Data Structures for 3D Meshes

Paolo Cignoni

paolo.cignoni@isti.cnr.it

http://vcg.isti.cnr.it/~cignoni

Representing 3D Shapes

Multiple different meanings:

- Representing the shape of its surface
- Sampling the volume
- Representing is visual appearearance

Surfaces

❖ A 2-dimensional region of 3D space

*A portion of space having length and

breadth but no thickness

Defining Surfaces

Analytic definitions

(aka exact)

Parametric surfaces

A function that maps points on a 2D domain over a 3D surface

$$S: \mathbb{R}^2 \to \mathbb{R}^3$$

Implicit surfaces

A surface defined where the points of the 3D space satisfy a certain property (usually a given function = 0)

$$S = \{ p \in \mathbb{R}^3 : f(p) = 0 \}$$

Analytic Surfaces

Parametric surfaces

A function that maps points on a 2D domain over a 3D surface:

$$S: \mathbb{R}^2 \to \mathbb{R}^3$$

$$S(x,y) = \left(x, y, \sin\left(\sqrt{(x^2 + y^2)}\right) / \sqrt{(x^2 + y^2)}\right)$$

$$x = (R + r \cdot \sin t) \cdot \cos s$$
$$y = (R + r \sin t) \cdot \sin s$$
$$z = r \cdot \cos t$$

Analytic Surfaces

Implicit surfaces

A surface defined where the points of the 3D space satisfy a certain property (usually a given function = 0)

$$S = \{ p \in \mathbb{R}^3 : f(p) = 0 \}$$

$$S = \{(x, y, z): x^2 + y^2 + z^2 - r^2 = 0\}$$

$$S = \{(x, y, z): (x^2 + y^2 + R^2 - r^2)^2 - 4R^2(x^2 + y^2) = 0\}$$

Representing Real World Surfaces

Analytic definition falls short of representing real world surfaces in a tractable way

$$S(x,y) = \dots$$
?

... surfaces can be represented by *cell* complexes

Cell complexes (meshes)

Intuitive description: a continuous surface divided in polygons

Generic polygons

Cell Complexes (meshes)

- In nature, meshes arise in a variety of contexts:
 - Cells in organic tissues
 - Crystals
 - Molecules
 - **...**
 - Mostly convex but irregular cells
 - Common concept: complex shapes can be described as collections of simple building blocks

9

Cell Complexes (meshes)

- Slightly more formal definition
 - a cell is a convex polytope in
 - a proper face of a cell is a lower dimension convex polytope subset of a cell

Cell Complexes (meshes)

- a collection of cells is a complex iff
 - every face of a cell belongs to the complex
 - For every cells C and C', their intersection either is empty or is a common face of both

Maximal Cell Complex

- the order of a cell is the number of its sides (or vertices)
- a complex is a k-complex if the maximum of the order of its cells is k
- a cell is maximal if it is not a face of another cell
- a k-complex is maximal iff all maximal cells have order k
- short form : no dangling edges!

Simplicial Complex

- A cell complex is a simplicial complex when the cells are simplexes
- A d-simplex is the convex hull of d+1 points in

Sub-simplex / face

 \clubsuit A simplex σ' is called *face* of another simplex σ if it is defined by a subset of the vertices of σ

♦ If $\sigma \overline{\sigma}$ it is a proper face

Simplicial Complex

A collection of simplexes Σ is a simplicial k-complex iff:

- \bullet σ Σ all the faces of σ belong to Σ
- \clubsuit k is the maximum degree of simplexes in Σ

Simplicial Complex

- \clubsuit A simplex σ is maximal in a simplicial complex Σ if it is not a proper face of a another simplex $\sigma\Box$ of di Σ
- \clubsuit A simplicial k-complex Σ is maximal if all its maximal simplex are of order k
 - No dangling lower dimensional pieces

Meshes, at last

When talking of triangle mesh the intended meaning is a maximal 2-simplicial complex

