
The Visual Computer manuscript No.
(will be inserted by the editor)

Nico Pietroni � Fabio Ganovelli � Paolo Cignoni �
Roberto Scopigno

Splitting Cubes: a Fast and Robust Technique for
Virtual Cutting

Abstract This paper presents the Splitting Cubes, a fast and robust technique to perform interactive
virtual cutting on deformable objects.

The technique relies on two ideas. The �rst one is to embed thedeformable object in a regular grid,
to apply the deformation function to the grid nodes and to interpolate the deformation inside each cell
from its 8 nodes. The second idea is to produce a tessellationfor the boundary of the object on the base
of the intersections of such boundary with the edges of the grid. Please note that the boundary can be
expressed in any way, for example it can be a triangle mesh, animplicit or a parametric surface. The
only requirement is that the intersection between the boundary and the grid edges can be computed.
This paper shows how the interpolation of the deformation inside the cells can be used to produce
discontinuities in the deformation function, and the inter sections of the cut surface can be used to
visually show the cuts on the oject.

The Splitting Cubes is essentially a tessellation algorithm for growing, deformable surface and it
can be applied to any method for animating deformable objects. In this paper the case of the mesh-free
methods (MMs) is considered: in this context, we decribed a practical GPU friendly method, that we
named the Extended Visibility criterion, to introduce disc ontinuities of the deformation.

Keywords Physically based modelling� Three-Dimensional Graphics and Realism� Animation

1 Introduction

Interactive virtual cutting and tearing of deformable obje cts are mandatory for surgery simulation.
In the last decade, several solutions have been proposed. Most of these methods adopt a mesh-based
representation (either of the volume or of the surface) that can be dynamically adapted to animate
topological changes. The main problems of these mesh-basedapproaches concern the fragmentation of
the representation in proximity of the regions being cut and/or the accuracy of the representation of
the cut. If the mesh describing the geometry is also used as a partition of the object in �nite elements
for numerical simulation, then the quality of re-meshing a� ects the stability of the simulation.

More recently, the so-calledmesh-free methods (MMs), traditionally used in
uids simulation,
have been introduced in the computer graphics community to model solids [15]. MMs approximates
the physical quantities (strain, stress velocity etc.) from those sampled at speci�c locations. MMs avoid
the problems related to re-meshing after a cut and naturallyprovide the continuity of the physical

Nico Pietroni
Visual Computing Lab, ISTI CNR Pisa and Endocas Center For Co mputer Assisted Surgery Pisa
email: nico.pietroni@isti.cnr.it

Fabio Ganovelli, Paolo Cignoni, Roberto Scopigno
Visual Computing Lab, ISTI CNR Pisa,Italy
email: name.surname@isti.cnr.it

2 Nico Pietroni et al.

Fig. 1 Frames captured during an interactive simulation. Two blad es (clearly visible in the right most frame)
are rotating counterclockwise and translating from left to right.

quantities involved in the simulation (such as strain). On the other hand MMs also pose problems such
as implementing the Essential Boundary Conditions, representing the surface and modifying the model
to represent discontinuities [23]. The problem of modelling cut and fractures in o�ine simulations has
been extensively investigated in the �eld of applied mechanics. On the other hand, for the interactive
setting there is still research to do towards a stable and e�cient solution, although some pioneering
work exists. There are two main problems to solve in order to model cuts in MMs: how to provide a
representation of the object's surface that can be updated on-the-
y and how to update the physical
simulation to re
ect the discontinuities introduced by the cuts. In this paper we introduce a novel
solution to both these problems:

{ We introduce the Splitting Cubes, a new algorithm which provides a dynamic tessellation of an
evolving surface embedded in a deforming space. The key ideais to embed the object in a regular
grid and to encode a tessellation of its surface in terms of intersection of the surface with the edges
of the grid. The position of the tessellation vertices is interpolated by the grid nodes so that it is
possible to implement discontinuities at a sub-cell level.

{ We introduce the Extended Visibility criterion , a new way to handle discontinuities with MMs.
With respect to the existing solutions, the Extended Visibility criterion guarantees a smoother
adaptation of the system and it can be e�ciently implemented harnessing the GPU power.

It is important to note that, although these contributions c an be adopted to implement cuts with MMs,
they are mutually independent and could be individually be applied to other cases. The Splitting Cubes
is essentially a tessellation algorithm for deformable surface that only relies on a generic deformation
function, not necessarily obtained with MMs, and on a description of the object's surface (geometric,
parametric or implicit). Similarly, the Extended Visibili ty Criterion is a contribution to the �eld of
MMs and only uses the proximity relation between samples anda tessellation of the crack surface, no
matter how it has been created.

Note that we do not propose a new method for physically based modelling of deformable objects.
Instead, we propose a new method to represent cuts on deformable objects which is independent of
the physical model used.

The paper proceeds as follows: in Section 2 we give a general de�nition of the problem of cutting
and brie
y review the approaches proposed so far. In Section3 we introduce the basic concepts of the
Splitting Cubes technique and in Section 4 we describe our Extended Visibility Criterion approach.
Results are reported in Section 5 and conclusions and directions for future work are commented in
Section 6.

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 3

Fig. 2 De�nition of cut as a function that takes a deformation funct ion F and a cut surface cs and returns
a new surfaces0 and a new deformation function F 0.

2 Background

Many solutions have been proposed to the problem of virtual cutting, using di�erent methods for
physical simulation and rendering.

For the sake of generality, we introduce the problem in abstract terms. We characterize a deformable
object as a time dependent functionF :
 � Time ! IR 3 and a description of its surface s, as shown
in Figure 2. The function F gives, for each point of the object domain at rest shape
 , its position
at a given time t. F is usually at least C0 continuous except on the boundary of
 . A cut is a func-
tion that modi�es F and s on the base of acut surface inside the volume
 : Cutcs(F; s) = (F 0; s0). In
this terms, the problem of virtual cutting can be expressed as the problem of de�ning the function Cut.

