3D is just a bunch of measures
Who am I?

Marco Callieri

- Master degree & PhD in computer science
- Researcher at the Visual Computing Lab, ISTI-CNR, in Pisa
- I work on 3D data manipulation and rendering... lot of experience in 3D scanning and data processing
- Most of my activities are in the field of cultural heritage

http://vcg.isti.cnr.it/~callieri

callieri@isti.cnr.it

Beside this:

an eclectic artisan, an avid gamer, a former biker, a good cook, an incorrigible geek... and much more
Visual Computing Lab

Research group working on 3D computer graphics

part of:

Institute of Science and Technologies of Information (ISTI)

part of:

National Research Council (CNR)

http://vcg.isti.cnr.it
Visual Computing Lab

Cultural Heritage
Visual Computing Lab

Geometry Processing
The double nature of 3D

3D is a peculiar kind of data, because it has two sides:

- **PURE DATA:** 3D is made of measures, it is pure geometric information, a numerical representation of something... you may use this number-based representation do calculation, simulation, measurements on it.

- **VISUAL DATA:** can be displayed, presented and perceived visually using the part of the brain we use for everyday perception... you may explore, analyze and understand it in the same way you look at the physical world
Too bad...

This double nature is one of the key points of 3D!

The problem is, too often 3D is used **only** for its visual side...

Since 3D models coming from sampling **ARE** a scientifically-valid data with metric capabilities, it’s really a terrible waste of resources.
Difficulties

What is the main problem in using the metric capabilities of 3D?

The density of the sampling is now a limit... After all the work done to have *denser, more detailed* 3D data, we have now too much data in our hands...

Our work is to design tools and define methodologies and algorithms for the use of such high-res 3D data. MeshLab is one of these tools...
The David’s skin (and belly)

One of the first time we used the “pure measure” side of 3D was many years ago, working on the Michelangelo’s David...

- How much is the surface of the David?
- Where does its barycenter falls?

Restorers/curators were actually surprised that we were able to give these answers...
The David’s skin (and belly)

We calculated total surface area, and area of the parts where, geometrically, dust is accumulating more.
The David’s skin (and belly)

We were asked to find barycenter with and without the base...
The David’s skin (and belly)

They wanted to see these points...
And then, stability analysis using the whole 3D model (although heavily simplified).

Evaluation of the static condition of the statue via FEM processing... (by prof. A. Borri, Univ. Perugia)

Stress regions correspond to real cracks locations!
The Tower’s equilibrium

Torre Rognosa, San Gimignano, Italy
3D model created for
- Stability check
- Structural documentation
- Mapping of sensor network data

Difficult to scan & process (especially aligning the scans) with standard tools → we used our tool to solve the issue.
Difficult to work directly on a pointcloud → we created a 3D surface model.
The Tower’s equilibrium

FEM model created combining standard survey for the inner part + cut-through sections and measured points on the 3D model surface
The Tower’s equilibrium
The lost church

Church of the Camaldolese Abbey in Volterra (Tuscany, Italy). Abandoned in 1890 and caved in shortly after, now partially recovered and used for public events.

We were involved in a project for the study, documentation and possible re-use of historical buildings.
The lost church
The lost church

Technical documentation...
I have not mentioned it at the begin, but this is the most straightforward use of METRIC properties of a 3D model...

But, still, extracting sections/views/plans out of a high-resolution 3D dataset is not a trivial task...
The lost church
The lost church
3D → 2D documentation is useful... 3D documentation would be even better... It is easy to calculate & map info on 3D, or to use geometry processing to manipulate 3D to bring out numerical-visual information.

People would love to go full way... in a 3D GIS interface. Things are getting there, but sloooowly, especially for DENSE datasets.
The art historians of the project wanted to recreate the state of the church before its collapse. The available data, however, was insufficient. So, we used the survey as a source of measures to integrate the available data...

Again, having a dense, visual model helped a lot in deciding where and what to measure, and specific tools to extract metric data from the high-res model
The lost church
The lost church
The lost church
Pietranico’s Madonna

Terracotta statue, destroyed in the Abruzzo earthquake. We used digital 3D technologies to create documentation and support the restoration.
Pietranico’s Madonna

Two different actions:

• Helping the reassembly
 ○ Use the geometric properties to compute the position of the fragments
 ○ Measure distances, missing areas,
 ○ Help finding the correct position of the two main sub-blocks

• Helping the physical reconstruction
 ○ Well... I’ll explain this later
Pietranico’s Madonna
Pietranico’s Madonna
Pietranico’s Madonna

Helping the physical reconstruction

- **Problem**: the statue cannot stand without support
- **But** we have a metric 3D description of the empty space
- **Then** we can design a “filler” object that can support the pieces...
Pietranico's Madonna
Pietranico’s Madonna
THANKS FOR YOUR ATTENTION...
callieri@isti.cnr.it