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Abstract
Data coming from complex simulation models reach easily dimensions much greater than available computational
resources. Visualization of such data still represents themost intuitive and effective tool for scientific inspectionof
simulated phenomena. To ease this process several techniques have been adopted mainly concerning the use of hi-
erarchical multi-resolution representations. In this paper we present the implementation of a hierarchical indexing
schema for multiresolution data tailored to overwork the computational power of distributed environments.

Categories and Subject Descriptors(according to ACM
CCS): I.3.3 [Computer Graphics]: Parallel Volume Visual-
ization

1. Introduction

Data coming from complex simulation models reach eas-
ily dimensions much grater than available computational re-
sources. Visualization of such data still represents the most
intuitive and effective tool for scientific inspection of sim-
ulated phenomena. To ease this process several techniques
have been adopted mainly concerning the use of hierarchical
multi-resolution representations. A key component of these
schemes has become the adaptive traversal of hierarchical
data-structures to build, in real time, approximate represen-
tations of the input geometry to speed up the rendering stage.
To guarantee consistent outputs a pre-processing of at least
part of the input data is required. Due to size boundaries
smart distributed processing, able to overwork inner prop-
erties of a hierarchical organization of the data, represents
a powerful source of computation capability. In this paper
we present the implementation of a powerful subdivision
schema tailored to overwork the computational power of dis-
tributed environments. Three features make the scheme par-
ticularly attractive: (i) the data layout requires as low mem-
ory as the data themselves, (ii) the computation of the in-
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dex for rectilinear grids is implemented with simple bit ad-
dress manipulations and (iii) there is no replication of data
neither during hierarchy construction nor during data pre-
processing, avoiding performance penalties for dynamically
modified data. This paper introduces a new global indexing
scheme that accelerates adaptive traversal of geometric data
represented with regular grids by improving the locality of
hierarchical/spatial data access. The effectiveness of the ap-
proach was tested with the fundamental visualization tech-
nique of rendering regular 3D volume datasets through iso-
surface extraction.

2. Previous Work

The panorama of distributed graphics presents a wide range
of interesting approaches developed to speed up process-
ing and rendering of large volume data. A common re-
quirement of such schemes has been the construction of hi-
erarchical data structures before performing any visualiza-
tion [5, 11, 15]. New algorithmic techniques and analysis
tools have been developed to address the problem of mem-
ory layout in the case of geometric algorithms and scien-
tific visualization [3]. Closely related issues emerge in the
area of parallel and distributed computing where remote data
transfer can become a primary bottleneck during computa-
tion. In this context space filling curves are often used as
a tool to determine, very quickly, data distribution layouts
that guarantee good geometric locality [6, 7, 8]. In the ap-
proach proposed here a new data layout is used to allow effi-
cient processing and access to volumetric information. This
is achieved by combining a low memory refinement strat-
egy while maintaining geometric proximity of the generated
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Figure 1: 3D cell refinement from tier 0 to tier 1. (a) The two
cells c1 and c2 in tier 0 . Their centers p1 and p2 are marked
with two crosses. Their adjacency facet f is highlighted in
gray. (b) The cell F of tier 1 (in gray) is the union of the
pyramids p1 C f and p2 C f .

level of resolution. One main advantage is that the resulting
data layout can be used with different blocking factors mak-
ing it beneficial throughout the entire memory hierarchy.

The approach we implemented comprehend two main
phases:

• Pre-processing Phase: where some auxiliary information
(data, range, approximation error) are extracted;

• Rendering Phase: where the mesh is traversed, at run-
time, to extract the model under appropriate constraints
(view-dependent, adaptiveness, error-based criteria).

In the present context thepre-processingphase comprehends
volume subdivision for extraction of all the data and their or-
ganization in tables. Therendering phaseconsists instead of
mesh traversal and isocontour extraction following appropri-
ate approximation criteria. Input of the framework is a regu-
lar volumetric dataset extended when needed to even dimen-
sion ((2N +1)× (2N +1)× (2N +1)). In this paper we face
the parallelization of only the first phase (pre-processing)
that currently represents the most expensive step, in termsof
computational time and memory occupation, of the frame-
work we built [2]. For clarity in section 3 we present the
subdivision rule, at the base of our framework, while the rest
of the paper will concentrate mainly on issues and properties
characteristics of the application we are interested in.