Most of the methods for real time interaction with deformable objects deal withmesh-basedmodels.
In these models, the refresh rate of the physical system is linearly related to the number of primitives
of the mesh. Moreover, the stability of dynamic solvers is strongly in
uenced by the quality of the
elements in the mesh. Thereforemesh-basedmethods are often focused on how to produce an accurate
representation of the cuts while minimizing the number of primitives created and taking into account
their quality. In the next two sections we will concisely review the literature on interactive cuts applied
on mesh based and on mesh-free models.

2.1 Cuts on mesh based models

Delingette et. al. [6] proposed a hybrid model where the portion of the object that is supposed to be
cut is modeled with the tensor mass, a scheme similar to the mass spring system where the forces are
derived per tetrahedron from the displacement of its four vertices, while the rest of the mesh is mod-
eled with a more accurate FEM. In their approach the cut is implemented by removing the tetrahedra
touched by the cutting tool. This method avoids the creation of new primitives, but introduces the
serious drawbacks of poor visual feedback as well as the lossof volume (see Figure 3.(b)).
In the solution proposed by Nienhuys et al. [16] the mesh vertices closer to the cut are snapped onto
the cut surface and duplicated to open the cut (see Figure 3.(c)). This method does not create new
tetrahedra and can be coupled with a FEM simulation, since the updating of the sti�ness matrix can
be done on-the-
y.
Several authors used re-meshing to adapt the tessellation to represent the cut surface [26,5,12] by us-
ing a triangulated surface and splitting the triangles intersected by the cutting tool. In case of volume

4 Nico Pietroni et al.

representation with tetrahedral meshes, Bielser et al. [4,3] and Ganovelli et al.[7] used dynamic re-
meshing of the intersected tetrahedra to adapt the new boundary of the model to the cut surface (see
Figure 3.(d)). Re-meshing provides an accurate representation of the cut surface, although it produces
mesh fragmentation that can be only partially alleviated by enhancing the re-meshing strategy with
on-the-
y edge collapse operations [8] or by adopting a combination of these techniques [24].
O'Brien et al. proposed a solution for modeling brittle and ductile fractures [18,17] in o�-line simu-
lations. They used continuum mechanics equations to derivethe crack surface and mass lumping to
provide an explicit integration scheme. In their method re-meshing is used to accurately represent the
crack surface, since \approximating it with the existing element boundaries would create undesirable
artifacts" [18].
Recent solutions decouple the simulation from the representation. In [14] each tetrahedron of the
mesh can be decomposed on the base of which of its edges are crossed by the cut surface, but such
decomposition does not replace the orginal tetrahedron forthe physical simulation. If the cutting gen-
erates disconnected components, the tetrahedron is duplicated. While in [14] the tetrahedron can be
decomposed at most in 4 components (one for each node), in [22] this idea extended by allowing the
tetrahedra to be split any number of time, always considering the intersection of the crack surface with
the current decomposition, and not only with the 6 edges of the original tetrahedron. In this manner
the objects can be cut in pieces arbitrarily small, at the price of generating polyhedra with any number
of faces (which all need to be tested for intersection and collision detection).

2.2 Cuts with Mesh free Methods

MMs are methods to solve partial di�erential equations numerically without the support of a partition
of the domain in �nite elements. Here we give some backgroundinfo necessary to follow the rest of
the paper, the reader may refer to [23] for a complete monograph. In MMs the value of an unknown
variable at a generic point x in the domain is approximated by the value of a number of samplesx i ,
termed phyxelsin [15]. If the unknown variable is the deformation, we can write:

F (x; t) =
X

i 2 P

� i (x)F (x i ; t) (1)

where � i (x) are continuous functions, called shape functions. The shape functions are weighted by
a function of the distance between the phyxel and the point toapproximate, written as w(x; x i ; r i)
(incorporated in � i (x)), which rapidly decays with the increase of kx � x i k. The radius of in
uence
r i of the shape function is typically chosen to include a constant number of neighbors (e.g. 10 in [15])
that will be the phyxels directly in
uenced by (and in
uenci ng) phyxel i .
MMs shape functions provide a higher order of continuity with respect to FEM shape functions but also
pose some di�culties. Given that the MMs shape functions do not verify the Kronecker delta property
like the FEM shape functions do1, it is more di�cult to impose the essential boundary conditi ons, e.g.
to move a phyxel to a desired position. Similarly, special care needs to be taken to model discontinuity
inside the material, which is done either by enriching the shape function or, more commonly, changing
the weight function to loosen the mutual in
uence between phyxels on di�erent sides with respect
to the discontinuity. Finally, the meshfree method do not naturally provide a representation of the
boundary.

Adapting the surface in mesh free methods.
In the solution proposed by Pauly et al. [20] the surface of the deformable object is dynamically sampled
with surfels represented as oriented elliptical splats. In order to showsharp features, which are always
created by cutting, the surfels overlapping a crease can be clipped against a plane lying on the other
side of the crease [21].

In their model a crack is codi�ed by a sequence of phyxels (called crack nodes) which represents
the propagation front of the crack. For cracks starting from the surface (e.g. when a cut is being
made), the �rst and last node of the sequence lie on the surface while for cracks generating inside the
volume the front is circular. Every time a new crack node is added to the sequence, i.e. every time the

1 The Kronecker delta property refers to the fact that the shap e function � i (x j) = 1 :0 if j = i and 0 otherwise

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 5

Fig. 3 Techniques to implement cuts in mesh based models. (a) Portion of a triangulation with a cut surface
(in red) (b) Removing elements (c) Snapping vertices on the cut surface (d) Remeshing

Fig. 4 Example of crack front.

front propagates, new surfels are added to represent the twonew pieces of surface (see Figure 4). This
technique avoids the classical problems of the mesh-based methods, i.e. fragmentation and degeneracies
due to re-meshing. On the other hand the crack fronts can split and merge and these events need to
be handled explicitly to maintain the topology of the crack front(s) consistent.