Topology vs Geometry

- It is quite useful to discriminate between:
 - Geometric realization
 - Where the vertices are actually placed in space
 - Topological Characterization
 - How the elements are combinatorially connected

Topology vs geometry 2

Given a certain shape we can represent it in many different ways; topologically different but quite similar from a geometric point of view (demo klein bottle)

- Note that we can say many things on a given shape just by looking at its topology:
 - Manifoldness
 - Borders
 - Connected components
 - Orientability

Manifoldness

- a surface S is 2-manifold iff:
 - the neighborhood of each point is homeomorphic to Euclidean space in two dimension or ... in other words..
 - the neighborhood of each point is homeomorphic to a disk (or a semidisk if the surface has boundary)

Orientability

- A surface is **orientable** if it is possible to make a consistent choice for the normal vector
 - ...it has two sides
- Moebius strips, klein bottles, and non manifold surfaces are not orientable

Adjacency/Incidency

- *Two simplexes σ e σ' are **incident** if σ is a proper face of σ' (or viceversa)
- Two k-simplexes σ e σ' s are m-adjacent (k>m) if there exists a m-simplex that is a proper face of σ e σ'
 - Two triangles sharing an edge are 1-adjacent
 - Two triangles sharing a vertex are 0-adjacent

Adjacency Relations

- An intuitive convention to name practically useful topological relations is to use an *ordered* pair of letters denoting the involved entities:
 - FF edge adjacency between triangular Faces
 - FV from Faces to Vertices (e.g. the vertices composing a face)
 - ❖VF from a vertex to a triangle (e.g. the triangles incident on a vertex)

Adjacency Relationship

- Usually we only keep a small subset of all the possible adjacency relationships
- The other ones are procedurally generated

Adjacency Relation

- ❖ FF ~ 1-adjacency
- ❖ EE ~ 0 adjacency
- ❖ FE ~ proper subface of F with dim 1
- ❖ FV ~ proper subface of F con dim 0
- ❖ EV ~ proper subface of E con dim 0
- ❖ VF ~ F in Σ : V proper subface of F
- ❖ VE ~ E in Σ : V proper subface of E
- \star EF ~ F in Σ : E proper subface of F
- ❖ $VV \sim V'$ in Σ : it exists an edge E:(V,V')

Partial adiacency

- For sake of conciseness, it can be useful to keep only a partial information
 - ❖VF* memorize only a reference from a vertex to a face and then surf over the surface using FF to find the other faces incident on V

Adjacency Relation

- For a two manifoldsimplicial 2-complex in R3
 - FV FE FF EF EV have bounded degree (are constant if there are no borders)
 - ❖|FV|= 3 |EV| = 2 |FE| = 3
 - **♦** | FF | <= 2</p>
 - **♦** | EF | <= 2</p>
 - VV VE VF EE have variable degree but we have some avg. estimations:
 - **♦** | VV | ~ | VE | ~ | VF | ~ 6
 - *****|EE|~10
 - **❖**F ~ 2V

The Five Platonic Solids

Tetrahedron Hexahedron or cube Octahedron Dodecahedron lcosahedron

Tetrahedron	4	6	4
Hexahedron or cube	8	12	6
Octahedron	6	12	8
Dodecahedron	20	30	12
Icosahedron	12	30	20

Euler characteristic

$$\chi = V - E + F$$

V: number of vertices

E: number of edges

F: number of faces

Euler characteristics

- $\star \chi = 2$ for any *simply connected* polyhedron
- proof by construction...
- play with examples:

$$\chi = V - E + F$$

 $\chi = 4 - 6 + 4 = 2$

$$\chi = (V+2) - (E+3) + (F+1) =$$

 $\chi = (4+2) - (6+3) + (4+1) = 2$

Euler characteristics

let's try a more complex figure...

$$\chi = V - E + F$$

 $\chi = 16 - 32 + 16 = 0$

* why = 0 ?

Genus

❖ The **Genus** of a closed surface, orientable and 2-manifold is the maximum number of cuts we can make along non intersecting closed curves without splitting the surface in two.

