From Point Clouds to tessellated surfaces

Paolo Cignoni,
Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche

Problem Statement

Given a Point cloud $P=\left\{p_{0}, \ldots, p_{n}\right\}, p_{i} \in$ \mathbb{R}^{3}, find the mesh M that it represents

- Q1: It is a very ill posed problem, what does represents means?
- Q2: why do we care about this problem?

Motivations

- A1: Ideally, we want to find the surface which sampling produced the input problem
- A2: Every device or methods produces a discrete puntual sampling of the surface
- Laser scanning
- Image based techniques
- Computerized Axial Tomography / simulation data
... So that is what we are dealing with

Explicit and Implicit Methods

$$
P=00^{\circ}
$$

Explicit methods

Build a tessellation over the point cloud. The points map to vertices of the mesh

Explicit and Implicit Methods

Explicit methods

Build a triangulation over the point cloud. The points map to vertices of the mesh

Implicit Methods

1. Define the surface implicitly, as the zeroes of a function $f_{P}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
2. Tessellate $\left\{f_{P}(x)=0\right\}$

- less robust to noise
- require a dense and even sampling
- Generally easier to implement
- more robust to noise
- more resilient to noise and uneven sampling

Volumetric methods

- define a distance field from the surface

- return the isosurface for 0

Marching Cubes:isosurfaces from volume data [Lorensen87]:

Input:

- a regular 3D grid where each node is associated with a scalar value f (i.e. a scalar field)
- a scalar value α

Output: a surface with scalar value α and non null gradient (the isosurface)

The value at p is obtained by trilinear interpolation of the values of the vertices of the grid cell contained in

$$
\alpha=7.5
$$

1
$p \cap \cap$
p_{10}

Marching Cube: configurations

- All configurations: $2^{\wedge} 8=256$, but only 14 considering rotations, mirroring and complement

Marching Cube: LookUp Table

For each combination of field value respect to the threshold, store the corresponding triangolation.

Marching Cubes: pros/issues

- Pros:
- Quite easy to implement
- Fast and not memory consuming
- Very robust
..then why from ' 87 zillions papers where published?
Issues:
- Consistency. Guarantee a C0 and manifold result: ambiguous cases
- Correctness: return a good approximation of the "real" surface
- Mesh complexity: the number of triangles does not depend on the shape of the isosurface
- Mesh quality: arbitrarily ugly triangles

Marching Cubes: ambiguous cases

Marching Tetrahedra

- Tetrahedral cells (instead of cubical)
- Only 3 configurations (from the $2^{\wedge} 4$ permutation of grid values)
- No ambiguities but it may be "less" correct

Marching Tetrahedra

- Original approach [Treece99]: cubic cells are partitioned in 5 (o 6) tetrahedra.
- Subdivision determines topology
- Body centered cubic lattice: one more sample in the cubic cell
- Unique subdivision
- Equal tetrahedral
- Better surface (better triangles)

Resolving ambiguities

- The value of the scalar function inside each cell is interpolated by the (known) value of its 8 corners

$$
\begin{aligned}
& \quad T(x, y, z)=a x y z+b x y+c y z+d x z+e x+f y+g z+h \\
& a=v 1+v 3+v 4+v 6-v 0-v 7-v 5-v 2 \\
& b=v 0+v 2-v 1-v 3 \\
& c=v 0+v 7-v 4-v 3 \\
& d=v 0+v 5-v 1-v 4 \\
& e=v 1-v 0 \\
& f=v 3-v 0 \\
& g=v 4
\end{aligned}
$$

Saddle points

Field value on a cell's face

$$
T(0, y, z)=c y z+f y+g z+h
$$

$$
\begin{aligned}
& \frac{\partial T\left(0, y^{\prime}, z^{\prime}\right)}{\partial y}=c z^{\prime}+f=0 \Rightarrow z^{\prime}=-\frac{d}{c} \\
& \frac{\partial T\left(0, y^{\prime}, z^{\prime}\right)}{\partial z}=c y^{\prime}+g=0 \Rightarrow y^{\prime}=-\frac{g}{c}
\end{aligned}
$$