An alternative approach has been proposed by Steinemann et al. [25], where the surface is repre-
sented by a triangle mesh. When a cutting tool penetrates theobject, the cut surface is triangulated
and used to update the current object's surface with the new pieces of sheets. These new sheets are
created by triangulating the portion of the splitting surfa ce inside the volume, triangle by triangle. As
for the previous solution, the branching and merging of crack fronts has to be handled explicitly. Com-
pared to the point sampled method described above, the use ofa triangle mesh give advantages in terms
of rendering speed, but if multiple cuts are executed in the same region triangle fragmentation and
degeneracies may occur, causing degradation in performance and in the quality of the intersection tests.

Adapting the physical simulation
As previously stated, a cut introduces a discontinuity in the deformation function. In MMs this dis-
continuity can be computed by altering the weights of the the shape functions, which can be done in
various ways.

One straightforward way is the visibility criterion proposed by Belytschko et al. in [2] and consists
of zeroing the value of the shape function� i (x) in those points from which the phyxel i is not visible,
i.e. if the segment x x i crosses the newly created surface. Although very simple to implement, this
method introduces also an undesired discontinuity at the horizon line (see Figure 12.a) that a�ects

6 Nico Pietroni et al.

Fig. 5 (a) Lengthening the distance by transparency method. (b) Ap proximation of refraction method by
exploring the graph of phyxels.

convergence and stability.
In the di�raction method [1,19] the distance between two points is de�ned as the shortest curve not
intersecting the discontinuity line (see Figure 12.b).
An approximated but interactive version of this approach is also used by Steinemann et al. in [25]. In a
preprocessing phase, they build a connectivity graph on thephyxels by adding an edge for each couple of
phyxels (i; j) such that w(d(i; j)) 6= 0. Then the distance between two phyxelsi and j is always taken as
the shortest path in the connectivity graph. When a cut surface is de�ned, the arcs intersecting the cut
surface are removed and the shortest paths between the phyxels in the neighborhood are recomputed
(see Figure 5). Thetransparency method, proposed in [1], considers the intersection betweenx x i and
the cut surface and the distance of the intersection point tothe closest border of the cut surface (see
Figure 5.a). This method is also used in [20] in a non-interactive simulation.

3 The Splitting Cubes Algorithm

The Splitting Cubes algorithm is a technique for providing a tessellation of an evolving surface em-
bedded in a deforming space. In the speci�c case treated in this paper the surface evolves when a cut
exposes new parts of the object boundary, and when the space deforms.

The key idea of the Splitting Cubes algorithm is to embed the object in a regular 3D grid whose
nodes are moved according to the deformation functionF , and to interpolate F inside each cell from its
8 nodes. This scheme allows us to implement discontinuitiesof the deformation inside a cell, by varying
the interpolation values of the nodes, depending on which edges are cut. We introduce the details with
a practical 2D example. Figure 6.a shows a tessellated surface crossing a few cells of the regular grid (in
2D). The cyan arrows leaving from a vertex of the tessellation show the dependencies of that vertex on
the cell nodes, i.e. from which nodes we compute its position. The red curve shows the intersection of a
cutting tool path with one edge of the embedding grid. The tessellated surface is de�ned cell by cell on
the base of the con�guration of cut edges (position and normal of the intersections), similarly to what is
done in the various extensions of the Marching Cubes approach [13,28] that exploit hermitian data [11,
10]. However, the cut shown in Figure 6.b would generate an invalid con�guration for the standard
Look Up Table (LUT) of the Marching Cubes both for cell CellA and cell CellB (one edge of the cell is
intersected). On the contrary, the Splitting Cubes algorithm includes these con�gurations. The reason
relies in the nature of the cut surface. In the literature the cut surface is regarded as the surface swept
by the cutting tool, which is identi�ed with a segment. We use a more topological de�nition to explain
our technique: the cut surface is the boundary of a protrusion of the space surrounding the object. In
other words, when a cutting tool penetrates into the object, it actually extends the empty space into
the object, and the cut surface is the boundary of that portion. Although at rest shape the volume of
this protrusion is zero, its boundary (the blue curve in Figure 2) is topologically well de�ned and can
be tessellated, which is exactly what the Splitting Cube does by sampling the cut surface on the cells
edges and using these points to de�ne a tessellation.

The tessellation is de�ned individually cell by cell. Figur e 6.b shows the tessellation for the con-
�gurations of cells CellA and CellB . We can see that the cut generates two vertices on the edge and
one inside the cellCellB . Furthermore, the dependencies of the vertices inside the two cells have been
changed to re
ect the cut.

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 7

Fig. 6 The Splitting Cubes idea. (a) The object is embedded in a regular grid, the vertices of the tessellated
surface depends on the grid nodes. (b) A cut surface crosses an edge and changes the con�guration of cells
CellA and CellB. (c) The new surface in the deformed space. (d) Dual interpretation: cuboidal portion of
material are lumped to the grid nodes.

The Splitting Cubes LUT contains all the 212 possible con�gurations determined by cuts on cell
edges, and for each triangulation it speci�es the dependencies of the vertices from the cell nodes.
Figure 6.(d) shows a dual interpretation of the Splitting Cubes where every node represents an amount
of material and the material of two adjacent nodes is continuous if and only if the corresponding edge
is not cut. We give also this interpretation to show how the Splitting Cubes could be seen as the
version of the Virtual Node algorithm [14] on regular grids instead of tetrahedra. Also, we will use this
interpretation for explaining the construction of the LUT (see Appendix A).

