
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

A Quadrilateral Rendering Primitive

Kai Hormann Marco Tarini

Visual Computing Lab, ISTI / CNR, Pisa

Abstract
The only surface primitives that are supported by common graphics hardware are triangles and more complex
shapes have to be triangulated before being sent to the rasterizer. Even quadrilaterals, which are frequently used
in many applications, are rendered as a pair of triangles after splitting them along either diagonal. This creates
an undesirable C1-discontinuity that is visible in the shading or texture signal. We propose a new method that
overcomes this drawback and is designed to be implemented in hardware as a new rasterizer. It processes a
potentially non-planar quadrilateral directly without any splitting and interpolates attributes smoothly inside the
quadrilateral. This interpolation is based on a recent generalization of barycentric coordinates that we adapted
to handle perspective correction and situations in which a quadrilateral is partially behind the point of view.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
graphics processors; I.3.3 [Computer Graphics]: Picture/Image Generation—display algorithms; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—color, shading, shadowing, and texture

1. Introduction

Quadrilateral meshes are a natural and popular choice for
modelling many classes of 3D surfaces. For example, they
are useful for approximating Bézier patches and to describe
rotational surfaces and rectangular height fields. In contrast,
current GPUs do not support rendering of quadrilaterals di-
rectly and whenever a quadrilateral (or quad) is displayed,
one of several options has to be chosen (see Figure 1).

The most frequently used approach is the diagonal split
along one of the two diagonals which decomposes the quad
into two triangles [SA03]. As a consequence, any attribute
interpolation inside the quad will be only C0-continuous at
the chosen diagonal. ThisC1-discontinuity is undesirable be-
cause it is well visible if, for example, shading is computed
from interpolated normals or texture mapping is applied.

A less common technique is to perform two-fold linear
interpolation with a standard scan-line rasterizer. Attributes
are linearly interpolated first along the projected edges and
then across each horizontal span from edge to edge [SA03].
Unfortunately, this also creates C1-discontinuities, namely
along the horizontal screen lines that pass through the quad’s
vertices. These discontinuities are more disturbing because
they vary with the viewing direction and even if the camera
is just rotated around the z-axis [Duf79].

An effective way to avoid discontinuities is to utilize the
projective map that maps the quad to the planar unit square
and to compute the attributes for a point inside the quad by
bilinear interpolation over this standard domain [Duf79]. Al-
though this method interpolates smoothly inside the quad it
has several drawbacks: it gives a false impression of depth;
it does not interpolate attributes linearly along the edges,
thus creating C0-discontinuities between two neighbouring
quads; and it requires the projected quad to be convex.

Another option is to refine the quad into n×n small quads
so as to reduce the artefacts caused by the diagonal split. The
positions and attributes of the new vertices can be computed
by bilinear interpolation or any other subdivision scheme
either on-the-fly or by preprocessing. For sufficiently large
n, this gives visually smooth results, but since many more
vertices and triangles must undergo the vertex processing
and triangle setup phase, it can cause a severe performance
downgrade, especially for geometry-limited applications.

In this paper we present a new way to render quadrilater-
als as atomic primitives that gives results which are often vi-
sually similar to the ones obtained by bilinear interpolation
and in any case superior to the diagonal split. Moreover, it
inherits most of the properties that we are used to from ren-
dering triangles and blends well with the design of current
graphics systems.

c© The Eurographics Association 2004.

http://vcg.isti.cnr.it/~hormann/
http://vcg.isti.cnr.it/~tarini/
http://vcg.isti.cnr.it/


K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

(a) (b) (c) (d) (e) (f)

Figure 1: Texture mapping a regular pattern with different methods onto a flat quad that is seen from above. From left to right:
the two diagonal splits (a,b), two-fold linear interpolation (c), projective map (d), bilinear interpolation (e), our method (f).

Our approach is based on recent theoretical and techno-
logical advances. On the one hand, we utilize and extend
Floater’s mean value coordinates [Flo03] which generalize
the concept of barycentric coordinates and allow to interpo-
late attributes smoothly over the interior of a planar quad and
linearly along its edges (Section 3). On the other hand, mod-
ern GPUs can execute an increased number of complex oper-
ations per second. Admittedly, this computational power has
mostly been spent on per-vertex and per-fragment process-
ing so far, but it could also be used to implement our method
efficiently as a new rasterizer (Section 4). This quad raster-
izer would provide a new “tube” for the graphics pipeline
between the vertex and the fragment shader that could be
used as an alternative to the existing rasterizers for triangles,
lines, and points.