ELUT: Exhaustive LUT ${ }_{\text {[cignonioo }}$

ELUT:

For each ambiguous configuration determines the coherent internal triangulation looking at the saddle points

Adaptive triangulation

- Refine for better approximation (re-evaluate scalar field)

a)

b)

c)

d)

Extended MC [Kobbelt01]

MC

Extended MC

Dual Marching Cubes [Nielson04]

- one vertex for each patch generated by MC
- One quad for each intersected edge (the 4 vertices associated to the patches of the cells sharing the edge)
- Tends to improve triangles quality

Dual Marching Cubes:Primal Contouring of Dual Grids [Shaeffer04]

- Partition the space with an Octree
- Build the dual grid
- Run MC on the dual grid (consider non hexahedral cells as HC with collapsed edges)

From point cloud to a scalar field...

Problem: given a set of points $\left\{x_{0}, \ldots, x_{n}\right\}$, define

$$
\begin{aligned}
& f(x)=\varphi\left(\left\{x_{0}, \ldots, x_{n}\right\}\right) \\
& S=\{\mathrm{x} \mid \mathrm{f}(\mathrm{x})=\alpha\}
\end{aligned}
$$

so that S interpolates/approximates the point cloud

Normals are often either assumed or computed from the point cloud

Normals (1/2)

- Normals are important to define the surface

- Most of methods for building a surface from point cloud compute the normal on the points

Normals (2/2)

- Use PCA ${ }_{\text {[Hoppe92] }}$

$$
\begin{aligned}
& \mathbf{q}_{i}=\mathbf{p}_{i}-c
\end{aligned}
$$

- $\mathbf{C}_{o v}$ is symmetric \rightarrow real eigenvalues and orthogonal eigenvectors
- take the eigenvector corresponding to the smallest eigenvalue as normal direction
- Check that the smallest eigenvalue is unique
- Check that the other two are similar

VCG Reconstruction/[Curless96]

- Suppose we do have aligned range maps
- We want to get a nice ISOSurface

1. Compute signed distance field from each range map
2. Average them
3. Extract the isosurface

VCG Reconstruction/[Curless96]

- Surfaces with Normals

VCG Reconstruction/[Curless96]

\square Compute Distance Fields (signed)

VCG Reconstruction/[Curless96]

- Average Distance Fields!

VCG Reconstruction: Issue

- This simple averaging can cause abrupt jumps

VCG Reconstruction (Use of geodesic)

- This simple averaging can cause abrupt jumps
\square Solution: Weight the averaging by geodesic distance to border

Metaballs [Blinnn92,Wyvill86]

- f is the sum of function that have maximum in the points and decay with the distance

$$
\begin{array}{ll}
f\left(x_{i}\right)=1 & f(R)=0 \\
f^{\prime}\left(x_{i}\right)=0 & f^{\prime}(R)=0 \\
f(x)=\sum_{i}\left(2 \frac{r^{3}}{R^{3}}-3 \frac{r^{2}}{R^{2}}+1\right), r=\left\|x-x_{i}\right\|, R=\text { support radius }
\end{array}
$$

Radial Basis Functions (RBF)

Solutions that follow the general scheme:

$$
\begin{aligned}
& f(x)=\mathrm{p}(\mathrm{x})+\sum_{i} \omega_{i} \varphi\left(\left\|x-x_{i}\right\|\right) \\
& f\left(x_{i}\right)=f_{i}
\end{aligned}
$$

weights: $\omega_{i} \in \mathbb{R}$
RBF: $\varphi: \mathbb{R} \rightarrow \mathbb{R}$
p a polynome