Figure 7 shows the six con�gurations for a cell in the 2D case. For each con�guration a tessellation
of surface inside the cell is given. The cyan arrows leaving the vertices and pointing to the cell nodes
show the dependencies.
We start considering the 2D case, where the cells are quadrilaterals (beside, these arealso the con�gu-
rations for the faces of a 3D cell). The �rst column shows the con�guration in the paramet ric domain
while the second shows a possible deformation of the cell with the vertex-node dependencies. The
number next to the case letter indicates how many equivalentcon�gurations are obtained by rotation
or mirroring.
The con�gurations B -F are tessellations of the cut surface as derived by the cut edges. Note that each
cut edge will always create two vertices, callededge-verticesfrom now on, and that each edge-vertex
always depend on only one of the two extremes of the edge. Thischoice re
ects the discontinuity of
the deformation function F along the edge and will allow the two vertices to be taken apart in the
deformed space.

Similarly, the vertex in the middle of the face, called face-vertex, is replicated for each connected
component and only depends on the nodes of its connected component. A connected component is
de�ned as a portion of the cell where every pair of points can be connected by a curve without
intersecting the cut surface.

8 Nico Pietroni et al.

Fig. 7 The six con�gurations for a face of the splitting cube (i.e. t he 2D case). We show: the con�gurations
at rest shape (leftmost column); the con�gurations at a give n deformed shape (center column); the need for
the internal face vertex to avoid volume loss (right most col umn).

Note that, except for the case B, theface-vertexwould not be necessary to build the triangulation.
On the other hand, introducing face-vertices is necessary to preserve the amount of material, otherwise
cuts will result in a reduces mass (see cases E and F in the �gure).

The con�guration for the 3 D cell are derived by extending the 2D case. Let us consider a cell with
one edge cut, resulting in two faces with aB con�guration as shown in Figure 8.(a). We can build a
quad with the edge-vertex, the two face vertices and acenter vertexplaced inside the cube. We build
such a quad for each one of the cut edges and then �nd our connected components, duplicate the
vertices and assign the dependencies accordingly. Figure 8.(b) and 8.(d) shows a case with 5 edges cut
and its triangulation, respectively. In this case two connected components are found.

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 9

Fig. 8 Two examples of cuts. (a-b): The quads created by cutting 1 and 5 edges. (c-d): the resulting tessel-
lation.

Fig. 9 The �gure shows how the vertices of the tessellation are derived from the intersection o the cut surface
with the edges of the cell and the normal to the cut surface at t he crossing point.

The tessellation and the dependencies are computed once forall and stored in a Look Up Table with
212 entries.

3.1 Position of the vertices

While the connectivity of the vertices added by a cut is stored in the LUT, their position has to be found
on-the-
y. For the edge vertex the choice is trivially the cutting point along the edge. The position
of face points is less obvious to �nd. Our goal is to provide a tessellation that mimics the cut surface
inside the cell, so we cannot use simplistic solutions as thecenter of the face or the average of the edge
vertices. Instead we also take into account the normal of thecut surface at the edge-vertices, that we

10 Nico Pietroni et al.

Fig. 10 Two types of cut (case B and case D). The frames rendered in blue are virtual and depend on the
frame pointed by the arrow.

obtain from the movement of the tool. This normal and the relative edge-vertex de�ne a plane the we
call Cut Plane. In other terms, a cut plane is the approximation of the cut surface around a edge vertex.
For the caseC and D , where two edges are cut, we use the approach described in [11]: if the angle
formed by the two planes passing through the edge vertices isclose to� , we assume the two edges have
been cut with a smooth movement and place the faced vertex in the middle of the Bezier curve de�ned
by the edge vertices and the intersection of their associated cut planes (see Figure 9.(b)). Otherwise
we place the vertex exactly at such intersection point, showing a sharp feature (see Figure 9.(c)). The
casesE and F would clearly require a tessellation with more degrees of freedom for representing the
cut surface exactly. We use a strategy which leads to little or no visible artifacts in the assumption
that the cut is done by a single tool (which is not restrictive in most scenarios). The idea is that in a
single movement of the tool, no more than two edges will be cut, producing a con�guration from A to
D . Any further cut will �nd the face vertex already placed, so w e rede�ne (move) the face vertex by
projecting it into the plane de�ned by the new cut plane, as shown in Figure 9.(d) and Figure 9.(e).

Similar considerations hold for the position of the centralvertex. The �rst time the cell is cut, if the
cut does not split the cell in two parts, the central vertex is positioned in the average position among
the face vertices, otherwise it is placed so that it minimizes the sum of the squared distances from all
the planes by using a quadric metric as in [9]. Again, for any further cut we project the position onto
the new cut plane.

3.2 Interpolation inside a cell

As previously stated the space inside the cell is deformed accordingly to the cell nodes.
We attach a reference frame to each nodei , f i = (A i ; Oi) where A i are the three axes andOi the
origin. Given the deformation function F , the frame f i at time t is found asf i t = ((J � 1

F t
)T (A i); F (Oi)),

where J is the Jacobian ofF . The position in the deformed space of a generic pointp is found as:
X

j 2 cell

aj pj f j t (2)

where pj is the projection of p on the frame f i and aj are the scalar coe�cients of the trilinear
interpolation. This interpolation scheme uses all of the 8 nodes of a cell, while tessellation vertices
depend only on a subset of them. In the example in Figure 10), the position of the edge vertexv0 is
interpolated from f a and f b, since the coe�cient of the trilinear interpolation are 0 fo r the other 6
frames. However, since we want to represent the discontinuity of F along the edge, we impose thatv0
only depends onf a while the frame f bt is replaced by the framef b0t which is computed by the function
F 0(b) = F (a) + (b� a) JF t (a), i.e. the deformation function in b as approximated by its value in a by

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 11

visibility disk

triangle of the surface

pi

pj

pi

pj

pi pj

(a) (b)

(c) (d)

cut surface cut surface

Fig. 11 (a-b) The cut surface partially occludes the visibility dis k. The percentage of weight remaining is
represented with a dashed line. (c) Hardware implementatio n of the Extended Visibility criterion. (d) a triangle
of the cut surface as seen by phyxeli .