2. Main Idea

Our algorithm renders a three-dimensional, potentially non-
planar quad Q = [V0,V1,V2,V3] in the same three steps that
are commonly used for triangles:

1. Vertex shader. Project the 3D vertices Vi to screen and
perform any other per-vertex operation.

2. Rasterizer. Create a fragment for every pixel inside the
projected 2D quad and use generalized barycentric coor-
dinates to appropriately interpolate the vertex attributes.

3. Fragment shader. Process the produced fragments with
their interpolated attributes.

The first step is identical to the one that is currently used for
other primitives (triangles, lines, and points). A 3D vertex Vi
with world coordinates (Xi,Yi,Zi) is projected to screen by
first multiplying its homogeneous coordinate vector with the
4×4 matrix M that combines the necessary transformations
(model-view, perspective, and window-to-viewport),

(x̃i, ỹi, z̃i,wi) = (Xi,Yi,Zi,1)M. (1)

The result is then normalized to obtain the screen position
vi = (xi,yi) = (x̃i/wi, ỹi/wi) and the depth value zi = z̃i/wi.
In addition, all the vertex attributes that shall be interpolated
inside the quad (normals, texture coordinates, etc.) are set up
per vertex in this step, possibly by a vertex program.

Figure 2: A quad in front of the camera projects to a convex,
concave, or self-intersecting shape in screen space. Dashed
lines indicate the quad’s diagonals.

Step two is the core part of our method and although it
is similar in spirit, it differs considerably from the triangle
analogue. After the four vertices of Q have been projected,
we consider the 2D screen quad q = [v0,v1,v2,v3] that can
have any of the shapes shown in Figure 2. Finding the in-
terior screen pixels of q and determining their orientation
(front- or back-facing) is rather simple and can be done, for
example, with a general polygon scan-converter [FvDFH90]
or using edge functions (Section 4.1). In contrast, interpolat-
ing vertex attributes is more delicate and has not been solved
satisfactorily, so far.

But why is this interpolation so easy in the case of trian-
gles and yet so hard for quads? The reason is that the un-
derlying concept of barycentric coordinates is trivial for tri-
angles, but it has only recently been generalized to arbitrary
convex polygons (see [FHK04] and the references therein).
We discovered that the mean value coordinates [Flo03],
which are one possible generalization, naturally extend to
concave and self-intersecting quads (Section 3). We further
discuss how they can be adapted to handle perspective cor-
rection (Section 3.1) and exterior quads (Section 3.2).

The third step proceeds exactly as in current hardware
implementations and treats fragments (compute shading,
lookup texture, etc.) either with the standard fixed functions
or with a user-defined fragment program.

3. Barycentric Coordinates for Quadrilaterals

Given an n-sided planar polygon with vertices v0, . . . ,vn−1,
the basic concept of barycentric coordinates is to have for

c© The Eurographics Association 2004.



K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

any point v a set of coordinates λi(v) with the two properties

n−1

∑
i=0

λi(v)vi = v, (2)

n−1

∑
i=0

λi(v) = 1, (3)

and to use them for interpolating attributes ai that are asso-
ciated with the vertices vi straightforwardly by

a(v) =
n−1

∑
i=0

λi(v)ai. (4)

It is well-known that the barycentric coordinates for a trian-
gle are uniquely defined by the linear functions

λi(v) = A(v,vi+1,vi+2)/A(v0,v1,v2), (5)

where A(u0,u1,u2) denotes the signed area of the triangle
[u0,u1,u2]. Apart from the fact that the attribute interpola-
tion (4) can efficiently be computed for these coordinates,
their most important properties are:

• Lagrange property. Since λi(v j) equals 1 if i = j and 0
otherwise, it follows that vertex attributes are reproduced
at the vertices, i.e. a(v j) = a j.

• Edge linearity. The λi are linear along the edges of the tri-
angle, so that the attribute interpolation is C0-continuous
across the common edge of two neighbouring triangles.

• Positivity. The interpolated attribute a(v) of a point v that
lies inside the triangle is a convex combination of the ai
because in this (and only this) case all λi(v) are positive.