Radial Basis Functions (RBF)[Carr01]

$$
\begin{aligned}
& f(x)=\mathrm{p}(\mathrm{x})+\sum_{i} \omega_{i} \varphi\left(\left\|x-x_{i}\right\|\right), \\
& {\left[\begin{array}{cc}
A & \mathrm{P} \\
\mathrm{P}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\omega \\
C
\end{array}\right]=\left[\begin{array}{l}
F \\
0
\end{array}\right]} \\
& \begin{array}{l}
\omega_{i} \in \mathbb{R} \\
\varphi: \mathbb{R} \rightarrow \mathbb{R}
\end{array} \\
& \mathrm{p} \text { a polync } \\
& F=\left[f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right]^{T} \\
& A_{i j}=\varphi\left(\left\|x_{j}-x_{i}\right\|\right) \\
& \mathrm{p}: \text { basis for all polynomials of degree } \mathrm{k} \\
& P_{i j}=p_{j}\left(x_{i}\right)
\end{aligned}
$$

Examples of polynomial basis:

$$
\begin{aligned}
& p=\{1, x, y, z\} \mathrm{d}=3, \mathrm{~m}=1 \\
& p=\left\{1, x, y, x^{2}, x y, y^{2}\right\} \mathrm{d}=2, \mathrm{~m}=2 \\
& p=\left\{1, x, x^{2}, x^{3}\right\} \mathrm{d}=1, \mathrm{~m}=3
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { (} \\
& \hline
\end{aligned}
$$

Example

$$
\begin{aligned}
& {\left[\begin{array}{ccc|cc}
\varphi\left(\left|x_{1}, x_{1}\right|\right) & \varphi\left(\left|x_{1}, x_{2}\right|\right) & \varphi\left(\left|x_{1}, x_{3}\right|\right) & p_{1}\left(x_{1}\right) & p_{2}\left(x_{1}\right) \\
\varphi\left(\left|x_{2}, x_{1}\right|\right) & \varphi\left(\left|x_{2}, x_{2}\right|\right) & \varphi\left(\left|x_{2}, x_{3}\right|\right) & p_{1}\left(x_{2}\right) & p_{2}\left(x_{2}\right) \\
\varphi\left(\left|x_{3}, x_{1}\right|\right) & \varphi\left(\left|x_{3}, x_{2}\right|\right) & \varphi\left(\left|x_{3}, x_{3}\right|\right) & p_{1}\left(x_{3}\right) & p_{2}\left(x_{3}\right) \\
\hline p_{1}\left(x_{1}\right) & p_{1}\left(x_{2}\right) & p_{1}\left(x_{3}\right) & 0 & 0 \\
p_{2}\left(x_{1}\right) & p_{2}\left(x_{2}\right) & p_{2}\left(x_{3}\right) & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
0 \\
0
\end{array}\right]} \\
& \Rightarrow \\
& {\left[\begin{array}{ccccc}
0 & 1 & 4 & 1 & -2 \\
1 & 0 & 3 & 1 & -1 \\
4 & 3 & 0 & 1 & 2 \\
1 & 1 & 1 & 0 & 0 \\
-2 & -1 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0 \\
0
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
0.125 \\
-0.166 \\
0.0416 \\
-0.5 \\
0.75
\end{array}\right]} \\
& f(x)=-0.5+0.75 x+0.125|x+2|-0.166|x+1|+0.0416|x-2|= \\
& =-0.334+0.66 x+0.166(|x+2|)-0.166(|x+1|)
\end{aligned}
$$

Example

$$
\begin{aligned}
& f(x)=-0.5+0.75 x+0.125|x+2|-0.166|x+1|+0.0416|x-2| \\
& =-0.334+0: 66 \cdot x+0.166(|x+2| y)=0: 166(|x+1|)
\end{aligned}
$$

Radial Basis Functions (RBF)

- Several possible choices for φ and p :
- $\varphi(d)=d$, linear polynomial
$-\varphi(d)=d^{2}$, linear polynomial
- $\varphi(d)=d^{3}$, linear/quadratic polynomial
- $\varphi(d)=d^{2} \log (d)$,linear/quadratic polynomial
- Issue 1: if functions have unbounded support, i.e. nonzero everywhere, the matrix will always be dense
- Expensive to solve when n increase...
- Issue 2: the whole surface is influenced by each single input point

