

1

Representation Tools
Project Acronym: ViHAP3D Project number: IST 2001-32641
Deliverable Date of Delivery: August/03 Workpackage: WP4.4
Contractual Date of Delivery: August/03 Actual Date of Delivery: July/03
Nature: Report Authors: ISTI-CNR

PPLLYY ffoorrmmaatt ddeessccrriippttiioonn

pplluuss VVCCGG eexxtteennssiioonnss

Abstract

VIHAP3D application exchange data using different file formats, one of the most used is the PLY file
format. The PLY is a format used to store 3D polygonal models created by Stanford; the format itself is
quite customizable to specific needs. VCG introduced some extensions to the format in order to better
work with models from 3D scanning.

This document, Deliverable 4.4.2 covers the basic of PLY format plus the VCG extensions.

Deliverable 4.4, First Release of Representation Tools is composed by

• 4.4.1 Simplification Tool: MeshSimplify v.1 with User Manual

• 4.4.2 PLY fileformat description

2

Intro

This document presents the Stanford standard PLY polygon format with VCG extensions. The
PLY is a file format for storing 3D objects models that are described as a collection of
polygons. A formal description of the standard can be found at Stanford website
(www.graphics.stanford.edu). VCG, following the standard guidelines, introduced some
extensions to deal with custom data associated to the 3D model, mainly regarding 3D
scanning.

PLY Philosophy

The main idea of PLY is to give a flexible data storage format, easy to read and write. To
obtain this, the PLY file structure contains a header area and a data area. In the header are
described which kind and how many “elements” are used to represent the object in the data
area. The data area contains all the elements specified in the header that represents the
object.

Base of the PLY format are “elements” and “properties”; the 3D model is composed by a
number of elements, each one bearing some properties. Vertices and faces are basic
examples of elements: a vertex element, for example, would contain its own coordinates and
its own color as properties.
There can be other elements and additional properties for each element but an application
able to use them correctly is required: each application, following its own needing, decide
what to save to (and also what to load from) PLY files.

Examples of new elements could be edges, cells (lists of pointers to faces) and materials
(ambient, diffuse and specular colors and coefficients).

File Structure

A PLY file is composed of:

• HEADER
o declarations

• DATA
o Vertex List
o Face List
o (List of other elements)

The header contains all information necessary to the file parsing; the header is always in
ASCII format. The header includes a description of each element type, including the element
name (e.g. vertex), how many such elements are in the object, and a list of the various
properties associated with the element. The header also tells whether the file is binary or
ASCII.

Each line of the header is a carriage-return terminated ASCII string that begins with a
keyword. The header begins with the string ply<cr> and it’s terminated with the string
end_header<cr>; the characters ply<cr> must be the first four characters of the file,
since they serve as the fileOS magic number.

3

Following the start of the header is the keyword format and a specification of either ASCII or
binary format, followed by a version number. Next is the description of each of the elements
used in the data area, and within each element description is the specification of the
“properties”. Then generic element description has this form:

element <element-name> <number-in-file>
property <data-type> <property-name-1>
property <data-type> <property-name-2>
property <data-type> <property-name-3>
...

The properties listed after an element line define both the data type of the property and also
the order in which the property appears for each element. There are two kinds of data types a
property may have: scalar and list. Here is a list of the scalar data types a property may have:

NNaammee
AAlltteerrnnaattiivvee

 nnaammee
TTyyppee

NNuumm
ooff

bbyytteess
char int8 Character 1
uchar uint8 unsigned character 1
short int16 short integer 2
ushort uint16 unsigned short integer 2
int int32 Integer 4
uint uint32 unsigned integer 4
float float32 single-precision float 4
double float64 double-precision float 8

These byte counts are important and must not vary across implementations in order for these
files to be portable. In some ply files, mainly the ones coming University of North Carolina
group, the name in the first column are substitued by the ones in the second column. VCG
files by defaul follow use the first column naming.

There is a special form of property definitions to specify the list data type:

property list <numerical-type> <numerical-type> <property-name>

An example of this is:

property list uchar int vertex_index

This row defines a property called vertex_index. It specifies how many and the kind of
values we’ll find in the list. In this case we’ll have a list composed by a number, stored as
<uchar>, of values and each value is stored as an integer. In this example, each integer is a
vertex index.