3. Subdivision Technique

The purpose of this section is mainly to introduce the sub-
division scheme adopted to build the refinement hierarchy.
The theory at the base of the refinement scheme adopted has
been introduced by Pascucci [11] for arbitrarily dimensional
volume meshes. We propose the refinement scheme from a
3D point of view based on a set of simple rules that char-
acterize consistently the decomposition of a regular grid in
simplices together with the recursive refinement of the de-
rived simplicial mesh. The result is a new naming scheme
that allows to represent an adaptive simplicial mesh with a
very low memory foot print [2].

3.1. 3D Subdivision Scheme

As proposed in [11] we organize the subdivision process into
levels and tiers. Each levell has four tiers, form 0 to 3, where
tier 3 of levell is coincident with tier 0 of levell +1 . Each
refinement consists of a transition from tieri to i +1. At tier
3 the level is increased by one and the tier is reset to 0. We
denote cells, facets, edges and vertices of the generated grid
with the symbolsci , fi ,vi .

3.2. Subdivision Rules

In the following paragraphs we will analyze each refinement
step in details.

3.2.0.1. From tier 0 to tier 1. For each cellci in the input
mesh its centerpi is selected. The cellci havingn facets is
decomposed inton pyramidal cells by connecting the center
pi with all its facets. Let’s denote bypC f the pyramid built
by connectingp with a facet f . For each pair of cellsci ,c j ,
adjacent along a facetf , a new cellF is created by merging
the pyramidpi C f with the pyramidp j C f :

F = (pi C f )∪ (p j C f ), with f = ci ∩c j .

Figure 1 shows the construction ofF from c1 andc2.

3.2.0.2. From tier 1 to tier 2. Consider a cellF of tier 1
and its centerq. Let gi be the facets ofF that do not belong
to tier 0 (for non-sharpF all the facets are of tier 1). We
decomposeF into a set of pyramids each given byqC gi . If
F is a sharp cell, its centerqk is coincident with the center of
its facet f of tier 0. Each pyramidqCgi contains exactly one
edgeej of tier 0. After each tier 1 cell is split all the pyramids
incident on the same edgeeare merged into a cellE. All the
cells built in this way form the mesh of tier 2. Figure 2 shows
the construction of one cell of tier 2. The coarse mesh has
four cells all incident to an edgee (Figure 2a). Four cells of
tier 1 are built by merging pairs face pyramids (Figure 2b).
Each tier 1 cell is then decomposed into four pyramids, of
which we select only two incident toe (Figure 2c). The eight
pyramids selected (two per cell) are finally merged into one
cell E of tier 2 (Figure 2d).

3.2.0.3. From tier 2 to tier 3. As in the previous two
steps one determines the centerr of any cellE. Each cell
E is then partitioned by joiningr with each facet ofE. As
usual, for sharp cells the pointr should be considered as the
center ofe and is shared among all the cells arounde. The
last merging step is among cells that are incident both to a
vertexv and a cell centerp. Figure 3 shows the construction
of one cell of tier 3 from a cell of tier 2.

After each merge step all the spurious edges introduced
during the refinement procedure are removed.
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Figure 2: Cell refinement from tier 1 to tier 2. (a) Four cells c1,c2,c3 and c4 of tier 0 share, in pairs, the facets f1, f2, f3 and f4.
The edge e is shared by all facets f1, f2, f3 and f4. (b) Each facet fi generates a cell Fi . (c) Each cell Fi is decomposed into four
pyramids only two of which are selected. The selected pyramids are those containing the edge e. (c) All the pyramids containing
e are merged together to form the cell E of tier 2.