In order to define barycentric coordinates for arbitrary poly-
gons it is often easier to first construct a set of homogeneous
coordinates µi(v) that satisfy

n−1

∑
i=0

µi(v)(vi − v) = 0 (6)

and then derive the barycentric coordinates by normalization

λi(v) = µi(v)

/
n−1

∑
j=0

µ j(v). (7)

These λi(v) obviously fulfil Equations (2) and (3) and a gen-
eral construction of homogeneous coordinates µi(v) has been
discussed in [FHK04] in the case of convex polygons. The
critical part about using their construction for our purposes is
the extension to concave or self-intersecting quads. For most

v

vi

vi+1

vi–1

αi–1

αi

ri

q

Figure 3: Notation used for mean value coordinates.

Figure 4: For a quad with positive orientation, the homoge-
neous coordinate with respect to the blue vertex is positive
in the shaded region and likewise for the other vertices.

Figure 5: The homogeneous coordinates all have the same
sign inside the quad and the sign depends on the local ori-
entation. Outside the quad, the signs are mixed.

choices of functions µi there exist points v in the interior of
such quads for which the denominator in (7) is zero, so that
the λi(v) are not well-defined. This happens, for example, in
the case of Wachspress coordinates [Wac75, MLBD02].

One choice that does not suffer from this drawback, and
has the additional advantage of a modest computational cost
(Section 4.2), is the set of mean value coordinates [Flo03].
They are defined by

µi(v) =
tan(αi−1(v)/2)+ tan(αi(v)/2)

ri(v)
, (8)

where αi(v) is the signed angle in the triangle [v,vi,vi+1] at
v and ri(v) = ‖v− vi‖ is the distance between v and the i-th
vertex (see Figure 3).

It follows directly from the definition (8) that if the screen
quad q is positively oriented (i.e. counterclockwise), then µi
is positive inside q and on the left side of the (oriented) line
through vi−1 and vi+1 outside the quad (see Figure 4). If q
is negatively oriented, then all signs are reversed, but in any
case the key property is that the µi all have the same sign
inside q and mixed signs outside, even in the case of self-
intersecting quads (see Figure 5).

Therefore, the normalization in (7) is always well-defined
for a point v inside the quad and its barycentric coordinates
λi(v) are all positive while they have mixed signs if v lies
outside. Moreover, the λi have the Lagrange property and
are linear along the edges, except at the intersection vertex
of a self-intersecting quad.

c© The Eurographics Association 2004.



K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

Figure 6: A flat shaded quad (left) and its intersection with
a sequence of parallel semi-transparent planes (right).

3.1. Perspective correction

The simplest rendering method for a triangle is flat shading
and using the same idea for a quad gives the expected result:
a four-sided region that is filled with a constant colour. But
the situation gets more exciting if we interpolate the depth
values zi of the four vertices with Equation (4) and assign
the resulting depth z(v) to each of the generated fragments.
By intersecting the quad with parallel planes we see that
this turns the quad into a smooth surface whose intersections
with planes are generally curved (see Figure 6).

A nice observation is that we can explicitly describe this
surface. If we take any point v inside the quad, then what we
really see on screen at this position is the 3D point

S(v) = λ′0(v)V0 +λ′1(v)V1 +λ′2(v)V2 +λ′3(v)V3, (9)

where the perspective coordinates λ′i(v) are defined as

λ′i(v) =
λi(v)
wi

/
3

∑
j=0

λ j(v)
wj

=
µi(v)
wi

/
3

∑
j=0

µ j(v)
wj

. (10)

with wi from (1). In fact, if we write S(v) in its homogeneous
form and project it to screen space by first multiplying the
transformation matrix M as in (1) and then dividing by the
last component, then it is easy to show that this point maps
exactly back to v with depth z(v).