Bounded RBD [Morse01]

$$
\begin{aligned}
& \varphi(d)= \begin{cases}(1-d)^{p} P(d), & d<1 \\
0, & d \geq 1\end{cases} \\
& P(d)=\text { polynome with degree } 6
\end{aligned}
$$

- The value of f is determined only locally (withing the radius 1)
- Use $\varphi(d / R)$ to adapt to the point cloud resolution
- The resulting matrix is sparse
- The fitting is local

Bounded RBF

$$
\begin{aligned}
& \varphi(d)= \begin{cases}(1-d)^{p} P(d), & d<1 \\
0, & d \geq 1\end{cases} \\
& P(d)=\text { polynome with degree } 6
\end{aligned}
$$

- The value of f is determined only locally (withing the radius 1)
- Use $\varphi(d / R)$ to adapt to the point cloud resolution
- The resulting matrix is sparse
- The fitting is local

More issues:

- Still hard to represent sharp features, anisotropic basis functions may be used [Dinh01]

Partition of Unity

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

- $f(x)$ is defined globally as the weighted sum of local functions that describe (implicitly) the surface
- Each i corresponds to a region of \mathbb{R}^{3} where the function is described by $f_{i}(x)$
- The sum of the weights is 1 everywhere:

$$
\sum_{i} \varphi_{i}(x)=1
$$

- Which is obtained by normalization

$$
\varphi_{i}(x)=\frac{\omega_{i}(x)}{\sum_{i} \omega_{i}(x)} \quad\left\{\omega_{i}(\mathbf{x})\right\} \text { s.t. } \Omega \subset \cup_{i} \operatorname{supp}\left(\omega_{i}\right)
$$

Multilevel PoUl [Ohtake03]

- Starting from the bounding box of the point cloud, build an octree
- The rule for creating the children of a node is:

Can we define an implicit surface with the point corresponding to the cell as:

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

- for $Q_{i}(x)$ in a set of predefined shape functions
- With and approsimation error less than ε ?

Multilevel PoUl [ontake03]

- (simplified) Example

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

$$
\text { shape } Q_{i}(x)=B \mathbf{x}+\mathbf{c}
$$

$$
\operatorname{approx} \varepsilon=\sum_{j}\left|Q_{i}\left(p_{j}\right)\right|
$$

Error is big, split

Multilevel PoUl [Ontake03]

- (simplified) Example

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

shape $Q_{i}(x)=B \mathbf{x}+\mathbf{c}$
$\operatorname{approx} \varepsilon=\sum_{j}\left|Q_{i}\left(p_{j}\right)\right|$

Multilevel PoUl [Ontake03]

- (simplified) Example

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

shape $Q_{i}(x)=B \mathbf{x}+\mathbf{c}$
$\operatorname{approx} \varepsilon=\sum_{j}\left|Q_{i}\left(p_{j}\right)\right|$

Multilevel PoUl [ontake03]

- (simplified) Example

$$
f(x)=\sum_{i} \varphi_{i}(x) Q_{i}(x)
$$

shape $Q_{i}(x)=B \mathbf{x}+\mathbf{c}$
$\operatorname{approx} \varepsilon=\sum_{j}\left|Q_{i}\left(p_{j}\right)\right|$

Multilevel PoUI

- Subdivide the domain with an octree
- Fit the points within each cell with a function $Q_{i}(x)$, either:
- A quadric (for noisy and unbounded regions)
$Q_{i}(\mathbf{x})=\mathbf{x}^{\mathbf{T}} \mathbf{A x}+\mathbf{b}^{\mathbf{T}} \mathbf{x}+\mathbf{c}$