Taylor series. In other words the framef b0 is virtual , a concept already exploited by Molino et al. in
their virtual node algorithm [14].

4 Extended Visibility criterion for physical response to cu tting in MMs.

In the previous section we introduced the Splitting Cubes algorithm, which enables to introduce cuts
and to setup the corresponding discontinuity in the deformation function F inside each single cell,
without making any assumption on the physical model.
However, the deformation function must be changed to re
ectthe discontinuity introduced. This sec-
tions shows how to modify the deformation function to show discontinuities in MMs.

4.1 Nodes <-> Phyxels bounds

The deformation function at a grid node depends on the set of phyxels closer than a given radiusr and
that are visible, i.e. such that a segment from the node to thephyxel does not intersect the boundary
surface. This set is referred askernel of the node.
The kernel of a node is kept up to date when new pieces of surface are added. Updating a kernel means
to check which of the phyxels in its kernel are still visible, so this operation requires few segment-
triangle intersection tests only for the nodes within a radius r from the cell where the new piece of
surface was created.

4.2 Phyxels <-> Phyxels bounds: the Extended Visibility Criterion

In Section 2 we reviewed the methods to update inter-phyxelsrelations after a cut. Here we propose
to modify the visibility criterion by extending the line of s ight between two phyxels from a segment to
a pair of cones as shown in Figure 11.
Consider the common base of the two cones, that we callvisibility disk. From each point on this disk
we trace two rays, directed to each phyxel and say that this single point is occluded if at least one of
these two rays intersects the cut surface. Then we de�ne the weight function as:

w0(pi ; pj) = w(pi ; pj)
�

1 �
1

DiskArea

Z

p2 Disk
IsOccluded(p)dp

�
(3)

12 Nico Pietroni et al.

(a) (b) (c) (d)
Fig. 12 The image shows how the weight function is modi�ed by the intr oduction of a cut surface (white
line) by using: the visibility criterion, the di�raction me thods, the transparency method and the Extended
Visibility criterion.

In this manner we replaced the binary value of the previous visibility criterion with a criterion
which returns a scalar value in the range [0; 1] that we use to weight the inter phyxel bound.
Figure 12 shows the value of the weight (in a color ramp from red= 1 to blue= 0) around a phyxel in
the proximity of a cut surface when the visibility criterion , the di�raction method, the transparency
method and the Extended Visibility criterion are used.
The �rst row shows the case were the cut surface is made of a single connected component. While
the visibility criterion introduces discontinuities not o nly on the cut surface but also on the horizon
line, the di�raction method and the transparency method imp lement the required discontinuity and
are smooth elsewhere. The Extended Visibility criterion produces an intermediate result: the weight
function does not exhibit unwanted discontinuities as the visibility criterion does, but decays around
the tip point of the cut surface faster than using di�raction and transparency methods.
The second row shows the case where the cut surface is de�ned by two connected components, e.g.
in time immediately before two crack fronts merge. Using either di�raction or transparency methods,
the weight functions change discontinuously with respect to the growth of the cut surface at the point
when the two cut surface merge, because both methods depend on the tip point. On the contrary,
using the Extended Visibility criterion the weight functio n smoothly decays to 0 in the region under
the cut surface. Note that the merging of crack fronts is a common event if we propagate cracks or if
we perform a cut with scissors.

4.3 Implementing the Extended Visibility Criterion.

The choice of using cones may seems quite arbitrary but it is dictated by the possibility of implementing
the Extended Visibility criterion entirely on the GPU. Let pi and pj be two connectedphyxels, i.e. for
which w(pi ; pj) 6= 0, and cs a cut surface potentially occluding the disk betweenpi and pj . Consider
the smallest square enclosing the occlusion disk. We associate a small single-channel texture to the
square, and therefore to the visibility disk, which stores which samples of the disk have been occluded.
This texture is permanently associated with the couple of phyxels and updated every time a new piece
of surface (e.g. produced by the Splitting Cubes algorithm)could potentially occlude their visibility
disk. Therefore we use #phyxels � k small textures, wherek is the average number of neighbors of a
phyxels.

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 13

Fig. 13 A sequence of steps during a cut: the kernel value smoothly decreases as the visibility disc is 'obscured'.

To update the visibility disk we render cs twice: once frompi towards pj and once frompj towards
pi , always setting the far plane of the projection on the mid point of the segmentpi and pj and setting
the projection so that each sample in the disk project on the same pixel for the two renderings. Using
a fragment shader, we discard those fragments projecting ona pixel already written, so that all the
fragments that are written into the frame bu�er correspond t o newly rasterized fragments, i.e. newly
occluded samples. By using the hardware occlusion query, wecount these fragments and update the
weight as follows:

w0(pi ; pj) = w(pi ; pj)
_n � # occluded
n

(4)

which is the discrete version of equation 3 wheren is the total size of the visibility disk in texels.
The size of the texture used in this rendering step in
uencesboth smoothness of the weight function
and performance. A large texture requires a longer rasterization time but provides a smoother change
of the weight and viceversa. We found experimentally that a good tradeo� between smoothness and
performance is assigning a radius of the transparency mask equal to half of the distance between the
two phyxels and to use 32 bu�ers for rasterization (which means 16 pixel radii for the visibility disks).