4. Indexing The Schema

The first interesting aspect of this subdivision schema is that,
given a mesh representation model, it can be organized hi-
erarchically in terms of embedded entities that for shape
reason we freely define asdiamonds. By construction, the
topology of such hierarchy is implicit to the diamonds them-
selves: each cell/diamond is a unique and independent nu-
cleus that stores in itself all the information needed. The
overall mesh is seen as a collection of geometric primitives
(the diamonds) that for the regularity of the subdivision cri-
teria need a very low footprint to be represented: diamonds
as entities do not really exists, only their centers exists and
only 3 shorts are needed to represent satisfactorily a cen-
ter. From a center, characterized by three index(i, j ,k), it
is possible, with just a couple of unitary operations, to de-
rive tier, type, orientation and refinement level the diamond
belongs to. The regularity of the diamond shape allows to
gather the diamond vertexes position simply adding aδ con-
stant to the center coordinates. In case of regular grids the
constant is fixed for each type of diamond and dependent
in magnitude to the level of refinement reached (as said be-
fore easily derivable from the coordinates of the center of the
diamond cell). Through simple mathematical rules it is pos-
sible to identify its sons (diamond vertexes are needed only
for sons generation, that is to “proceed” in the refinement).
Every point of the mesh can be reached following the subdi-
vision scheme. Traversals of the mesh by means of our dia-

mond hierarchy allows the extraction of all the mesh related
information: mesh data, range and approximation error. Our
initial efforts have been focused on the refinement of regu-
lar grid nevertheless the framework has been designed to be
independent of the kind of input mesh.

4.1. Pre-Processing Data Management

In the implementation of our framework we have decided to
organize all of the information inferable from the mesh rep-
resentation model in tables. We end up with three main ta-
bles: data, range, error. Each table has dimension equal to the
dimension of the volume ((2N + 1)× (2N + 1)× (2N + 1)),
and access key equal to a function of the(i, j ,k) indexes of
each diamond center. Filling of data and range tables can
be done during volume subdivision, a simple min/max rou-
tine assures the nesting of the min/max ranges. Because vol-
ume subdivision is performed following a BFP policy, the
complexity of the filling step is equal to the complexity of
a breadth first visit of a tree, that is linear in the number of
cells/nodes. For large dataset the tables can reach prohibitive
dimensions for this reason in our cluster implementation we
have substituted the actual tables with local files (see 5.3).
Computing the approximation error is a bit more complex.
An explicit representation of the hierarchy is needed to com-
pute the error accuracy. The error metric (see Sec. 4.1.1 )
we adopt assures an overestimation of the error introduced
by the approximation but requires to be able to move eas-
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Figure 3: Cell refinement from tier 2 to tier 3.

ily from sons to fathers; because, by construction, diamonds
share sons (i.e. a diamond of level l +1 is generated by the
fusion of parts of diamonds of level l), computing father/son
relation is not straightforward, though possible. We have de-
cided to give easiness of implementation top priority, at least
for now, for this reason only during error calculation the hi-
erarchy organization is made explicit with a tree like data-
structure. It consists of a Diamond Tree (DT) where each
diamond of the same type and resolution shares level with
its diamond siblings. Each node of the diamond tree stores
only the indexes of the diamond center and pointers to its
sons. A depth first traversal of DT allows for the calculation
of the error.

4.1.1. Error Metrics

To measure the error introduced by approximating the ren-
dered model with low resolution level of details we adopt
two different error metrics: field space error [4](δ) and
screen space error(ρ). Our field space error measure is an
overestimation of the field space error computed between
successive levels of refinement.

By construction the field error can be considered as an up-
per bound of the error introduced by ending the refinement
process at levell instead of levell +1.

The field space error is computed traversing the hierarchy
from bottom to top in the pre-processing phase. For each tra-
versed diamondD we compute its fieldFD and, for each grid
vertex v contained inD, we compute the error introduced
by approximating the field value ofv with FD(v). Defined
with VG the total number of vertexes of a 2N ×2×2N grid G,
an upper bound to the computational complexity of the field
space error for the entire grid G is given by the formula:
VG ∗ log4(VG).

View-dependent algorithms projects object space errors onto
the screen generating a screen space errorρ(δ). Screen space
error is simply a factor that amplifies the object space error
therefore it is easier to compute. It can be computed in func-
tion of the distance along the view direction of the objects
from the point of view. The most simple metric of this form
can be written as:

ρi = λ
δi

‖pi −e‖
(1)

The projected error decreases with the distance from the
viewpoint. If we consider the perspective projection onto a
plane :

λ =
w

2tanϕ
2

(2)

wherew is the number of pixels along the field of viewϕ.