- A bivariate (u, v) quadratic polynomial in a local coordinate system (for smooth patch)
$Q_{i}(\mathbf{x})=w-[u, v]^{\mathrm{T}} \mathrm{A}\left[\begin{array}{l}u \\ v\end{array}\right]+\mathbf{b}^{\mathrm{T}}\left[\begin{array}{l}u \\ v\end{array}\right]+\mathbf{c}$
$[u, v, w]^{T}$ point expressed in a local frame

Multilevel PoUI

- Subdivide the domain with an octree
- Fit the points within each cell with a function $Q_{i}(x)$, either:
- A quadric (for noisy and unbounded regions)
- A bivariate (u, v) quadratic polynomial in a local coordinate system (for smooth patch)
- A piecewise quadratic surface (for sharp features)
- Blending PU:

$$
\begin{aligned}
& \omega_{i}(x)=b\left(\frac{3\left|x-c_{i}\right|}{2 R_{i}}\right) \\
& R_{i}=0.75 * \operatorname{diag}
\end{aligned}
$$

Results

Distance field from range maps [Levoy]

MPU implicits

Moving Least Square Reconstruction

LS
Least square
$\min _{f \in \Pi_{m}^{d}} \sum_{i}\left\|f\left(x_{i}\right)-f_{i}\right\| \quad \prod_{m}^{d}$:polynomes degree m in d-dimension

$$
\min _{f_{\bar{x}} \in \prod_{m}^{d}} \sum_{i} \theta\left(\left\|x_{i}-\bar{x}\right\|\right)\left\|f\left(x_{i}\right)-f_{i}\right\| \quad \bar{x} \text { : fixed point }
$$

WLS

Weighted
Least square

MLS
Moving
Least square

$$
\min _{f_{x} \in \prod_{m}^{d}} \sum_{i} \theta\left(\left\|x_{i}-x\right\|\right)\left\|f_{x}\left(x_{i}\right)-f_{i}\right\|
$$

Moving Least Square Reconstruction

[Alexa01]

- Iterative approach: project the points near the surface onto the surface (??)

1. $\quad \min _{n, t} \sum_{i=1}^{N}\left\langle n, p_{i}-r-t n\right\rangle^{2} \theta\left(\left\|p_{i}-r-t n\right\|\right)$
2. $\min _{g} \sum_{i=1}^{N}\left(g\left(x_{i}, y_{i}\right)-f\right)^{2} \theta\left(\left\|p_{i}-q\right\|\right)$
3. Moverto $q+g(0,0) n$

Moving Least Square Reconstruction

[Alexa01]

- Iterative approach: project the points near the surface onto the surface (??)

1.

$$
\begin{gathered}
\text { Squared distance between } p_{i} \text { and the plane } n, t \\
\min _{n, t} \sum_{i=1}^{N}\left(n, p_{i}-r-t n\right)^{2} \theta\left(\left\|p_{i}-r-t n\right\|\right) \quad \text { Non linear problem }
\end{gathered}
$$

2. $\min _{g} \sum_{i=1}^{N}\left(g\left(x_{i}, y_{i}\right)-f\right)^{2} \theta\left(\left\|p_{i}-q\right\|\right)$
3. \quad Move r to $q+g(0,0) n$

Moving Least Square Reconstruction

[Alexa01]

- Iterative approach: project the points near the surface onto the surface

1.

$$
f_{i}=\eta \cdot\left(p_{i}-q\right)
$$

2.

$$
\min _{n, t} \sum_{i=1}^{N}\left\langle n, p_{i}-r-t n\right\rangle^{2} \theta\left(\left\|p_{i}-r-t n\right\|\right)
$$

$\min _{g} \sum_{i=1}^{N}\left(g\left(x_{i}, y_{i}\right)-f_{i}\right)^{2} \theta\left(\left\|p_{i}-q\right\|\right)$ Known from 1.
Non linear problem
$g: \mathbb{R}^{2} \Rightarrow \mathbb{R}$ approximates point set in the local reference system centered in q
3.

