended Marching Cubes



Dual Marching Cubes [Nielsono4]

« one vertex for each patch generated by MC

« One quad for each intersected edge (the 4 vertices associated
to the patches of the cells sharing the edge)

 Tends to improve triangles quality

Vertex of the dual MC Vertex of the MC




Dual Marching Cubes:Primal Contouring
of Dual Grids [shaeffero4]

Partition the space with an Octree
Build the dual grid

Run MC on the dual grid (consider non hexahedral cells as HC
with collapsed edges

N
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From point cloud to a scalar field...

Problem: given a set of points {x,, ..., x,, }, define

f(x) = @Q{xo, ) Xn })

S = {x|f(x) = a}
so that S interpolates/approximates the point cloud

Normals are often either assumed or computed from the
point cloud



Normals (1/2)

* Normals are important to define the surface

* Most of methods for building a surface from point
cloud compute the normal on the points



Normals (2/2)

Use PCA [Hoppe92] °
q, =P — ¢ _ Zqii Zqixqiy ZCIixCIiZ_

Cov = Z di, 9, Z a, Z ai,9i,

i i i
ov 2 Lo Z qi,9:, Z qi,9:, Z q?
l L i i -

C,, IS symmetric — real eigenvalues and orthogonal
eigenvectors

take the eigenvector corresponding to the smallest eigenvalue
as normal direction

— Check that the smallest eigenvalue is unique
— Check that the other two are similar



VCG Reconstruction/[Curless?6]

Suppose we do have aligned range maps
We want to get a nice ISOSurface

Compute signed distance field from each range
map

Average them

Extract the isosurface



VCG Reconstruction/[Curless?6]

Surfaces with Normals

T~



VCG Reconstruction/[Curless?6]

Compute Distance Fields (signed)




VCG Reconstruction/[Curless?6]

Average Distance Fields!




VCG Reconstruction: Issue

This simple averaging can cause abrupt jumps




VCG Reconstruction (Use of geodesic)

This simple averaging can cause abrupt jumps

Solution: Weight the averaging by geodesic distance
to border

<<
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Metaballs [Biinnng2,wyviligs]

« f is the sum of function that have maximum in the points and
decay with the distance

f&)=1 f(R)=0 X

f)=0 f(R)=0 X, Q/

3 2
flx) =2, (2 ;—3 — 3% + 1),r = ||x — x;||, R= support radius




Radial Basis Functions (RBF)

Solutions that follow the general scheme:

FG) =pG) + ) wiop(llx = )
fCx) = f;

weights: w; € R
RBF: ¢: R - R

p a polynome



Radial Basis Functions (RBF)carro1]

f(x) =px) + Z_a)i(p(”x —x;1), w; ER
l ¢:R—-> R

&=

F = [f(xl)) ---if(xN)]T
Aij = o(|lx — xi|)
p: basis for all polynomials of degree k

Pij = pj(x;)
Examples of polynomial basis:
p={1,x7,2z} d=3, m=1
p ={1,x,y,x% xy,y*}d=2, m=2
p — {1; X, x2; x3} d=1, m=3



Example

Xy =-2 f1 =-2
Xo =1 f2=—1

X X% X3 X3 =2 fg =1

Polynomial basis: {1,x}

P ={1x}
p(d) =d

([, x1]) @(x1,x21) @Ux1, %3] [p1(x) P2 (x) @17 [fi]
@(|x2, x1]) @(|x2, x2]) @(Ix2,x3]) | p1(x2) P2 (x2) || @2 fo
@(|x3,x1]) @(lx3,x21) @(Ix3,%31) |p1 (x3) P2 (x3) || 93| = | f5

p1(x1) p1(x2) p1(x3) 0 0 €1 0
L pa(x1) p2(x2) p2(x3) 0 0o JItc2d 1o




Example

(21, x1]) @x1, x21) @Ux1, x3]) [py(xy) P2 (x) @17 [fi]
@([x2, x1]) @(|x2, x21) @(Ix2, x31) |p1(x2) Pa(x2) || @2 fo
@(Ix3, x1]) @(Ix3, x21) @(x3,%3]) |p;(x3) P (x) || @3 = | f5