Equation 1 corresponds to a projection onto a sphere and
not onto a plane, so a more appropriate choice forλ would
be λ = w

ϕ . After this the error spaceρ is compared against
a user-specified screen space error tolerance. In computing
our screen space error we follow the approach adopted by
Lindstrom and Pascucci in [10]. We compute the bounding
sphereBi of ray r i of each diamonddi and consideractive
all the cells insideBi that satisfy:

(
1
k

δi + r i)
2 > ‖pi −e‖2

wherek = τ
λ constant during each refinement.

To guarantee error nesting the error of a diamond is always
computed as the maximum between its internal error and the
error of its sons, this guarantees a correct propagation of the
object space errors during pre-processing.

The heaviest part in terms of computational time is repre-
sented by the computation of field error that requires the
traversal of the entire dataset (while the screen space error is
equivalent to multiply by a “fixed” constant the field error).
On this aspect we have focused part of our efforts during
cluster oriented implementation of the pre-processing phase.

5. Cluster Implementation

In inspecting our volumetric dataset the heaviest compu-
tational part is represented by the pre-processing phase in
which per cell min/max and approximation error values are
computed. This three factors are necessary to be able to per-
form adaptive traversal of the hierarchy generated by the re-
finement schema. Moreover the min/max and error compu-
tation imply the traversal of the entire dataset (while at run-
time only part of the data need to be inspected) that, for large
size dataset, implies a significant cost in terms of computa-
tional time. Table filling is one of the heaviest operations we
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Figure 4: Data partitioning scheme of a 2D datasets of
10242:(a) Partitioning of the datasets in 16 blocks of2562,
each block can be sent to a different processor, colored ver-
texes are the only vertexes for which the error is not com-
puted, colored vertexes can be considered likeroot of the
block they belong to; (b) corresponding position in DT of
eachblock-rootnode, they all belong to the first three level
of DT.

perform, part of the memory is occupied by the Diamond
Tree that we need to create for computing the error approxi-
mation. This structure is used only during the preprocessing
phase, never at run-time, and after the error calculation is
completed it can be discarded. The diamond tree is actually
needed because of the error metric adopted (Sec. 4.1.1), that
requires to easily move from bottom levels to top levels of
the hierarchy. Keeping the hierarchy representation implicit
to each diamond we can guarantee: an easy top-down traver-
sal of the hierarchy, not an equally easy traversal bottom-up.
Subdivision of the data allows us to constraint this opera-
tions on small parts speeding up at almost real-time rates
their processing (see Sec. 6).

5.1. Building the Data

The subdivision schema adopted allows us to partition the
entire dataset G into equal consecutive bricksB1 . . .Bm of ar-
bitrary size, each one corresponding to a grid of 2b×2b×2b

vertices. Each grid by itself corresponds to part of the dataset
in terms of an embedded subtree of implicit topology, and
correspond directly to part of the tables in which we col-

lect computed values (like error and ranges). It corresponds
also to a subtree, independent from the others, opened to be
sent to a different node to be evaluated. The data-partitioning
scheme distributes evenly each block, leaving out from the
error calculation only the block roots that by themselves cor-
respond to the nodes that make up the first levels of the hi-
erarchy, levels that correspond to very coarse data for which
an arbitrary big error can be assumed. An example for the
partition of a 2D dataset of dimensions 1024×1024 is given
in Fig. 4.