Move r to $q+g(0,0) n$

- Repeat 1-3 until stationary point (r projects on itself)

Moving Least Square Reconstruction

Irregular sampling as
acquired by a laser scanner

After MLS reconstruction

Moving Least Square Reconstruction

$$
\theta(d)=e^{-\frac{d^{2}}{h^{2}}} h \text { is related to the spacing between samples }
$$

Algebraic Point Set Surfaces [Guennebaudor]

- Plane fitting problem with MLS:

- Nearby position lead to very different planes estimation
- Opposite sheets of surface considered as one

Algebraic Point Set Surfaces [Guennebaudor]

- Plane fitting problem with MLS:

- Nearby position lead to very different planes estimation
- Opposite sheets of surface considered as one

Algebraic Point Set Surfaces [Guennebaudor]

- Main idea: fit spheres insted of planes
- Spheres to define normal at the points
- Spheres to define the surface in the MLS iteration

Plane fitting Sphere fitting

Algebraic Point Set Surfaces [Guennebaudor]

- Sphere fitting
- Geometric fitting is unstable for planar configuration
- Use an algebraic approach, define the surface of the sphere as the zeroes of the function $S_{\mathbf{u}}(\mathbf{x})$:

$$
\begin{aligned}
& S_{\mathbf{u}}(\mathbf{x})=\left[1, \mathbf{x}^{\mathbf{T}}, \mathbf{x}^{\mathbf{T}} \mathbf{x}\right] \mathbf{u}, \quad \mathbf{u}=\left[\mathrm{u}_{0}, \ldots, \mathrm{u}_{\mathrm{d}+1}\right] \\
& S_{\mathbf{u}}(\mathbf{x})=u_{0}+u_{1} x+u_{2} y+u_{3} z+u_{4}\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

center $\quad \mathbf{c}=-\frac{1}{2 u_{4}}\left[u_{1}, u_{2}, u_{3}\right]^{T}$
radius $\quad r=\sqrt{\mathbf{c}^{\mathbf{T}} \mathbf{c}-u_{0} / u_{4}}$

- $u_{4}=0 \rightarrow S_{\mathbf{u}}(\mathbf{x})=0$ defines a plane

Algebraic Point Set Surfaces [Guennebaudor]

$$
\mathbf{W}(\mathbf{x})=\left[\begin{array}{c}
w_{0}(\mathbf{x}) \\
\ddots \\
w_{n-1}(\mathbf{x})
\end{array}\right], \mathbf{D}=\left[\begin{array}{ccc}
1 & \mathbf{p}_{0}^{T} & \mathbf{p}_{0}^{T} \mathbf{p}_{0} \\
\vdots & \vdots & \vdots \\
1 & \mathbf{p}_{n-1}^{T} & \mathbf{p}_{n-1}^{T} \mathbf{p}_{n-1}
\end{array}\right]
$$

Algebraic sphere fitting in a neighborhood of n points

Weighting scheme

$$
\begin{aligned}
& w_{i}(\mathbf{x})=\phi\left(\frac{\left\|\mathbf{p}_{i}-\mathbf{x}\right\|}{h_{i}(\mathbf{x})}\right) \\
& \phi(x)= \begin{cases}\left(1-x^{2}\right)^{4} & \text { if } x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Algebraic Point Set Surfaces [Guennebaudor]

Poisson surface recontruction

- We reconstruct the surface of the model by solving for the indicator function of the shape.

$$
\chi_{M}(p)= \begin{cases}1 & \text { if } p \in M \\ 0 & \text { if } p \notin M\end{cases}
$$

Indicator function

$$
\chi_{M}
$$

Challenge

■ How to construct the indicator function?

