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Abstract

In this document we show how Tangent-space Normal-maps can
be applied over a volume-encoded UV-mapped surface. The key
is that we can define, and efficiently recover, appropriate tangent
directions over the rendered surface.

1 Background

A Normal-map is a texture where each texels stores normal de-
scribing a local surface orientation, used for dynamic relighting of
detailed-looking surfaces.

Tangent-space Normal-maps (from now on, TSNM) are a type of
Normal-maps [Peercy et al. 1997] where normals are expressed in
the local tangent space, i.e. the space defined by the three unit vec-

tors: tangent 7, “bi-tangent” b and geometric normal 7, with £, b
approximating the local directions of the gradients Vu, Vv of the
u, v texture coordinates over the surface. A TSNM texture can be
understood as describing modifications to be applied to the geomet-
ric “smooth” normal 7i.

TSNM are recognized to offer many advantages over straightfor-
ward, Object-space Normal-maps: the most important one is that
the Normal-map is defined independently from the orientation of
the surface it is applied to. This means that the same Normal-
map can be shared by different models, or by different parts of
the same models (e.g. with tiling or for symmetry exploitation).
Also, Normal-maps can be authored without any assumption on the
surface, making them as versatile as plain color textures. Conse-
quently, TSNM are the most common kind of Normal-maps in, e.g.
Computer Games.

The drawback is that not only the original normal 77 but also a pair

of additional 3D tangent directions, ¢ and b, must be available to the
fragment shader.

2 Storing and accessing tangent directions

For traditional per-vertex UV-maps the standard solution is to pre-

compute ¢ and b from the UV-map, store them as per-vertex at-
tributes, and linearly interpolate them during rendering.

In our case of volume-encoded UV-maps, our solution is to store
them as texels in a second volumetric texture, formatted as P, and
interpolate tri-linearly between these values, within a second volu-
metric texture-fetch operation.

Note that, in both cases, tangent directions are stored and accessed,
in the same way uv texture coordinates are. This choice is forced,
because the location of the discontinuities of wwv positions coincide
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with the locations of discontinuities of Vu and Vv (and their ap-
proximations ¢ and b).

3 Pre-computing tangent directions

In both the traditional and the novel scenario, £ and b directions can
only be approximations of the real gradients Vu and Vv. Not only
it would be impractical, within a GPU architecture, to recover Vu
and Vv, but also undesirable, as they are are discontinuous, even
away from cuts (because piecewise linear, or tri-linear, interpola-
tion is only C°); the resulting lighting would therefore reveal the
underlying discretization.

In particular, in the traditional per-vertex case, Vu and Vv are con-
stant on triangles (and discontinuous across triangles). Per-vertex
t. b vectors are defined as the (re-normalized) average of these per-
face constant quantities, and are stored as per-vertex attributes. The
final per-fragment %, b vectors, inside faces, are then interpolated
between these attributes.

In our case, the situation is conceptually analogous. Gradients Vu,
Vo (see eq. 6 and 7 of main paper) have one constant coordinate
on all edges of the regular grid. Specifically, the X coordinate of
Vu (and V) is constant on edges aligned to direction X: its value
is simply the the signed difference of the two u (or v) values stored
at the two endpoint of that edge (and likewise for Y and Z). We
define the per-texel value of i, b as the average these constant val-
ues at the 6 incident edges of that texel (excluding the edges falling
inside the “gap” voxels separating zones). Analogously to the stan-
dard solution, at rendering time we (tri-linearly) interpolate, inside
voxels, between these averaged values.

Construction boils down to a simple algorithm: the coordinate X of

& (of g) for a texel ¢ is precomputed as the halved difference of the u
values (of the v values) associated to the previous and the next 3D
texels in the X direction, and likewise for Y and Z. After this, per-

texel £ and b vectors are renormalized. Care must be taken that the
u and v differences are always computed between texels belonging
to the same zone (refer to the source code).

4 Optimizations and assumptions

A common optimization for the per-vertex scenario, which we in-
herit, consists in storing only #, and replace b with its approximation
b’, computed on the fly:

-,

V=ixt
thus saving both on memory and on bandwidth.

This requires the assumption that £, 5, 7 are all (approximately) re-
ciprocally orthogonal. Orthogonality between i and b stems from



the conformality of the UV-map. In the traditional scenario, or-
thogonality between # (or g), and 72, holds by construction (barring
approximations). In our case, it stems from the orthogonality of f
instead.

5 Results

See Fig. 15 of the original paper, and the attached demo, for exam-
ples of dynamically relighted Normal-mapped objects, where the
tangent-space normal texture is mapped with a volume-encoded
UV-map. Just as with standard TSNM, the results look convinc-
ing, whenever the displacements represented in the Normal-maps
are small.

6 Discussion

At rendering time, the only additional overhead consist in a trilin-
early interpolated access to the 3D texture storing ¢.

With respect to the traditional per-vertex alternative, the tangent di-
rections pre-computation is in our case more straightforward, less
expensive (requiring fewer operations), and trivial to parallelize
(because the algorithm works on regular grids). This makes on-
the-fly precomputation a more viable option (for example, after im-
porting a model in a Game Engine).

As for memory consumption, values are stored per-texel, instead of
per-vertex, leading to the same exact tradeoff of the uv coordinates
(see second last column of table 1 of original paper). Again, this
tradeoff can be, but is not always, very convenient.

With respect to many other alternative ways to represent UV-maps
(see Sec. 2.1 of original paper), the ability to define and rapidly
evaluate smoothed tangent directions is one additional key benefit
of our representation. For example, it is not clear how they could be
even defined in purely volumetric representations like Brickmaps
[Christensen and Batali 2004], spatial hashing [Lefebvre and Hoppe
2006; Garcia et al. 2011] or octree based ones [Benson and Davis
2002], or how they could be recovered or smoothed with [Tarini
et al. 2004], [Lefebvre and Dachsbacher 2007] or [Yuksel et al.
2010].
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