Apart from its theoretical value, this observation also has
a practical one as it can be used for a perspectively correct
interpolation of attributes inside the screen quad. Consider,
for example, the edge midpoint v = (v0 +v1)/2 in screen co-
ordinates. For this point we have λ0(v) = λ1(v) = 1/2 and
λ2(v) = λ3(v) = 0 and it follows from (9) that the corre-
sponding 3D surface point is S(v) = (1−σ)V0 +σV1 with
σ = w0/(w0 +w1) usually not equal to 1/2. Since attribute
interpolation should be linear along the edges of the 3D quad
Q, the correct value at v is (1−σ)a0 +σa1, in contrast to the
attribute (a0 +a1)/2 that we get with the interpolation in (4).
However, we can still use this equation for perspectively cor-
rect interpolation if we interpolate the attributes ai/wi and

Figure 7: Texture mapping with standard (left) and perspec-
tively correct interpolation (right).

divide the result by the interpolation of the values 1/wi,

a(v) =
3

∑
i=0

λi(v)
ai

wi

/ 3

∑
i=0

λi(v)
1
wi

. (11)

Note that this is just a restatement of Equation (9) with theVi
replaced by ai and that this “trick” is well-known for trian-
gles. An example that illustrates the effect of perspectively
correct interpolation for a quad is shown in Figure 7.

3.2. Points behind the eye

So far, we have tacitly assumed that all vertices lie in front
of the point of view (or eye), in other words, that all wi from
Equation (1) are positive. We will now show how to adapt
our technique to work even in the case in which some ver-
tices lie behind the eye.

For a better understanding, consider what happens if we
move one vertex of a quad towards the eye and beyond while
the other vertices remain fixed (see Figure 8). As V1 ap-
proaches the eye-plane, the projected vertex v1 leaves the
screen at the bottom because w1 converges to zero and there-
fore y1 diverges to−∞. The moment we pushV1 beyond this
plane, w1 becomes negative, y1 jumps from−∞ to +∞, and
if we keep moving, v1 will eventually re-appear at the top of
the screen.

In analogy to triangles, we have to render the external
screen quad (see Figure 9) in this situation and in general
whenever the vertices Vi lie on different sides of the eye-
plane so that the wi have different signs. This implies that we
must consider the external angles and distances for the com-
putation of the homogeneous coordinates in Equation (8).

For example, in the situation at the bottom of Figure 8, α′
0

and r′1 should be used instead of α0 and r1 (cf. Figure 3).
While it is clear that α′

0 = π+ α0, it is less obvious how
to compute the external distance, but it can be shown that
r′1 = −r1 gives the correct result, i.e. the barycentric coor-
dinates that we compute with these values still have all the
desired properties (Lagrange property at the vertices, linear-
ity along the edges, and positivity inside the quad).

c© The Eurographics Association 2004.



K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

α0

r1

v1

v0

α0 r1
v1

v0

α0

r1

α'0

r'1

v1

v0

v

v

v

V1

V1

V1

V0

V0

V0

w1 > 0

w1 < 0

w1 > 0

Figure 8: If a vertex of the 3D quad moves behind the eye
(left), then the screen quad becomes an external quad (mid-
dle), but the barycentric interpolation still works (right) if
we use the appropriate external angles and distances.

Figure 9: Examples of the exterior shapes that the configu-
rations in Figure 2 can assume under perspective projection.
Red parts lie behind the eye and will be clipped.

4. Implementation

Traditional hardware implementations for the rasterization
of triangles are based on a simplified version of the gen-
eral algorithm for scan-converting arbitrary polygons. This
algorithm intersects successive scan-lines with the polygon
and fills the resulting spans of adjacent interior pixels from
left to right [FvDFH90]. This procedure simplifies a lot in
the case of triangles because the number of spans is always
one and it further allows to compute the attribute interpo-
lation (4) or (11) with incremental updates on-the-fly. The
general algorithm can also be simplified considerably for
quadrilaterals as the maximal number of spans is two and
the book-keeping of what is called active edges is kept at a
minimum. We further explain in Section 4.2 how incremen-
tal updates can be used to optimize the computation of the
attribute interpolation with mean value coordinates.

4.1. Membership test

The basic scan-line algorithm visits pixels sequentially and
a common variant to speed it up is to process several pix-
els in parallel per clock cycle at the cost that not all of them
necessarily lie inside the primitive [Pin88]. The PixelPlanes
architecture [FIP∗89] takes this idea to the extreme and com-
pletely abandons the scan-line idea by processing all pixels
of a 128× 128 patch simultaneously using a SIMD array.
Another alternative to the scan-line algorithm is to visit pix-
els along a space-filling Hilbert curve in a hierarchical fash-
ion [MWM01].