Oriented points

Indicator function χ_{M}

Gradient Relationship

- There is a relationship between the normal field and gradient of indicator function

Oriented points

Indicator gradient
$\nabla \chi_{M}$

Integration

- Represent the normals by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$
\min _{\chi}\|\nabla \chi-\vec{V}\|
$$

Integration as a Poisson Problem

- Represent the points by a vector field \vec{V}
- Find the function χ whose gradient best approximates \vec{V} :

$$
\min _{\chi}\|\nabla \chi-\vec{V}\|
$$

- Applying the divergence operator, we can transform this into a Poisson problem:

$$
\nabla \cdot(\nabla \chi)=\nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi=\nabla \cdot \vec{V}
$$

Vector field approximation from samples

- Note: the indicator function is discontinuous, how can we compute its gradient?
- Smoothing Filter:

Lemma: [kazhdan06]
M manifold, $\vec{N}_{\partial M}(p)$ surface normal, \tilde{F} smoothing filter:
$\tilde{F}_{p}(q)=\tilde{F}(q-p)$
$\nabla\left(\chi_{M} * \tilde{F}\right)\left(q_{0}\right)=\int_{\partial M} \tilde{F}_{p}\left(q_{0}\right) \vec{N}_{\partial M}(p) d p$

Indicator gradient
$\nabla \chi_{M}$

Vector field approximation from samples

- Note: the indicator function is discontinuous, how can we compute its gradient?
- Smoothing Filter:

$$
\begin{aligned}
& \nabla\left(\chi_{M} * \tilde{F}\right)\left(q_{0}\right)=\int_{\partial M} \tilde{F}_{p}\left(q_{0}\right) \vec{N}_{\partial M}(p) d p=\mid \\
& \sum_{S \in S} \int_{\mathcal{P}_{S}} \tilde{F}_{p}(q) \vec{N}_{\partial M}(p) d p \approx \\
& \sum_{s \in S}\left|\mathcal{P}_{S}\right| \tilde{F}_{s . p}(q) s . \vec{N} d p \equiv \vec{V}
\end{aligned}
$$

Implementation

Given the Points:

- Set octree
- Compute vector field
- Compute indicator functior
- Extract iso-surface

Implementation: Adapted Octree

Given the Points:

- Set octree
- Compute vector field
- Compute indicator functia
- Extract iso-surface

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function space

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function space

-

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function basis
- Splat the samples
-

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function basis
- Splat the samples

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function basis
- Splat the samples

Implementation: Vector Field

Given the Points:

- Set octree
- Compute vector field
- Define a function space
- Splat the samples
- Extract iso-surface

Setting up the minimization problem

- So we have defined the vector field

$$
\sum_{s \in S}\left|\mathcal{P}_{S}\right| \tilde{F}_{s . p}(q) s . \vec{N} d p \equiv \vec{V}
$$

- ...can't we just integrate it and get χ ?
- No, no guarantees that \vec{V} is curl free

Setting up the minimization problem

- Minimize $|\Delta \chi-\nabla \vec{V}|$ instead...
- ... More precisely minimize the difference of their projections on the basis of functions F

Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Compute divergence
- Solve Poisson equation
- Extract iso-surface

Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Compute divergence
- Solve Poisson equation
- Extract iso-surface

Implementation: Indicator Function

Given the Points:

- Set octree
- Compute vector field
- Compute indicator functior
- Compute divergence
- Solve Poisson equation
- Extract iso-surface

Implementation: Surface Extraction

Given the Points:

- Set octree
- Compute vector field
- Compute indicator function
- Extract iso-surface

References

[turk94] Turk, G. and Levoy, M. (1994). Zippered polygon meshes from range images. ACM Computer Graphics, 28:311-318.
[Marras10] Controlled and adaptive mesh zippering S.Marras, F. Ganovelli, P. Cignoni, R. Scateni and R. Scopigno, GRAPP 2010
[Bernardni99] The Ball-Pivoting Algorithm for Surface Reconstruction, Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, Gabriel Taubin IEEE
Transactions on Visualization and Computer Graphics archive Volume 5 Issue 4, October 1999 Page 349-359
[Treece99] G.M. Treece, R.W. Prager, A.H. Gee,Regularised marching tetrahedra: improved iso-surface extraction,Computers \& Graphics,Volume 23, Issue 4,1999 [Lorensen87] William E. Lorensen, Harvey E. Cline: Marching Cubes: A high resolution 3D surface construction algorithm. In: Computer Graphics, Vol. 21, Nr. 4, July 1987 [Cignoni00]Reconstruction of topologically correct and adaptive trilinear isosurfacesP Cignoni, F Ganovelli, C Montani, R ScopignoComputers and graphics 24 (3), 399-418 [Edelsbrunner83] D. G. Kirkpatrick and R. Seidel. On the shape of a set of points in the plane. IEEE Trans. Inform. Theory IT-29 (1983), 551-559.