5 Results

The approach presented in this paper was implemented on a Windows XP platform using C++ and
OpenGL; the GPU code was written in GLSL. The tests shown in the accompanying video were all
recorded in real time and have been run on a dual core P4 @ 3GHz PC equipped 2GB Ram, two
HD 160GB SATA and a NVIDIA GeForce 8800GTX with 768MB. The ini tial surface is obtained by
loading a watertight mesh and considering it as a big cut surface. Phyxels are regularly sampled in the
volume. Once the cut is done, we obtain two surfaces: one bounding the object and one bounding the
empty space around the object, that we simply throw away.

5.1 E�ciency and memory occupation

The graph in Figure 14 shows the performance of our approach recorded during the sequence titled
Liver in the accompanying video. The object was �lled with 566 phyxels and the initial surface created
was made of 8452 triangles in 1177 grid cells.

The visibility disks where set to 16 pixel radius. Although the number of disks to update obviously
depends on the speed to which the cut surface grows, the time spent in updating the visibility disks is
almost constant during the cutting action. This is due to a ti me-critical implementation that assigns
a �xed time slot per frame for disks updating, giving the possiblity to distribute the load on few con-
secutive frames. Note that the time for updating a disk is short and predictable (two renderings) and
therefore the updating of all the disks is easily made interruptible by updating a few disks and then
returning. It is clear that this may possibly causes a delay of the time step the cuts appears open but
processing the disks in a FIFO order and distributing the load uniformly over the frames substantially
avoids noticeable discontinuities during the opening of the cuts.

14 Nico Pietroni et al.

Fig. 14 Performance of the method recorder during sequence Liver

Fig. 15 Few frames from the accompanying video. Upper row: cutting o f a model of the liver. Lower: scissors
cutting a deformable pear.

The time spent to interpolate the tessellation vertices is 2ms for 4103 vertices. If we tessellate the
surface by building a triangle mesh directly on the grid nodes, such a triangulation will have average
triangle size of the order of a grid cell. In this sense, the time interpolation can be considered as an
overhead introduced by the Splitting Cubes.
The time for generating the tessellation includes, for eachgrid cell: computing the cell con�guration,
accessing the LUT, instantiating new triangles and settingthe dependencies of the vertices. The gen-
eration of the initial surface of the liver required to process 1177 cells an took 282 ms. In general, the
processing of a grid cell takes less than 5 ms.

The memory occupation is also linearly related to the area ofthe cut surface (please note that only
the grid nodes of the cells containing the surface are actually stored in main memory).
As expected, the number of triangles grows linearly with thecut surface.

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 15

Fig. 16 Few frames from the accompanying video. In this case a curved tool is used.

5.2 Robustness and accuracy

The Splitting Cubes algorithm does not pose restrictions onthe tool path. Thanks to the implicit
de�nition of the tessellation, the surface is always intrinsically consistent and the self intersection of
the cut surface does not need any special treatment.To support this claim one of the demos shows
two cutting tools that act as scissors for cutting a pear while it deforms. The next sequence, titled
revolving blades show a pair of parallel blades rototranslating into a cube-like object.

The video also shows a comparison between the visibility criterion and the Extended Visibility
criterion (few frames are shown in Figure 13). We rendered the link between phyxels as a segment
colored from red (completely visible) to blue (completely occluded) as in Figure 12 and the occluding
surface (created during the cut). It can be seen how the cut performed using the Extended Visibility
criterion is smoother. In the same video the weight functions are also compared in the case of merging
cut surface.

5.3 Discussion

With respect to previous attempts towards this goal, the Splitting Cubes algorithm ehxibits highly
desirable properties. First of all it is robust: since everypossible con�guration of cut edges corresponds
to a prede�ned tessellation, there are no wrong states of thesystem that can lead the algorithm to
end inconsistently. Furthermore, the task of detecting intersections betweeen the tool and the object
is better conditioned than in mesh-based approaches, sincewe do not have to care about bad shaped
triangles but only with the edges of a deformed regular grid.Another advantage is that our technique
handles implicitly the changes of topology due to the cuts without having to analize the crack front as
in [20,25]. Finally, the Splitting Cubes algorithm is conceptually simple, although not trivial to imple-
ment and, also thanks to the use of a LUT, e�cient. However, the major bene�t of the Splitting Cubes
algorithm is that it decouples the model for physical simulation from the problem of virtual cutting
(i.e. dynamic re-tessellation, intersection with other objects and local discontinuity) and therefore it
can be seamlessy integrated with other methods for hysical simulation.
The Extended Visibility criterion gives a GPU friendly way t o implement discontinuities on MMs with-

16 Nico Pietroni et al.

out the need for exploring the graph of adjacences as in [25] or the cut surface as in [25] but simply
performing two renderings of few triangles for each couple of adjacent phyxels neigborhood of a cut.

6 Conclusions

In this paper we showed how interactive virtual cutting can be applied to MMs. In contrast with the
previous solutions to this problem, the Splitting Cubes handles implicitly all the changes of topology
due to the cuts and it is conceptually simple and robust. There are several directions of improve-
ment/exploitation of the Splitting Cubes approach.

Original Boundary
With the current solution the detail of the representation and the granularity of the cut are coupled,
since they both depend on the cell size. We could preserve theoriginal tessellation of the boundary if we
handled the intersection between the tessellation createdusing the LUT and the existing tessellation.
This would not increase the granularity of the cut, but it wou ld prevent visual artifacts related to the
snapping of the vertices when the con�guration of a cell changes.