All these approaches have in common that they require an
efficient test to determine whether a pixel lies inside or out-
side the primitive. As noticed in Section 3, this test can be
implemented by checking the signs of the barycentric coor-
dinates λi(v), but especially for quads a more efficient solu-
tion is desirable.

For triangles the membership is usually tested with the
help of edge functions [FIP∗89, Pin88]. An edge function
Ei j(v) is defined to be positive (true) if and only if v lies on
the left side of the line through vi and v j and the simplest
function that fulfils this requirement is the signed area of the
triangle [v,vi,v j]. It follows that a pixel at position v is inside
the triangle [v0,v1,v2] if and only if the three edge functions
E01, E12, and E20 have a common sign and the sign itself
further indicates whether the pixel is front- or back-facing.

For quads there is a similar strategy that requires to evalu-
ate the four edge functions E01, E12, E23, and E30 that corre-
spond to the quad’s edges plus a fifth edge function E20 that
tests against one of the diagonals. A detailed analysis of all
the different cases that can occur (see Figure 2) reveals that a
pixel is inside the quad and front-facing if and only if either
of the boolean expressions

E20 ∧ E01 ∧ E12 ∧ (E23 ∨ E30),

(¬E20) ∧ E23 ∧ E30 ∧ (E01 ∨ E12)
(12)

is true and that it is inside and back-facing if the same holds
after negating all edge functions. An elegant way to handle
exterior quads (see Figure 9) is to evaluate the homogeneous
variants of the edge functions as suggested by Olano and
Greer [OG97] in the case of triangles.

4.2. Barycentric coordinates

For every pixel that has passed the membership test we now
want to interpolate attributes either in the standard way (4)
for the depth value or with perspective correction (11) for
any other attribute. Both interpolations require to compute
and normalize the mean value coordinates (8) which can be
simplified using the identity

tan
(αi

2

)
=

riri+1 −Di

Ai

where ri is the length of the vector si = vi − v, the value Di
denotes the dot-product between si and si+1, and Ai is twice

c© The Eurographics Association 2004.



K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

the signed area of the triangle [v,vi,vi+1]. A similar identity
holds for exterior angles α′

i = π+αi,

tan
(α′

i

2

)
= −cot

(αi

2

)
=

−riri+1 −Di

Ai
,

and substituting these formulas as well as any occurrence
of exterior distances r′i = −ri into Equation (8) leads to the
following pseudo-code that handles all cases correctly:

barycentric coordinates (point2D v)
si = vi − v i = 0, . . . ,3
Ai = si × si+1 i = 0, . . . ,3
Di = si · si+1 i = 0, . . . ,3
ri = ‖si‖ · sign(wi) i = 0, . . . ,3
ti = (riri+1 −Di)/Ai i = 0, . . . ,3
µi = (ti−1 + ti)/ri i = 0, . . . ,3
Σ = µ0 +µ1 +µ2 +µ3
λi = µi/Σ i = 0, . . . ,3

return (λ0,λ1,λ2,λ3)

This code can be further simplified in a hardware implemen-
tation because Ai is linear and the values Di and r2

i vary
quadratically in v. Thus, all of them can be computed effi-
ciently with incremental updates from pixel to pixel and the
vectors si are no longer needed then. Analogously to trian-
gles, the initial values are generated in a quad setup phase
that precedes the actual rasterization.

4.3. Back-face culling and clipping

For a triangle, back-face culling can be decided for the en-
tire primitive and the same holds for quads except if the
screen quad self-intersects (see Figure 2). In that situation,
the shape decomposes into two triangles, one of which is
front-facing while the other is back-facing and should be
culled. Note that span coherence allows discarding entire
spans at a time in a scan-line implementation. However, the
best implementation of back-face culling depends heavily on
the chosen rasterization technique.

Similar considerations hold for clipping against the znear-
and zfar-planes. An ad hoc approach is to discard fragments
with a depth value outside the interval [znear,zfar], but de-
pending on the specific architecture, there may be ways to
clip them earlier in the pipeline. Note that clipping against
the sides of the viewing frustum usually comes for free by
producing only fragments that lie inside the viewport.

5. Results

Although our method is intended to be implemented as a
hardware rasterizer, in order to test it and have a visual in-
sight to the results obtained with it, we resorted to an hybrid
software/hardware implementation that runs on current tri-
angle rasterizing GPUs. All rendering examples shown in
this paper have been produced with this implementation.