4

A simple cube

Below is the complete ASCII description for a cube. The header of a binary version of the
same object is simply obtained substituting the keyword ascii with
binary_little_endian or binary_big_endian. The comments in brackets are
just annotations to this example.

ply
format ascii 1.0 {ascii/binary, format version number}
comment created by HandWrite {comments keyword specified, like all lines}
element vertex 8 {define “vertex” element, 8 of them in file}
property float x {vertex contains float “x” coordinate}
property float y {vertex contains float “y” coordinate}
property float z {vertex contains float “z” coordinate}
element face 12 {there are 12 “face” elements in the file}
property list uchar int vertex_indices {“vertex_indices” is a list of ints}
end_header {delimits the end of the header}
-1 -1 -1 {start of vertex list}
1 -1 -1
1 1 -1
-1 1 -1
-1 -1 1
1 -1 1
1 1 1
-1 1 1 {end of vertex list}
3 0 2 1 {start of face list}
3 0 3 2
3 4 5 6
3 4 6 7
3 1 6 5
3 1 2 6
3 0 4 3
3 3 4 7
3 0 1 5
3 0 5 4
3 2 3 7
3 2 7 6 {end of face list}

5

Keywords List

Below is a complete list, alphabetically sorted, listing the key-words used in standard PLY
format file:

KKeeyywwoorrdd DDeessccrriippttiioonn EExxaammppllee ooff uussaaggee
ascii The object is stored in ascii format format ascii 1.0
binary_big_endian The object is stored in binary

format (Big Endian)
format binary_big_endian 1.0

binary_little_end
ian

The object is stored in binary
format (Little Endian)

format binary_little_endian 1.0

comment Simple comment string comment Hello world
element Starts an element definition element vertex 5

property …
…

end_header Delimits the end of the header ply
…
…
end_header

format Starts file format definition format ascii 1.0
list Special property type element face 5

Property list uchar int
vertex_index

obj_info Reserved but not used
ply First characters in a PLY file.

Delimits the beginning of the
header

ply
format …
…

property Define one property for an
element

element vertex 5
property float x
property float y
property float z

6

VCG PLY Extensions

According with the PLY philosophy, VCG added some extension and applied some variations to
the standard PLY format. There are new key-words and new standard elements that are parsed
by VCG applications.

There is a restriction in the polygon type: VCG programs are able to work on triangles only,
instead of generic polygon; this means that faces are always made up by three vertices.

Texture managing

Texturing it’s not directly supported by PLY format: some addings have been made to the
standard.
Texture coordinates are stored using a face property (texcoord); coordinates are defined for
each wedge, in a triangle face are defined three coordinate pairs (one for each vertex). In the
header a line like this should be used:

property list uchar float texcoord

The texture file is specified using a line in the header that begins with the comment keyword.
Standard applications just ignore the comment keyword, while VCG applications parse
comment searching for TextureFile or TextureNormalFile keywords.

comment [TextureFile | TextureNormalFile] <imagefile>

• TextureFile means that imagefile is a texture that will be attached to the mesh,
• TextureNormalFile means that imagefile is a normal map where each texel

encodes a normal in RGB space.
In both cases textures coordinates are to be supplied for each triangle and the file is assumed to
be in the same dir of the ply file. To allow a easy renaming of ply files and textures, the special
imagefile name “<this>” is interpreted as a placeholder of the name of the ply file without the
.ply extension. For example, in a ply file called “dummy.ply” the line

comment TextureFile <this>.png
means that the texture called dummy.png has to be loaded.

Elements and properties

Here is the list of PLY elements and properties used by VCG applications:

Vertex element:

PPrrooppeerrttyy NNaammee DDaattaattyyppeess AAlllloowweedd DDeessccrriippttiioonn
x
y
z

float Vertex coordinates

flags int Flags are used in VCG applications to

7

mark vertices. For a complete list of
flags see section FLAGS

quality
float

Can be used to give quality
information for a vertex

red
green
blue
alpha

uchar
RGB components

and
Alpha channel

Face element:

Please note that there exists an alternate spelling for the vertex_indices property, defined in the
standard, that reads vertex_index. All the most recent VCG applications are able to work
with both formats. VCG applications by default save using vertex_indices