Granularity of the cut.
The e�ciency and speed of the Splitting Cubes algorithm comes to the price of limiting the granularity
of topological changes to the level of the grid nodes, as it was for the virtual node algorithm. This limit
can be overcome by considering that the ideas presented in this paper can be also implemented in an
adaptive fashion, therefore replacing the grid with a hierarchy. However it is not immediate to switch
to a hierarchical approach an mantain robustness and e�ciency. For example, if we allow recursive
subdivision of cells (tipically 1 : 8), we reintroduce fragmentation and the growing number of cells
(which would depend on the depth of the hierarchy) will undoubtely a�ect the performance. From
the point of view of detecting intersections with the grid edges, again we will end up with a slower
procedure, since we lose the implicit spatial indexing of the regular grid.
An important factor that must be taken into account is the scenario where virtual cutting is operated.
In the application that motivates this research, i.e. a virt ual cutting for surgical training, the inter-
action happens within a scale frame and therefore the limitation of granularity is unseen while the
robustness and interactivity is a critical issue.

Collision detection.
As it can be easily seen in the videos the current implementation only supports collision with the
cutting tool. However, the Splitting Cubes does not add any particular issue regarding the collision
detection problem and existent techniques can seamlessly be integrated in the framework. We observe
that cutting leads to critical situations where large porti ons of the surface are created in a situation
of close contact. In this regard, the parametrization of thevolume given by the grid could o�er some
advantage since we know which cells contain surfaces in close contact.

References

1. Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu , W.: Smoothing and accelerated computations
in the element free galerkin method. J. Comput. Appl. Math. 74(1-2), 111{126 (1996)

2. Belytschko, T., Lu, Y., Gu, L.: Element-free galerkin met hods. Internat. J. Numer. Methods Engrg. (37),
229{256 (1994)

3. Bielser, D., Gross, M.: Interactive simulation of surgic al cuts. In: Proceedings of the Paci�c Graphics, pp.
116{125 (2000)

4. Bielser, D., Maiwald, V., Gross, M.: Interactive cuts thr ough 3-dimensional soft tissue. Computer Graphics
Forum (Eurographics'99 Proc.) 18(3), C31{C38 (1999)

5. Bruyns, C., Senger, S.: Interactive cutting of 3D surface meshes. Computers & Graphics 25(4), 635{642
(2001)

6. Cotin, H.D.S., Ayache, N.: A hybrid elastic model allowin g real-time cutting, deformations and force-
feedback for surgery training and simulation. In: CAS99 Pro ceedings, pp. 70{81 (1999)

7. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A m ultiresolution model for soft objects supporting
interactive cuts and lacerations. Computer Graphics Forum 19(3) (2000)

8. Ganovelli, F., O'Sullivan, C.: Animating cuts with on-th e-
y re-meshing. EuroGraphics Short Presenta-
tions, 2001. (J. C. Roberts, editor) (2001)

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 17

9. Garland, M.: Quadric-based polygonal surface simpli�ca tion. Ph.D. thesis, Carnegie Mellon University,
Computer Science Department (1999)

10. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. In: Siggraph 2002, Computer
Graphics Proceedings, pp. 339{346. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2002).
URL citeseer.ist.psu.edu/ju02dual.html

11. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.: Feature-sensitive surface extraction from volume
data. In: E. Fiume (ed.) SIGGRAPH 2001, Computer Graphics Pr oceedings, pp. 57{66. ACM Press /
ACM SIGGRAPH (2001)

12. Lim, Y.J., De, S.: On the use of meshfree methods and a geometry based surgical cutting in multimodal
medical simulations. In: HAPTICS, pp. 295{301. IEEE Comput er Society (2004)

13. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In:
ACM Computer Graphics (SIGGRAPH 87 Proceedings), vol. 21, p p. 163{170 (1987)

14. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation.
ACM Trans. Graph 23(3), 385{392 (2004)

15. M•uller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M. , Alexa, M.: Point based animation of elastic,
plastic and melting objects. In: Proceedings of the ACM SIGG RAPH/EUROGRAPHICS Symposium on
Computer Animation (2004)

16. Nienhuy, H.W.: Cutting in deformable objects. Tech. rep ., PhD Thesis, Utrecht University (2003)
17. O'Brien, J., A.W.Bargteil, Hodgins, J.: Graphical mode ling and animation of ductile fracture. In: Pro-

ceedings of SIGGRAPH, pp. 291{294 (2002)
18. O'Brien, J.F., Hodgins, J.K.: Graphical modeling and an imation of brittle fracture. In: SIGGRAPH, pp.

137{146 (1999)
19. Organ, D., Fleming, M., Terry, T., Belytschko, T.: Conti nuous meshless approximations for nonconvex

bodies by di�raction and transparency. Computational Mech anics (18), 225{235 (1996)
20. Pauly, M., Keiser, R., Adams, B., Dutr;, P., Gross, M., Gu ibas, L.J.: Meshless animation of fracturing

solids. ACM Trans. Graph. 24(3), 957{964 (2005)
21. Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape mo deling with point-sampled geometry. ACM

Trans. Graph. 22(3), 641{650 (2003). DOI http://doi.acm.org/10.1145/882 262.882319
22. Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: M. Gleicher,

D. Thalmann (eds.) Symposium on Computer Animation, pp. 73{ 80. Eurographics Association (2007)
23. S.Li, Liu, W.: Meshfree Particle Methods. Springer (200 4)
24. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: IEEE VR

2006. IEEE (2006)
25. Steinemann, D., Otaduy, M., Gross, M.: Fast arbitrary sp litting of deforming objects. In: Eurograph-

ics/SIGGRAPH Symposium on Computer Animation (2006)
26. Tanaka, A., Hirota, K., Kaneko, T.: Virtual cutting with force feedback. In: VRAIS '98: Proceedings of

the Virtual Reality Annual International Symposium, p. 71. IEEE Computer Society, Washington, DC,
USA (1998)

27. VisualComputingLab: Idolib: Interactive deformable o bjects library. Publicly available on web:
http://idolib.sf.net (2005)

28. Wyvill, G., McPheeters, C., Wyvill, B.: Data structures for soft objects. The Visual Computer 2(4),
227{234 (1986)

N. Pietroni received an advanced degree in Computer Science (Laurea) from
the University of Pisa in 2003 and he is prensently a PHD stude nt at university of
Genova. He works at the Istituto di Scienza e Tecnologie dell'Informazione (ISTI)
of the National Research Council (CNR) in Pisa, Italy. His re search interests
include modelling of deformable objects and texture systhesis.