5.1. Hybrid implementation

In our test implementation, all vertex processing (includ-
ing the projection) has been lifted from the vertex shader
to the CPU, while the computation of the barycentric coor-
dinates moved down from the hypothetical rasterizer to the
fragment shader. The result is inefficient compared to a real
hardware rasterizer, but it is good enough to render simple
quad meshes in real-time.

To be specific, we first project all vertices according to
Equation (1), record the values vi, zi, and wi, and store them
into the current rendering state so that we can access them
in the fragment shader later. The original vertex attributes ai
(e.g. per-vertex normals) are similarly stored in this state.

We then render the quad by simply splitting it into two
triangles. Each fragment that is produced by the triangle ras-
terizer is processed by a fragment program that computes the
barycentric coordinates λi from the fragment’s screen posi-
tion v and from the points vi as shown in the pseudo-code
above and carries out the necessary attribute interpolations
as mentioned in Section 4.2. Interpolated attributes are then
processed as usual to compute the final colour value.

By rendering the two triangles we are sure to generate all
fragments inside the quad plus some additional ones in some
cases (for concave and self-intersecting shapes) that lie out-
side. The latter ones are detected and killed in the fragment
program by checking the signs of the barycentric coordinates
as mentioned in Section 3.

5.2. Properties and discussion

The improvement of our method over the currently used di-
agonal split is remarkable and the examples in Figures 1, 10,
and 11 emphasize that the quality matches more or less the
one obtained by an expensive refinement of the quad with bi-
linear interpolation in 3D. The quality mainly stems from the
smoothness of the mean value coordinates that guarantees a
C∞-continuous interpolation inside the quad.

Another important characteristic of our rendering tech-
nique is that it is highly compatible with triangle rendering.
The linearity of the attribute interpolation along edges en-
sures C0-continuity across adjacent quads or between neigh-
bouring quads and triangles; crease angles can still be ob-
tained as usual by assigning different normals at the vertices
shared by two adjacent quads (or triangles); and depth val-
ues are computed consistently with other primitives. Further-
more, the only part of the graphics pipeline that is affected is
the rasterizer and any per-vertex and per-fragment process-
ing remains unchanged.

Another advantage is that our quads are compliant with
the OpenGL specification [SA03] and only the API im-
plementation of the primitives created in GL_QUAD or
GL_QUAD_STRIP mode would have to be replaced. Di-
rect3D syntax, however, would require an extension to in-
clude the “quad” as a new “primitive type”.

c© The Eurographics Association 2004.



K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

diagonal split 1 diagonal split 2 bilinear interpolation our method

Figure 10: Visual comparison of different methods to render a single textured quad. We added a shadow and dotted vertical
lines to suggest the actual 3D geometry of the quad. From left to right: the two diagonal spits, a 20×20 refinement of the quad
using bilinear interpolation, and our proposed method that renders the quad as an atomic primitive. Each column shows the
same quad seen from different points of view, resulting in the three possible projected shapes (cf. Figure 2).

The cost of the proposed technique is an increased com-
plexity of the rasterizer. The part of the ARB fragment pro-
gram that computes the barycentric coordinates in our hy-
brid test implementation (see Section 5.1) is only 19 instruc-
tions long and this suggests that a hard-wiring in a rasterizer
would not be too demanding.

A potential drawback of our method is the view depen-
dency of the result as the underlying 3D shape of the ren-
dered surface (see Section 3.1) varies according to the cur-
rent viewing direction (except for planar quads). This is un-
avoidable because we always fill the interior of a 2D screen
quad and a non-planar 3D surface that projects to a quadri-
lateral shape from all viewing directions does not exist. On
the other hand, this guarantees that every pixel corresponds
to exactly one surface point and therefore enables a straight-
forward rendering of two-sided quads. The effect of view
dependency can be undesirable at times and becomes espe-
cially visible for textured non-planar quads that cover big
portions of the screen. But it is almost invisible for quad
meshes with higher resolution for which the diagonal split
still creates ugly discontinuities (see Figure 11).

Acknowledgements

This work was supported in part by the Deutsche For-
schungsgesellschaft (DFG HO-2457/1-1) and the projects
ViHAP3D (EU IST-2001-32641) and MACROGeo (FIRB-
MIUR RBAU01MZJ5). Thanks to Michael Floater, Paolo
Cignoni, and our reviewers for their helpful suggestions.