PPrrooppeerrttyy NNaammee DDaattaattyyppeess AAlllloowweedd DDeessccrriippttiioonn

vertex_indices list uchar int
Vertex list, VCG extensions support
only lists of 3 vertices (triangles)

flags int
Flags are used in VCG applications to

mark faces. For a complete list of
flags see section FLAGS

quality float
Can be used to give quality

information for a face

texcoord list uchar float
List of texture coordinates; there are

3 pairs for each face. Texture
coordinates are referred to wedges

color list uchar float face color

texnumber int
index of texture used for that face
(valid if multiple texture have been

specified in the header)

Tristrip Element:

In some of the ply files coming from the Stanford University, the ‘face’ element is substituted by
a ‘tristrips’ element, that describe all the triangular face of the model as a set of triangle strips.
Usually just a single strip is present and a ‘-1’ index inside the strip is used to restart the strip.
Supported only in loading.

PPrrooppeerrttyy NNaammee DDaattaattyyppeess AAlllloowweedd DDeessccrriippttiioonn

vertex_indices list int int
The list of vertexes composing the

strip.

Camera Element:

A new element has been defined to include in the file information on the 3D acquisition. These
kinds of information (position and parameters of the 3D camera) are significant only for single
range map models.
To include a camera in a PLY file, in the header should be added a line like:

element camera 1

8

followed by camera properties; it is mandatory to specify all properties.

PPrrooppeerrttyy NNaammee DDaattaattyyppeess AAlllloowweedd DDeessccrriippttiioonn
view_px
view_py
view_pz

float
x, y, z coordinates of a vector which

represent the camera position

x_axisx
x_axisy
x_axisz

float
x, y, z coordinates which represent

the camera right vector position

y_axisx
y_axisy
y_axisz

float
x, y, z coordinates which represent

the camera up vector position

z_axisx
z_axisy
z_axisz

float
x, y, z coordinates which represent

the camera front vector position

focal float Focal length
scalex
scaley
scalez

float Image scaling factor

centerx
centery

float Pin-hole position

viewportx
viewporty

int Viewport dimension

k1
k2
k3
k4

float Radial lens distortion

Meaning of Flags property:

The flags property is used in VCG applications to mark vertices or faces. Flags are a bit field
which represent the status of a vertex or face. The flags are used for several purposes by
applications.
There can be 8 differents flags for each vertex and 10 differents flags for each face.

VVeerrttiicceess FFllaaggss
HHeexx

VVaalluuee
BBiitt DDeessccrriippttiioonn

DELETED 0x0001 The vertex is deleted from the mesh
NOTREAD 0x0002 The vertex of the mesh is not readable
NOTWRITE 0x0004 The vertex is not modifiable
MODIFIED 0x0008 The vertex is modified
VISITED 0x0010 Can be used to mark the visited vertex
BORDER 0x0020 Indicates that the vertex lies in a border face

NOTMANIFOLD 0x0100
The vertex belongs to an edge which is shared

by three or more faces

9

FFaacceess FFllaaggss
HHeexx

VVaalluuee
BBiitt DDeessccrriippttiioonn

DELETED 0x00000001 The face is deleted from the mesh
NOTREAD 0x00000002 The face of the mesh is not readable
NOTWRITE 0x00000004 The face is not modifiable
MODIFIED 0x00000008 The face is modified
VISITED 0x00000010 Can be used to mark the visited face

SELECTED 0x00000020 The face is selected

BORDER0 0x00000040
Edge from vertex 0 to vertex 1 is in the

mesh border

BORDER1 0x00000080
Edge from vertex 1 to vertex 2 is in the

mesh border

BORDER2 0x00000100
Edge from vertex 2 to vertex 0 is in the

mesh border

NORMX 0x00000200
This flag is on if the face normal is closer to

the x axis with respect to orientation

NORMY 0x00000400
This flag is on if the face normal is closer to

the y axis with respect to orientation

NORMZ 0x00000800
This flag is on if the face normal is closer to

the z axis with respect to orientation

COMPLEX0 0x00001000
Edge from vertex 0 to vertex 1 contains a

vertex with the flag NOTMANIFOLD

COMPLEX1 0x00002000
Edge from vertex 1 to vertex 2 contains a

vertex with the flag NOTMANIFOLD

COMPLEX2 0x00004000
Edge from vertex 2 to vertex 0 contains a

vertex with the flag NOTMANIFOLD
FEATURE0 0x00008000 UNUSED
FEATURE1 0x00010000 UNUSED
FEATURE2 0x00020000 UNUSED
MHEDGE0 0x00040000 UNUSED
MHEDGE1 0x00080000 UNUSED
MHEDGE2 0x00100000 UNUSED

10

Examples
The following examples will show you how to use VCG properties and flags in PLY files.