p1(x1) p1(x2) p1(x3) 0 0 €1 0
P2 (x1) P2 (x2) p2(x3) 0 0o It¢cd Lo
=

0 1 4 1 —-29%11 [—27 W11 1 0.125 T

1 0O 3 1 —-1||w2 -1 w1 1-0.166

4 3 0 1 2|lw3|=]1 = w3 |=] 0.0416

1 1 1 0 0|4 0 C1 —0.5
2 -1 2 0 oldlel Lo e, 1L 075 |

f(x)=—-054+0.75x 4+ 0.125 |[x + 2| — 0.166|x + 1| + 0.0416|x — 2| =

= —0.334 4+ 0.66 x + 0.166(|x + 2|) — 0.166 (|x + 1|)



Example

f(x) = =05+ 0.75 x + 0.125 |x + 2| — 0.166|x + 1| + 0.0416|x — 2|

= —0.334 + 0662+ 0:3566{e—+2])—0:166 (|x + 1])

2.4

=2.4 -1.8 -1.2 -8.6
| | |




Radial Basis Functions (RBF)

Several possible choices for ¢ and p:

— @(d) = d, linear polynomial

— @(d) = d?,linear polynomial

— @(d) = d3, linear /quadratic polynomial

— @(d) = d?log(d), linear /quadratic polynomial

Issue 1: if functions have unbounded support, i.e. nonzero
everywhere, the matrix will always be dense

— Expensive to solve when 7 increase...

Issue 2: the whole surface is influenced by each single input
point



Bounded RBD [Morse01]

P(d) = {81 I

P(d) = polynome with degree 6

« The value of fis determined only locally (withing the radius 1)
— Use @(d/R) to adapt to the point cloud resolution

* The resulting matrix is sparse

« The fitting is local



MNa..adad PP

e radius 1)

’ ’

8000-point model

Interpolated to 41,864 points



Bounded RBF

P(d) = {81 I

P(d) = polynome with degree 6

« The value of fis determined only locally (withing the radius 1)
— Use @(d/R) to adapt to the point cloud resolution

* The resulting matrix is sparse

« The fitting is local

More issues:

« Still hard to represent sharp features, anisotropic basis functions
may be used [Dinh01]



Partition of Unity

)= 000 )

f(x) is defined globally as the weighted sum of local functions
that describe (implicitly) the surface

Each i corresponds to a region of R3 where the function is
described by f;(x)

The sum of the weights is 1 everywhere:
Z_%‘(X) =1

— Which is obtained by normalization

0@ =320 (@) s.6.0 < Usupp(w)



Multilevel PoUI [ontakeo3

« Starting from the bounding box of the point cloud, build an
octree

« The rule for creating the children of a node is:
Can we define an implicit surface with the point corresponding
to the cell as:

fG) =) @i ()

— for Q; (x) in a set of predefined shape functions

— With and approsimation error less than € ?



Multilevel PoUI [ontakeo3

(simplified) Example

)= 0i(00 )

shape (Q;(x) =Bx+c

approx & = Z 10:(p;)
J

Error is big, split



Multilevel PoUI [ontakeo3

(simplified) Example

)= 0i(00 )

shape (Q;(x) =Bx+c

approx & = Z 10:(p;)
J




Multilevel PoUI [ontakeo3

(simplified) Example
)= 0i(00 )

shape (Q;(x) =Bx+c

approx & = Z 10:(p;)
J

1\

plit




Multilevel PoUI [ontakeo3

(simplified) Example
)= 0i(00 )

shape (Q;(x) =Bx+c

approx & = Z 1Q:(p;)!
J




Multilevel PoUI

« Subdivide the domain with an octree
« Fit the points within each cell with a function Q;(x), either:

— A quadric (for noisy and unbounded regions)

Q; x) =xTAx+bTx + ¢

— A bivariate (u,v) quadratic polynomial in a local coordinate
system (for smooth patch)

Q) =w—[uv]Ta [ ]| +bT[]+c

[u, v, w]T point expressed in a local frame




Subdivide the domain with an octree

Multilevel PoUI

Fit the points within each cell with a function Q;(x), either:

— A quadric (for noisy and unbounded regions)

— A bivariate (u,v) quadratic polynomial in a local coordinate

system (for smooth patch)

— A piecewise quadratic surface (for sharp features)

Blending PU.:

w;(x) = b(

3|x — ¢
2R;
diag

)

-

T .



