MeshLab Simple Mesh Editing

Marco Callieri callieri@isti.cnr.it Matteo Dellepiane Guido Ranzuglia Visual Computing Lab ISTI-CNR MeshLab Tutorials

Basic Mesh Editing

Cleaning

- Remove topological errors
- Remove wrong/unwanted parts
- Fixing
 - Hole filling
 - Smoothing

Remeshing

- Simplification
- Reconstruction
- Refinement

Cleaning

Cleaning a mesh is an operation which is often necessary before, during and after the processing of a mesh

Cleaning involves the removal of geometrical inconsistency in the triangle mesh

There's a number of possible cleaning Operations, we will show the most common

Cleaning: general hints

□ Some general hints:

- Most opertaion on meshes have difficulties if some "topological errors" are present... If a filter or external tool crashes, try cleaning the mesh!
- Save frequently (no undo!)
- Some filters have the *preview* option, use it
- A "nice" mesh is closed, with triangles of the same size, with a very clean topology...

Cleaning

Most of the cleaning filters is in the Cleaning and repairing sub-menu

🥏 File Edit Filters Render View Windows Tools Help	
Apply filter Ctrl+ Show current filter script Script Editor) 🕅 🕅 🔳 🕅 🗟 🕞 🖉 1
Selection Cleaning and Repairing Create New Mesh Layer	 Merge Close Vertices Remove Duplicate Faces
Remeshing, simplification a <mark>Cleaning and Repairing)</mark> Polygonal and Quad Mesh Color Creation and Processing	 Remove Duplicated Vertex Remove Isolated folded face by edge flip Remove T-Vertices by edge collapse
Smoothing, Fairing and Deformation Quality Measure and computations Normals, Curvatures and Orientation	 Remove T-Vertices by edge flip Remove Unreferenced Vertex Remove Zero Area Faces
Layer and Attribute Management Range Map Point Set	 Remove isolated pieces (wrt diameter) Remove isolated pieces (wrt face num) Remove vertices wrt quality
Sampling Texture Camera	 Select Faces with edges longer than Select Self Intersecting Faces Select non Manifold Edges
	Select non Manifold Vertices Simplfication: MC Edge Collapse

Cleaning: topology filters

The basic filters are simple to use (no parameter) and usually not "dangerous"

- Remove duplicated faces
- Remove duplicated vertex
- Remove Zero Area faces
- Remove Unreferenced Vertex

Cleaning: other filters

Other useful filters are used to remove from the mesh some "critical" parts

They need simple parameters setting

Remove isolated components # of faces (OR component size) Parameter:

RemoveSelect faces with edges longer than... Parameter: edge threshold

Remove border faces Parameter: iteration (how many rows to be deleted)

Cleaning: select critical areas

- Other filters are used to select some specific "critical" parts, in order to remove them, later on
 - Select non manifold (vertices or edges)
 - Select faces with edges longer than...
 - Select Self Intersecting
 - Select border faces (is actually in the "selection" submenu)

Removing the unwanted

- General strategy: select the desired part and delete it... many ways to select:
 - Drag selection
 - Paint selection
 - Selection filters (like conditional selection)
- □ Three delete buttons:
 - Remove selected faces, keep the points
 - Remove selected faces and their points
 - Remove selected points, keep the faces

Fixing means making the mesh more complete and less noisy...

This may be done just for cosmetic reasons, but also to cope with specific requirements.

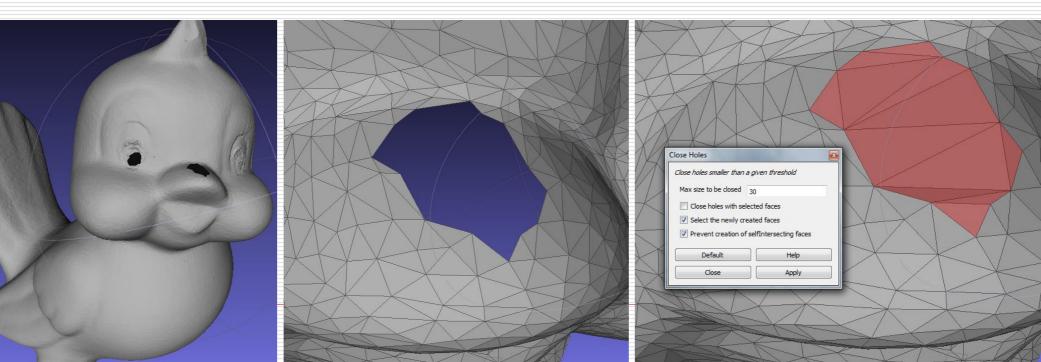
The two most common operations: hole filling and smoothing.

Close Holes

Most of the meshes have holes, but some of the filters need "watertight" models.

- Hole filling is not always a trivial operation
- Some holes will always be impossible to automatically be closed
- Two tools to fill holes in Meshlab
 - Small Holes (automatic filter)
 - Large Holes (editing filter)

Close Small Holes



Holes which are "small" with respect to the mesh size, possibly almost planar...