Deferences

[Ning93] Paul Ning and Jules Bloomenthal. An evaluation of implicit surface tilers. IEEE Computer Graphics and Applications, 13(6):33-41, 1993.
[Kobbelt01] Feature sensitive surface extraction from volume dataL.P. Kobbelt, M. Botsch, U. Schwanecke, Hans-Peter Seidel SIGGRAPH '01 Proceedings of the 28th annual conference on Computer graphics and interactive techniquesPages 57-66
[Schaefer04] Dual Marching Cubes: Primal Contouring of Dual Grids Scott Schaefer , Joe Warren PG '04: PROCEEDINGS OF THE COMPUTER GRAPHICS AND APPLICATIONS
[Blinn92] Blinn, J. F. "A Generalization of Algebraic Surface Drawing". ACM Transactions on Graphics 1 (3): 235-256
[Wyivill86] Data structure for soft objects, Geoff Wyvill, Craig McPheeters, Brian WyvillThe Visual Computer, Vol. 2, No. 4. (1 August 1986), pp. 227-234
[Carr01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R.Evans. Reconstruction and representation of 3D objects with radial basis functions. In Proceedingsof ACM SIGGRAPH 2001, pages 67-76, August 2001.
[Boissonnat84]. Geometric structures for three-dimensional shape representation. ACM Trans. Graph., 3(4):266-286, 1984.

References

[Morse01] B. S. Morse, T. S. Yoo, D. T. Chen, P. Rheingans, and K. R. Subramanian. Interpolating implicit surfaces from scattered surface data usingcompactly supported radial basis functions. In SMI'01: Proceedings of the International Conferenceon Shape Modeling \& Applications, pages 89-98. IEEE Computer Society, 2001
[Dinh01] H. Q. Dinh, G. Turk, and G. Slabaugh. Re-constructing surfaces using anisotropic basis func-tions. In International Conference on ComputerVision (ICCV) 2001, volume 2, pages 606-613, 2001.
[Ohtake03] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition of unity implicits.ACM Transactions on Graphics, 22(3):463-470,July 2003.
Proceedings of SIGGRAPH 2003.
[Alexa01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, and C. T. Silva. Point set surfaces. IEEE Visualization2001, pages 21-28, October 2001.
[Kazhdan06]Poisson surface reconstruction, Michael Kazhdan, Matthew Bolitho, Hugues Hoppe.Symposium on Geometry Processing 2006, 61-70.
[Fortune86]. A sweepline algorithm for Voronoi diagrams. Proceedings of the second annual symposium on Computational geometry. Yorktown Heights, New York, United States, pp.313-322. 1986
M. I. Shamos and D. Hoey, Closest-point problems, Proc. 16 ${ }^{\text {th }}$ Annu. IEEE Sympos. Foind. Comput. Sci. (1975), 151-162
[Amenta99]. The crust algorithm for 3D surface reconstruction. In Proceedings of the fifteenth annual symposium on Computational geometry (SCG '99). ACM, New York, NY, USA, 423-424. DOI: https://doi.org/10.1145/304893.305002
[Amenta01]. The power crust. In Proceedings of the sixth ACM symposium on Solid modeling and applications (SMA '01), David C. Anderson and Kunwoo Lee (Eds.). ACM, New York, NY, USA, 249-266. DOI=http://dx.doi.org/10.1145/376957.376986
[Curless96] Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models from range images. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (SIGGRAPH '96). ACM, New York, NY, USA, 303-312. DOI=http://dx.doi.org/10.1145/237170.237269