Results

i

LN

Distance field from range maps [Levoy] MPU implicits



Moving Least Square Reconstruction

LS min e Z_Ilf(xl-) — £l 14, :polynomes degree m in d-dimension
Least square l

WLS : 29 X — % x.) — f. S :
Weighted miNg_crd l_ (llx; IDIIf (x) = fil x: fixed point

Least square

MLS
Moving
Least square

ming e Y 0Cx = 2l 1feGed) = £



Moving Least Square Reconstruction
[Alexa01]

 lterative approach: project the points near the surface onto the
surface (?7?)
min, ; Y np —r—tn)? 0(llp; — r — tnll)

ming %{L; (g e, yi) — £)? 6(llp: — qll)

Movertoq + g(0,0) n




Moving Least Square Reconstruction
[Alexa01]

 lterative approach: project the points near the surface onto the
surface (?7?)

Squared distance between p; and the planen, t

min, ; Yreq(n, p; — 7 — tn)?0(|lp; — r — tnl|) Non linear problem

ming %121 (9(xi, y) — )* 6(llpi — qll)

Movertoq + g(0,0) n



Moving Least Square Reconstruction
[Alexa01]

 lterative approach: project the points near the surface onto the
surface

miny, Z?’zl(n, p; —r —tn)* 0(llp; — r — tnll)

fi=f- @ -
] Known from 1. _
min, ﬁvzll(g(xi,yi) — )10 (Ip; —@”) Non linear problem

g: R? = R approximates point set in the local
reference system centered in q

Movertoq + g(0,0) n

* Repeat 1-3 until stationary point (r projects on itself)



Moving Least Square Reconstruction

Irregular sampling as After MLS reconstruction
acquired by a laser scanner



Moving Least Square Reconstruction

d2
0(d) = e »? h s related to the spacing between samples

Smaller h Larger h



Algebra|C P0|nt Set SurfaCeS [Guennebaud07]

* Plane fitting problem with MLS:

— Nearby position lead to very different planes estimation

— Opposite sheets of surface considered as one



Algebra|C P0|nt Set SurfaCGS [Guennebaud07]

* Plane fitting problem with MLS:

— Nearby position lead to very different planes estimation

— Opposite sheets of surface considered as one



Algebra|C P0|nt Set SurfaCeS [Guennebaud07]

« Main idea: fit spheres insted of planes
— Spheres to define normal at the points

— Spheres to define the surface in the MLS iteration

X (@ M J(b)

Plane fitting  Sphere fitting




Algebra|C P0|nt Set SurfaCeS [Guennebaud07]

« Sphere fitting
— Geometric fitting is unstable for planar configuration

— Use an algebraic approach, define the surface of the sphere as the
zeroes of the function S, (x):

Su(x) = [1'XTI XTX] u u-= [UOI ""ud+1]

Su(X) = uUg + ux + Uy + uzz + uy(x? + y? + z%)

_ 1 T
center €= __[ulyuZJUS]
2u4

radius = \/CTC — uo/u4

— uy = 0 - S,(x) = 0 defines a plane



Algebra|C P0|nt Set SurfaCeS [Guennebaud07]

wo(x) I pp P) Po
W(x) = , D= :

() LR PuiPoe
Algebraic 2)
sphere fitting in u(X) - argmin HW% (x)DuH
a neighborhood u. u£0
of n points ’

_ o (P —x]| )

Wi(X) — (P < h(X) ) Sampling radii

Weighting : o

h
Peneme s ity 1
0 otherwise.



Algebraic Point Set Surfaces cuennevaudor)

Artiviata \NinAde



L — [credits: from the original Huges Hoppe slides]

Poisson surface recontruction

m \We reconstruct the surface of the model by
solving for the indicator function of the shape.