18 Nico Pietroni et al.

F. Ganovelli is a research scientist with the Istituto di Scienza e Tecnol ogie
dell'Informazione (ISTI) of the National Research Council (CNR) in Pisa, Italy.
He received a PhD in Computer Science from the University of P isa in 2001.
His research interests include deformable objects modelling, collision detection,
multiresolution and isosurfaces extraction.

P. Cignoni is a Senior Research Scientist with ISTI-CNR. He received a Ph.D.
Degree in Computer Science at the University of Pisa in 1998. He has been
awarded "Best Young Researcher" by the Eurographics association in 2004. His
research interests cover Computer Graphics �elds ranging f rom visualization and
processing of huge 3D datasets, to 3D scanning in the cultural heritage �eld
and to Scienti�c Visualization. He has published more than n inety papers in
international refereed journals/conferences.

R. Scopigno is a Research Director with ISTI-CNR and co-leads the Visual
Computing Lab. He graduated in Computer Science at the Unive rsity of Pisa
in 1984. He is engaged in research projects concerned with 3Dscanning, surface
reconstruction, multiresolution data modeling and render ing, scienti�c visualiza-
tion, volume rendering, and applications to cultural herit age. He published more
than hundred twenty papers in international refereed journ als/conferences and
gave invited lectures or courses on visualization and graphics at international
conferences. Roberto has been responsible person for ISTI-CNR in several EU
projects. He was Co-Chair of international conferences (Eurographics '99, Ren-
dering Symposium 2002, WSCG 2004, Geometry Processing Symp. 2004 and
2006, VAST 2005, Eurographics 2008) and serves in the programme committees
of several events. He is Vice-Chair of the Eurographics Association, Co-Editor
in Chief of the journal Computer Graphics Forum and member of the Editorial
Board of ACM Computers & Cultural Heritage Journal.

7 Appendix A: Construction of the Look-Up-Table.

As explained in Section 3, each one of the 212 possible con�gurations of the cut edges of a cell corre-
sponds to a row of the LUT, which encodes two data: the tessellation representing the piece of surface
internal to the cell and, for each vertex of such tessellation, its dependency from the cell nodes.

The construction of the LUT requires an algorithm that, given a con�guration of cut edges, com-
putes a tessellation for the cell. Fortunately we can take advantage from noticing that the tessellation
of a cell can be expressed as the union of 8 tessellations, onefor each cell node, and that each tessel-
lation only depends on the cell edges entering the node. Thiscan be better understood recalling the
dual interpretation of the Splitting Cubes shown in Figure 6.(d) where the material (and therefore
its boundary and the tessellation of its boundary) is associated to the grid nodes. We de�ne the tes-
sellation for a single node and then obtain the tessellationfor the cell by rototranslating the vertices
appropriately. Let us consider the tessellation for the node 0. For each cut edge leaving node 0 (e0, e3

Splitting Cubes: a Fast and Robust Technique for Virtual Cut ting 19

(a) (b)

Fig. 17 (a) tessellation for the cell node 0. (b) two con�gurations t hat show why dependency canot be
computed locally to the nodes.

and e8 respectively), we build a quad which has have one point on the edge, one point on each of the
two faces sharing the edge and the point at the cube center (Figure 17.a). We obtain the tessellations
for the other 7 nodes simply rototranslating the frames and reapplying this scheme. You may note that
we will create duplicate vertices. As explained below, somevertices actually needs to be duplicated and
some other does not; to know it which ones have to be duplicated we must compute their dependency.

Unlike the tessellation, the dependencies of the vertices cannot be treated locally to a cell node.
Figure 17.b shows two con�gurations for a face. The verticesva and vb are created both when tessel-
lating node a and nodeb. In the con�guration B the face is partially cut and va and vb depend on the
same set of grid nodes and therefore will always occupy the same spatial location. Conversely, in the
con�guration D va and vb depends on two di�erent set of nodes and therefore they will take apart.

As explained in Section 3, each vertex depends on the cell nodes of the same connected component.
Therefore we applied a simple principle: a vertex depends onall the nodes of the same cell that are
reachablethrough the material. We consider each grid node reachable by the vertices of its associated
tessellation and two nodes of a cell as mutually reachable i�they are connected by a path of uncut
edges.
Furthermore, since we need continuity of the deformation function across the cell boundary, the inter-
polation weights of the cell nodes for a edge-vertex will be 0except for the 2 nodes of the edge and
the interpolation weights of the cell nodes for a face-vertex will be 0 except for the 4 nodes of the face.
Therefore we only need to �nd reachable nodes of the edge for the case of the edge-vertex (which is
only one node) and reachable nodes of the face for the case face-vertex, since the weight for the other
nodes would be zero even if they were reachable.
Back the tessellation, when two vertices have the same dependencies we do not instance two vertices,
but we can statically unify them in the tessellation contained in the LUT so no useless duplicate vertex
are created.

The LUT and the necessary code to read it can be found in the IDOLib library [27].