FFiillee CCoommmmeennttss DDeessccrriippttiioonn
ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
end_header
-1 -1 –1
…
-1 1 1
3 0 2 1
…

3 2 7 6

begin of file
ply data format and version info
simple comment
element declaration(8 vertices)
property declaration

element declaration(12 faces)
property declaration
end of header delimiter
x y z coordinates of vertex 0

x y z coordinates of vertex 7
face 0, 3 vertices, vertex 0 vertex 2
vertex 1

face 11, 3 vertices, vertex 2 vertex
7 vertex 6

A simple cube

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
element face 12
property list uchar int vertex_indices
end_header
-1 -1 -1 255 0 0

…
-1 1 1 0 0 0

3 0 2 1
…
3 2 7 6

property declaration red component
property declaration green component
property declaration blue component

x y z coordinates of vertex 0 r g b
components of vertex 0

x y z coordinates of vertex 7 r g b
components of vertex 7

A simple cube with
colored vertices

ply
format ascii 1.0
comment created by platoply
element vertex 8
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property uchar alpha
element face 12
property list uchar int vertex_indices
end_header
-1 -1 -1 255 0 0 50

…
-1 1 1 0 0 0 50

3 0 2 1
…
3 2 7 6

property declaration alpha component

x y z coordinates of vertex 0 r g b
and alpha components of vertex 0

x y z coordinates of vertex 7 r g b
and alpha components of vertex 7

A simple cube with
colored vertices and

each with alpha
component.

11

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
property list uchar float color
end_header
-1 -1 -1
…
-1 1 1
3 0 2 1 3 255 0 0

…
3 2 7 6 3 255 127 0

property declaration color (list)

face 0, 3 vertices, vertex 0 vertex 2
vertex 1, r g b components

face 11, 3 vertices, vertex 2 vertex
7 vertex 6, r g b components

A simple cube with
colored faces.

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
property float quality
element face 12
property list uchar int vertex_indices
end_header
-1 -1 -1 1.0

…
-1 1 1 0.09

3 0 2 1
…
3 2 7 6

property declaration quality

x y z coordinates of vertex 0,
quality

x y z coordinates of vertex 7,
quality

A simple cube with
quality float in

each vertex.

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
property float quality
end_header
-1 -1 -1
…
-1 1 1
3 0 2 1 0.02
…
3 2 7 6 0.04303

A simple cube with
quality float in

each face.

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
property int flags
element face 12
property list uchar int vertex_indices
end_header
-1 -1 -1 32

…
-1 1 1 0

3 0 2 1
…
3 2 7 6

property flags declaration

x y z coordinates of vertex 0, flag
SELECTED on

x y z coordinates of vertex 7, flag
SELECTED on

A simple cube with
SELECTED flag on in

vertex 0.

12

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
property int flags
element face 12
property list uchar int vertex_indices
end_header
-1 -1 -1 2

1 -1 -1 2

1 1 -1 2

-1 1 -1 2

…
-1 1 1 0

3 0 2 1
…
3 2 7 6

property flags declaration

x y z coordinates of vertex 0, flag
SELECTED on
x y z coordinates of vertex 1, flag
SELECTED on
x y z coordinates of vertex 2, flag
SELECTED on
x y z coordinates of vertex 3, flag
SELECTED on

x y z coordinates of vertex 7, flag
SELECTED off (each flag is off)

A simple cube
with NOTREADABLE

flag on in
vertices 0, 1, 2,

3.

ply
format ascii 1.0
comment created by VCG
element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
property int flags
end_header
-1 -1 -1
…
-1 1 1
3 0 2 1 64