Simple filter:

Remeshing, simplification and reconstruction->Close Holes

Parameters: max size to be closed (in terms of perimeter lenght)

Close Small Holes (trick)

Holes are closed in a funny (unpleasant) way... sometimes the filling geometry looks like a "patch"

- Enable "select newly created faces" on the close holes filter dialog, the newly created filling triangles will be selected
- Dilate the selection (one or two times)
- Apply a smooth filter (only on selected faces)

Another way

Use Poisson or other reconstructions!...

but be careful about the detail loss; you are resampling the surface

- Poisson always produce a closed surface
- VCG reconstructor may close local/small holes, but not complete large gaps

Smoothing

Smoothing operations are geometric manipulation of the triangular mesh

Geometrical noise is reduced at the price of some details...

Different reasons to do it:

Reduce sampling/reconstruction noise

Make more pleasant models

Reduce the visual impact of some editing filters

Smoothing

General purpose:

- Laplacian smooth (Fast, higly effective, but lots of detail lost)
- HC Laplacian (Better detail preserving, slower)
- Taubin Smooth

Other filters try to obtain smooth surfaces AND sharp details (experiment a bit with the params):

- Two-step smooth
- Taubin Smooth

On the other side, to increase the detail:

- Unsharp Mask (just like in photoshop)

Remeshing

Remeshing operations modify an existing geometry, by completing, removing, adding, changing the triangles.

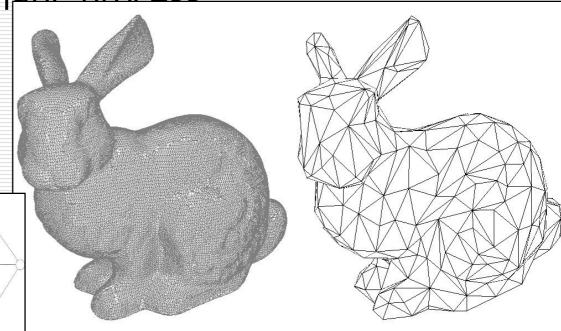
There's a number of possible remeshing operations, and several ways to do each...

Simplification

contrazione

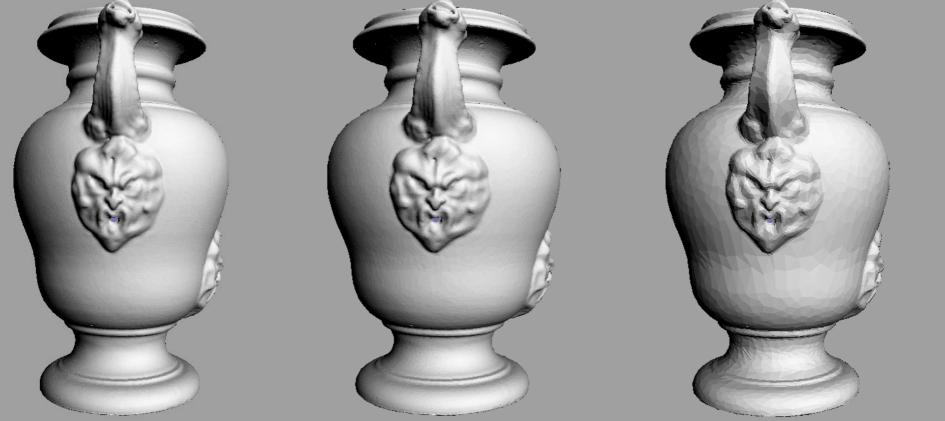
E1

F2


The simplification reduces the number of triangles

in a mesh removing triangles in order of "importance"

In this way, the geometrical complexity is reduced


losing the least possible amount of information...

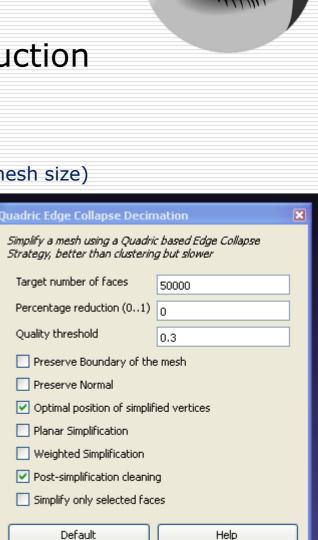
Simplification is an automatic process

Simplification

Original mesh 2.104.792 triangoli

130.343 triangles

19.936 triangles


Simplification

Best simplification filter:

Remeshing, simplification and reconstruction \rightarrow Quadric Edge Collapse Simplification

Parameters:

- Target number of faces OR percentage (of the original mesh size)
- Preserve mesh boundary [yes/no] (if yes, more memory is needed)
- Take additional care of flat areas [yes/no] (if yes, more memory is needed)
- Preserve surface normal [yes/no] (if yes, more memory is needed)
- Work on the whole mesh or only on selected part

Apply

Close

Subdivision

- The subdivision increases the number of triangles in a mesh
- Several ways to do that
- Reliable one:

Remeshing, simplification and reconstruction->MidPoint Subdivision Surfaces

Parameters: Edge Threshold

Subdivision

- The subdivision increases the number of triangles in a mesh
- Several ways to do that
- More complex one:

Remeshing, simplification and reconstruction->Refine User-Defined

Parameters: refinement decided by the user (using also color and quality!)