References

[Duf79] DUFF T.: Smoothly shaded renderings of
polyhedral objects on raster displays. ACM
SIGGRAPH Computer Graphics 13, 3 (1979),
270–275. Proceedings of SIGGRAPH ’79. 1

[FHK04] FLOATER M. S., HORMANN K., KÓS G.:
A general construction of barycentric coor-
dinates over convex polygons. Advances in
Computational Mathematics (2004). 2, 3

[FIP∗89] FUCHS H., ISRAEL L., POULTON J.,
EYLES J., GREER T., GOLDFEATHER J.,
ELLSWORTH D., MOLNAR S., TURK G.,

c© The Eurographics Association 2004.

http://doi.acm.org/10.1145/965103.807455
http://doi.acm.org/10.1145/965103.807455
http://vcg.isti.cnr.it/~hormann/papers/coordinates.pdf
http://vcg.isti.cnr.it/~hormann/papers/coordinates.pdf


K. Hormann & M. Tarini / A Quadrilateral Rendering Primitive

diagonal split 1 diagonal split 2 bilinear interpolation our method

Figure 11: Visual comparison of different methods to render a simple Phong-shaded quad mesh. The over-imposed wireframe
shows the connectivity. From left to right: the two diagonal spits, a 20×20 refinement of the quads using bilinear interpolation,
and our proposed method that renders the quads as atomic primitives. The per-vertex normals that were in the examples on top
were computed from the 3D geometry. In the bottom row, we used the normals that were originally defined for the model which
yield a more accurate description of the actual shape, but also make the artefacts of the diagonal split more evident.

TEBBS B.: Pixel-planes 5: a heteroge-
neous multiprocessor graphics system using
processor-enhanced memories. ACM SIG-
GRAPH Computer Graphics 23, 3 (1989),
79–88. Proceedings of SIGGRAPH ’89. 5

[Flo03] FLOATER M. S.: Mean value coordinates.
Computer Aided Geometric Design 20, 1
(2003), 19–27. 2, 3

[FvDFH90] FOLEY J. D., VAN DAM A., FEINER S.,
HUGHES J.: Computer Graphics: Principles
and Practice. Addison-Wesley, 1990. 2, 5

[MLBD02] MEYER M., LEE H., BARR A. H., DESBRUN

M.: Generalized barycentric coordinates on ir-
regular polygons. Journal of Graphics Tools 7,
1 (2002), 13–22. 3

[MWM01] MCCOOL M. D., WALES C., MOULE K.: In-
cremental and hierarchical Hilbert order edge

equation polygon rasterization. In Proceedings
of the 2001 Workshop on Graphics Hardware
(2001), pp. 65–72. 5

[OG97] OLANO M., GREER T.: Triangle scan conver-
sion using 2D homogeneous coordinates. In
Proceedings of the 1997 Workshop on Graph-
ics Hardware (1997), pp. 89–95. 5

[Pin88] PINEDA J.: A parallel algorithm for poly-
gon rasterization. ACM SIGGRAPH Computer
Graphics 22, 4 (1988), 17–20. Proceedings of
SIGGRAPH ’88. 5

[SA03] SEGAL M., AKELEY K.: The OpenGL graph-
ics system: A specification (version 1.5), Oct.
2003. 1, 6

[Wac75] WACHSPRESS E. L.: A Rational Finite Ele-
ment Basis. Academic Press, 1975. 3

c© The Eurographics Association 2004.

http://doi.acm.org/10.1145/74334.74341
http://doi.acm.org/10.1145/74334.74341
http://doi.acm.org/10.1145/74334.74341
http://dx.doi.org/10.1016/S0167-8396(03)00002-5
http://www-grail.usc.edu/pubs/MHBD02.pdf
http://www-grail.usc.edu/pubs/MHBD02.pdf
http://doi.acm.org/10.1145/383507.383528
http://doi.acm.org/10.1145/383507.383528
http://doi.acm.org/10.1145/383507.383528
http://doi.acm.org/10.1145/258694.258723
http://doi.acm.org/10.1145/258694.258723
http://doi.acm.org/10.1145/378456.378457
http://doi.acm.org/10.1145/378456.378457
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf
http://www.opengl.org/documentation/specs/version1.5/glspec15.pdf