3 0 3 2 64

3 4 5 6 64

…
3 2 7 6 0

property flags declaration

face 0, 3 vertices, vertex 0 vertex 2
vertex 1, flag BORDER0 on
face 1, 3 vertices, vertex 0 vertex 3
vertex 2, flag BORDER0 on
face 2, 3 vertices, vertex 4 vertex 5
vertex 6, flag BORDER0 on

face 2, 3 vertices, vertex 4 vertex 5
vertex 6, flag BORDER0 off (each flag
is off)

A simple cube
with BORDER0 flag
on in faces 0, 1,

2.

ply
format ascii 1.0
comment created by VCG
comment TextureFile torrepisa.png

element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
property list uchar float texcoord
end_header
-1 -1 -1
…
-1 1 1
3 0 2 1 6 1 0 0 1 0 0

3 0 3 2 6 1 0 1 1 0 1

…
3 2 7 6 6 0 0 0 0 0 0

torrepisa.png will be used as a
texture

property declaration texcoord(list)

face 0, 3 vertices, vertex 0 vertex 2
vertex 1, texture coordinates
face 1, 3 vertices, vertex 0 vertex 3
vertex 2, texture coordinates

face 7, 3 vertices, vertex 0 vertex 2
vertex 1, texture coordinates (only
one texel will be attached on this
face)

A simple cube
with 1 texture
mapped in 2

faces.

13

ply
format ascii 1.0
comment created by VCG
comment TextureFile torrepisa.png

comment TextureFile other.png
element vertex 8
property float x
property float y
property float z
element face 12
property list uchar int vertex_indices
property list uchar float texcoord
property int texnumber
end_header
-1 -1 -1
…
-1 1 1
3 0 2 1 6 1 0 0 1 0 0 0

3 0 3 2 6 1 0 1 1 0 1 0

3 4 5 6 6 1 0 0 0 0 1 1

3 4 6 7 6 1 0 0 1 1 1 1

…
3 2 7 6 6 0 0 0 0 0 0 0

torrepisa.png will be used as
texture0
other.png will be used as a texture1

property declaration texcoord(list)

face 0, 3 vertices, vertex 0 vertex 2
vertex 1, texture coordinates
(referred to texture0)
face 1, 3 vertices, vertex 0 vertex 3
vertex 2, texture coordinates
(referred to texture0)
face 2, 3 vertices, vertex 4 vertex 5
vertex 6, texture coordinates
(referred to texture1)
face 3, 3 vertices, vertex 4 vertex 6
vertex 7, texture coordinates
(referred to texture1)

face 11, 3 vertices, vertex 2 vertex
7 vertex 6, texture coordinates
(referred to texture0)

A simple cube
with 2 texture
mapped in 4
faces. Each

texture is mapped
in two triangles.

ply
format ascii 1.0
comment created by VCG
comment TextureNormalFile bunny.png

element vertex 150
property float x
property float y
property float z
element face 251
property list uchar int vertex_indices
property list uchar float texcoord
end_header
-9.27384 12.2733 0.927055
…
6.07459 6.23413 0.91502
3 1 0 5 6 0.179245 0.748047 0.127081
0.748047 0.154828 0.501953

3 149 144 145 6 0.347947 0.251953
0.389012 0.251953 0.352386 0.373047

bunny.png will be used as map to
generate face normals

property declaration texcoord(list)

A simple “bunny”
with 1 texture
mapped in the
whole mesh.

Texture color is
used for generate

faces normals

14

ply
format binary_little_endian 1.0
comment VCGLIB generated
element camera 1
property float view_px
property float view_py
property float view_pz
property float x_axisx
property float x_axisy
property float x_axisz
property float y_axisx
property float y_axisy
property float y_axisz
property float z_axisx
property float z_axisy
property float z_axisz
property float focal
property float scalex
property float scaley
property float centerx
property float centery
property int viewportx
property int viewporty
property float k1
property float k2
property float k3
property float k4
element vertex 28894
property float x
property float y
property float z
property int flags
property uchar red
property uchar green
property uchar blue
property uchar alpha
property float quality
element face 54435
property list uchar int vertex_indices
property int flags
property list uchar float color
end_header

camera element declaration

Here is an example
of camera use:
camera element

declaration must be
placed before other

elements
declaration. All
properties are

required and must
be specified in the
correct order, as

shown.