5.2. Sending the Data

For regularity the absolute position of each block, with
respect to the global gridG, can be easily derived in function
of the block indexbi and its size. The order in which we
subdivide a 3D grid is given in Fig. 5. Given a grid of
dimension 2N × 2N × 2N subdivided intoK blocks each of
dimension 2N/K × 2N/K × 2N/K the block of indexbi will
correspond to the grid element containing the grid vertexes
Vg of indexes (i,j,k) withi, j andk included in the ranges:

low x dim(bi) ≤ i ≤ high x dim(bi)

low y dim(bi) ≤ j ≤ high y dim(bi)

low z dim(bi) ≤ k≤ high z dim(bi)

Indicating with rem and quot respectively the remain-
der and quotient of a division, the boundaries of each range
can be determined as:

low x dim[bi ] = (rem(bi/K ∗K)/K)∗2N/K

high x dim[bi ] = low x dim[bi ]+2N/K ;

and

low y dim[bi ] = quot(bi/K ∗K)∗K
high y dim[bi ] = low y dim[bi ]+2N/K ;

low z dim[bi ] = (quot(rem(b/K ∗K)/K)∗K)

high z dim[bi ] = low z dim[bi ]+2N/K ;

As a consequence the messages that we need to send
to each node have dimension equal to:

sizeo f(Bi)+ tot vertexesin(bi)

that in numerical terms corresponds to 1 char
plus 2N/K × 2N/K × 2N/K short for a total of
(1 + 2N/K ∗ 2N/K ∗ 2N/K ∗ 3) bytes (i.e the data them-
selves plus just one extra byte).
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Dataset Size Data Range
Partition Computation

Visible Human 5123 10.6 secs 46.08 secs

Drip 10243 78.16 secs 6.15 min.

Table 1: Computational time required for the partition of
the data (i.e. blocks construction) and the computation of
min/max ranges. Performances computed over the Visible
Human Male Chest dataset(5123) and a synthetically gen-
erated dataset Drip(10243).

5.3. Gathering the Results

In our implementation we have designated, in a range of
eight node (d01 to d08), node d01 as the node in charge of
receiving all the results coming from each of the siblings
nodes. As said before given a block indexbi it is straightfor-
ward to determine its grid positions in terms of absolute val-
ues. Incoming results have the same shape of the sent data,
and size three times greater because comprehending com-
puted min, max and error values. Results are stored on local
files, of dimension equal to the dimension of one block, and
no more in Tables (as stated in section 4.1) and picked up as
needed at rendering time.

5.4. Load Balancing

We take a load balancing approach based on static data dis-
tribution [9, 13, 14] where there is no data replication and
no contention on a centralized agent that distributes tasks.
Data are partitioned evenly and each block has dimension
corresponding to a power of two.

Data to be sent to each node are limited to the index of the
block sent and of the data themselves in terms of field values.

6. Implementation Results

We have been doing our experiments on a Linux Cluster
of 8 nodes (d01 to d08)†. Node d01 has been designed
as collector of resulting data coming from siblings node.
Table1 shows the timing for the computation of the parti-
tion of the data, that is data loading and blocks construc-
tion, and of the min/max range for a(512×512×512) and
(1024× 1024× 1024) datasets subdivided in blocks of di-
mensions(32×32×32). Data are organized as consecutive
memory mapped blocks constructed during data loading.
The 10243 dataset has been synthetically generated through
theF(x,y,z) = x2+y2−0.5(0.995z2+0.005−z3) (courtesy

† Courtesy of dott. Raffaele Perego, HLAB, Italian National Re-
search Council, and Giancarlo Bartoli, CNUCE, Italian National Re-
search Council

of Terry J. Ligocki, Lawrence Berkeley National Labora-
tory). The function has been evaluated forx,y,z∈ [−1.5,1.5]
and normalized to[0,2N]. The adoption of functionF is due
to the difficulty in obtaining 10243 volume datasets.

6.1. Conclusions

In this paper we have introduced a subdivision schema for
level of refinement construction well suited for the design
of an efficient run-time data partitioning and distributional-
gorithm. We have presented a primary implementation of
such algorithm able to reduce the local memory requirement
and overwork distributed environment potentiality. Because
of the regularity of the grid and because the distributed im-
plementation regards only the pre-processing phase, that is a
phase where the all dataset needs to be traversed, load bal-
ancing does not really constitute an issue, each node com-
putes the same amount of data. In terms of memory require-
ments and computational time the scheme seems to be pretty
promising for this reason our next step is to try to optimize
also the rendering phase of our approach overworking the
computational resources of distributed environments.
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