1 ifpeM
0 itpeM 0

Indicator function

Xm



L — [credits: from the original Huges Hoppe slides]

Challenge

m How to construct the indicator function?

Oriented points Indicator function

XM



L — [credits: from the original Huges Hoppe slides]

Gradient Relationship

= There is a relationship between the normal field
and gradient of indicator function

! 0 .y
\\\I % W\ < ' ' 0
A Ve 1 N
o~ \ I 11\ 1 | SO [
o= Y [
. - =) 4 4
’ - 0
- \" l -
! ...
Oriented points Indicator gradient

Vom



L _ [credits: from the original Huges Hoppe slides]

Integration

m Represent the normals by a vector field V

m Find the function X whose gradient best
approximates V.

minZHV;( — I7H



L — [credits: from the original Huges Hoppe slides]

Integration as a Poisson Problem

m Represent the points by a vector field 1/

m Find the function X whose gradient best
approximates V.

minZHV;( — I7H

m Applying the divergence operator, we can

transform this into a Poisson problem:
V-(Vy)=VV o Ay=V.V



Vector field approximation from samples

 Note: the indicator function is discontinuous, how can
we compute its gradient?

* Smoothing Filter:

O """" Vi 0
N R
Lemma: [kazhdanoe] 0 «
. — 0 R
M manifold, N3, (p) surface normal, - Sk
F smoothing filter: L 0% g

E,(q) = F(q — p)

Indicator gradient

- - — V
V(XM * F)(CIO) = J Fp(CIO)NaM(P) dp A

oM




Vector field approximation from samples

 Note: the indicator function is discontinuous, how can
we compute its gradient?

* Smoothing Filter:

O" ““““ ‘f. O
i 0 N
- _ _ S0 ney
oM l ' 0
Indicator gradient
SES P,
- _ _ Vim
N 1Pl (@) 5. N dp = V
SES




[credits: from the original Huges Hoppe slides]

Implementation

Given the Points:
 Set octree

« Compute vector field
« Compute indicator functior

Extract iso-surface



[credits: from the original Huges Hoppe slides]

Implementation: Adapted Octree

Given the Points:
« Set octree eidsd i
* TR :
° d TR
-
R Fi
i N Fitsase %
= N gt
= i & e
Ll |




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:

« Compute vector field

— Define a function space

r
A




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:

« Compute vector field

— Define a function space

/




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:

Compute vector field

— Define a function space




Given the Points:

[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Compute vector field

— Define a function space

/




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:

« Compute vector field '}

— Splat the samples




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:

« Compute vector field

— Splat the samples




Given the Points:

[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Compute vector field X

— '

— Splat the samples




[credits: from the original Huges Hoppe slides]

Implementation: Vector Field

Given the Points:
- Compute vector field ARSI Jogmn
HE -,
— . :‘,;3_ LR K i » o
— Splat the samples o




Setting up the minimization problem

e So we have defined the vector field

D 1PRp(@s N dp =7

SES

e ...can’t we justintegrate it and get y?

— No, no guarantees that V is curl free



Setting up the minimization problem

* Minimize |Ay —V l7| instead...
* ... More precisely minimize the difference of their
projections on the basis of functions F

_ . 2 _ . 2
Y |[ax-V-7.5)| = T || Fo) — (V-7 Fo)
0€l 0cO o
/ The unknown
min ||Lj|-v|?
All the nodes of xeRI¢
The octree

Coefficients producing y



[credits: from the original Huges Hoppe slides]

Implementation: Indicator Function

Given the Points:

« Compute indicator functio

— Compute divergence




[credits: from the original Huges Hoppe slides]

Implementation: Indicator Function

Given the Points:

« Compute indicator functio

— Solve Poisson equation




[credits: from the original Huges Hoppe slides]

Implementation: Indicator Function

Given the Points:

« Compute indicator functior

— Solve Poisson equation

4

L




[credits: from the original Huges Hoppe slides]

Implementation: Surface Extraction

Given the Points:

e Extract iso-surface
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