...also known as the number of handles

Genus

To a topologist, a coffee cup and a donut are the same thing

34

Euler characteristics

$$\chi = 2 - 2g$$

where g is the genus of the surface

$$\chi = V - E + F$$

 $\chi = 16 - 32 + 16 = 0 = 2 - 2g$

Euler characteristics

let's try a more complex figure...remove a face. The surface is not closed anymore

$$\chi = V - E + F$$

 $\chi = 16 - 32 + 15 = -1$

❖ why =-1 ?

Euler characteristics

$$\chi = 2 - 2g - b$$

where b is the number of borders of the surface

$$\chi = V - E + F$$

 $\chi = 16 - 32 + 15 = -1 = 2 - 2g - b$

Euler characteristics

❖ Remove the border by adding a new vertex and connecting all the **k** vertices on the border to it.

Parametric Surface to Mesh

Easy. Just Sample the function on a regular domain and build a grid

- Issues
- Regular sampling does not imply regular meshing

Implicit Representation to Mesh

$$S = \{ p \in \mathbb{R}^3 : f(p) = 0 \} \ S = \{ p \in \mathbb{R}^3 : f(p) = 0 \}$$

Isosurface on a regular grid

Sample the function on a regular grid and apply marching cube algorithm

Implicit Representation to Mesh Marching Cube Look-up table contour lines

Implicit Representation to Mesh

Marching Cube

Mesh to Implicit Representation Regularly Sampled Distance Field

For each point on a grid store the signed distance from the surface

Implicit Representation <-> Mesh Issues:

Sampling Artifacts

Mesh Data structures

- How to store geometry & connectivity?
 - compact storage
 - file formats
 - efficient algorithms on meshes
 - identify time-critical operations
 - ❖all vertices/edges of a face
 - *all incident vertices/edges/faces of a vertex

Face Set (STL)

- face:
 - 3 positions

Triangles		
X ₁₁ Y ₁₁ Z ₁₁	x ₁₂ y ₁₂ z ₁₂	X ₁₃ Y ₁₃ Z ₁₃
X ₂₁ Y ₂₁ Z ₂₁	X ₂₂ Y ₂₂ Z ₂₂	X ₂₃ Y ₂₃ Z ₂₃
	• • •	• • •
X _{F1} Y _{F1} Z _{F1}	X _{F2} Y _{F2} Z _{F2}	X _{F3} Y _{F3} Z _{F3}

36 B/f = 72 B/vno connectivity!

Typical Mesh Operation

- Access to individual vertices, edges, and faces. (enumeration of all elements in unspecified order)
- Oriented traversal of the edges of a face, which refers to finding the next edge (or previous edge) in a face.
- Access to the incident faces of an edge. Depending on the orientation, this is either the left or right face in the manifold case.
- Given an edge, access to its two endpoint vertices.
- Given a vertex, at least one incident face or edge must be accessible. Then for manifold meshes all other elements in the socalled one-ring neighborhood of a vertex can be enumerated (i.e., all incident faces or edges and neighboring vertices).

Shared Vertex (OBJ, OFF)

- vertex:
 - position
- face:
 - vertex indices

Triangles	
V ₁₁ V ₁₂ V ₁₃	
• • •	
V _{F1} V _{F2} V _{F3}	

12 B/v + 12 B/f = 36 B/vno neighborhood info

Face-Based Connectivity

- vertex:
 - position
 - 1 face
- face:
 - 3 vertices
 - 3 face neighbors

64 B/v no edges!

Edge-Based Connectivity

- vertex
 - position
 - 1 edge
- edge
 - 2 vertices
 - 2 faces
 - 4 edges
- face
 - 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

- vertex
 - position
 - 1 halfedge
- halfedge
 - 1 vertex
 - 1 face
 - 1, 2, or 3 halfedges
- face
 - 1 halfedge

96 to 144 B/v no case distinctions during traversal