Global Non-Rigid Alignment

Benedict J. Brown

Katholieke Universiteit Leuven
3-D Scanning Pipeline

- Acquisition

Scanners acquire data from a single viewpoint
3-D Scanning Pipeline

- Acquisition
- Alignment
3-D Scanning Pipeline

- Acquisition
- Alignment
- Merging
Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
 - Assume points correspond to closest points on other mesh
 - Compute best fit on a subset of all points
Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
 - Assume points correspond to closest points on other mesh
 - Compute best fit on a subset of all points
- If starting point was good, result should be better
Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
 - Assume points correspond to closest points on other mesh
 - Compute best fit on a subset of all points
- If starting point was good, result should be better
 - Iterate until fit converges to minimum error
Range Scanning: Calibration Error

[Levoy00] Courtesy Paul Debevec
Range Scanning: Calibration Error

[Levoy00] Courtesy Paul Debevec
Range Scanning: Calibration Error

[Levoy00] Courtesey Paul Debevec

Mechanical Distortion

0 mm 2 mm
Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly
Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly
- Preserve detail without introducing new warp
Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly
- Preserve detail without introducing new warp
- Be practical, efficient, and parallelizable for large datasets

David's head comprises 1400 scans and 230 million vertices
Global Alignment Pipeline

Pairwise Correspondences
Global Alignment Pipeline

Pairwise Correspondences
Global Alignment Pipeline

Pairwise Correspondences
Global Alignment Pipeline

Pairwise Correspondences → Global Feature Positioning
Global Alignment Pipeline

Pairwise Correspondences Global Feature Positioning
Global Alignment Pipeline

Pairwise Correspondences → Global Feature Positioning → Optimize Global Positions
Global Alignment Pipeline

- Pairwise Correspondences
- Global Feature Positioning
- Optimize Global Positions
- Warp Scans
Results: David's Head

- 1400 range scans
- 230 million points

Correspondences
- 78 hours CPU time
 - 1.5 hours wall time

Positioning and Alignment
- 30 minutes CPU time
Results: David's Head

Rigid

Non-Rigid
Results: David's Head

Rigid

Non-Rigid

Wednesday, August 19, 2009
Results: David's Head

Rigid

Non-Rigid
Results: Awakening

1836 scans, 390 million vertices
Correspondences: 51.5 CPU hours
Alignment: 1 CPU hour
Results: Awakening

1836 scans, 390 million vertices
Correspondences: 51.5 CPU hours
Alignment: 1 CPU hour
Results: Forma Urbis Romae #033

Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes
Results: Forma Urbis Romae #033

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes
Results: Forma Urbis Romae #033

Non-Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Wednesday, August 19, 2009
Results: Forma Urbis Romae #033

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes
Results: Forma Urbis Romae #033

Non-Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes
Summary

- Consistently align all pairs of scans to each other
- Scalability: never more than two scans in memory
- Compensates for calibration error and slight deformations
- Supports rigid alignment too: just restrict to rigid transforms

- Code: www.cs.princeton.edu/~bjbrown