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Representing 3D Shapes

Multiple different meanings:

• Representing the shape of its surface 

• Sampling the volume

• Representing is visual appearearance
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Surfaces

❖A 2-dimensional region of 3D space

❖A portion of space having length and 

breadth but no thickness
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❖  Analytic definitions
(aka exact)

❖Parametric surfaces
A function that maps points on a 2D domain over 
a 3D surface 

𝑆:ℝ2 → ℝ3

❖ Implicit surfaces
A surface defined where the points of the 3D 
space satisfy a certain property 
(usually a given function = 0)

𝑆 = 𝑝 ∈ ℝ3 ∶ 𝑓 𝑝 = 0

Defining Surfaces
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❖ Parametric surfaces
A function that maps points on a 2D domain 
over a 3D surface:

𝑆:ℝ2 → ℝ3

Analytic Surfaces
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❖Implicit surfaces
A surface defined where the points of the 3D space satisfy a 
certain property (usually a given function = 0)

𝑆 = 𝑝 ∈ ℝ3 ∶ 𝑓 𝑝 = 0

Analytic Surfaces
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Representing Real World Surfaces

❖Analytic definition falls short of 

representing real world surfaces in a 
tractable way

... surfaces can be represented by cell 

complexes
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Cell complexes (meshes)

❖Intuitive description: a continuous 

surface divided in polygons

quadrilaterals (quads)

triangles Generic polygons
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Cell Complexes (meshes)

❖In nature, meshes arise in a variety of 
contexts:
❖Cells in organic tissues

❖Crystals

❖Molecules

❖…

❖Mostly convex but irregular cells

❖Common concept: complex shapes can be 
described as collections of simple building 
blocks 

9
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Cell Complexes (meshes)

❖ Slightly more formal definition

❖ a cell is a convex polytope in  

❖ a proper face of a cell is a lower dimension 
convex polytope subset of a cell
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Cell Complexes (meshes)

❖ a collection of cells is a complex iff

❖ every face of a cell belongs to the complex

❖ For every cells C and C’, their intersection 
either is empty or is a common face of both
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Maximal Cell Complex

❖  the order of a cell is the number of its sides (or 

vertices)

❖  a complex is a k-complex if the maximum of the 
order of its cells is k

❖  a cell is maximal if it is not a face of another cell

❖  a k-complex is maximal iff all maximal cells have 
order k  

❖  short form : no dangling edges!
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Simplicial Complex

❖ A cell complex is a simplicial complex 
when the cells are simplexes

❖ A d-simplex is the convex hull of d+1 
points in 

0-simplex 1-simplex 2-simplex 3-simplex



Sub-simplex / face

❖A simplex ' is called face of another 

simplex  if it is defined by a subset of 
the vertices of 

❖ 

❖If     it is a proper face



❖A collection of simplexes  is a 

simplicial k-complex iff:

❖        

)       )   is a simplex of 

❖       all the faces of  belong to 

❖k is the maximum degree of simplexes in 

Simplicial Complex

OK Not Ok



❖A simplex  is maximal in a simplicial 

complex  if it is not a proper face of a 
another simplex  of  di 

❖A simplicial k-complex  is maximal if all 

its maximal simplex are of order k

❖No dangling lower dimensional pieces

Simplicial Complex

Non maximal 2-simplicial complex
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Meshes, at last

❖ When talking of triangle mesh the 
intended meaning is a maximal 2-
simplicial complex

 



Topology vs Geometry

❖It is quite useful to discriminate 

between:

❖Geometric realization

❖Where the vertices are actually placed in space

❖Topological Characterization

❖How the elements are combinatorially connected



Topology vs geometry 2

Given a certain shape we can represent it in 
many different ways; topologically different 
but quite similar from a geometric point of 
view (demo klein bottle) 

❖Note that we can say many things on a given 
shape just by looking at its topology:

❖Manifoldness

❖Borders 

❖Connected components

❖Orientability
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Manifoldness

❖ a surface S is 2-manifold iff:

❖the neighborhood of each point is 

homeomorphic to Euclidean space in two 
dimension
or … in other words..

❖the neighborhood of each point is 
homeomorphic to a disk (or a semidisk if the 
surface has boundary) 
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Orientability

❖  A surface is orientable if it is possible to 
make a consistent choice for the normal 
vector 
❖  …it has two sides

❖ Moebius strips, klein bottles, and non manifold 
surfaces are not orientable



Adjacency/Incidency

❖Two simplexes σ e σ' are incident if σ is 

a proper face of σ' (or viceversa)

❖Two k-simplexes σ e σ' s are 

m-adjacent (k>m) if there exists a 

m-simplex that is a proper face of σ e σ'

❖Two triangles sharing an edge are 1-adjacent

❖Two triangles sharing a vertex are 0-adjacent



Adjacency Relations

❖An intuitive convention to name 

practically useful topological relations is 

to use an ordered pair of letters denoting 
the involved entities:

❖FF edge adjacency between triangular Faces 

❖FV from Faces to Vertices (e.g. the vertices 

composing a face)

❖VF from a vertex to a triangle (e.g. the 

triangles incident on a vertex) 



Adjacency Relationship

❖Usually we only keep 

a small subset of all 

the possible adjacency 
relationships

❖The other ones are 
procedurally 

generated



Adjacency Relation

❖ FF ~ 1-adjacency

❖ EE ~ 0 adjacency

❖ FE ~ proper subface of F with dim 1

❖ FV ~ proper subface of F con dim 0

❖ EV ~ proper subface of E con dim 0

❖ VF ~ F in Σ : V proper subface of F

❖ VE ~ E in Σ : V proper subface of E

❖ EF ~ F in Σ : E proper subface of F

❖ VV ~ V' in Σ : it exists an edge E:(V,V')



Partial adiacency

❖For sake of conciseness, it can be useful 

to keep only a partial information 

❖VF*  memorize only a reference from a 

vertex to a face and then surf over the 
surface using FF to find the other faces 

incident on V 



Adjacency Relation

❖For a two manifoldsimplicial 2-complex in 

R3

❖FV FE FF EF EV have bounded degree (are 

constant if there are no borders)

❖|FV|= 3 |EV| = 2 |FE| = 3 

❖|FF| <= 2 

❖|EF| <= 2 

❖VV VE VF EE have variable degree 

but we have some avg. estimations:

❖|VV|~|VE|~|VF|~6

❖|EE|~10

❖F ~ 2V



28

T
h

e
 F

iv
e

 P
la

to
n

ic
 S

o
li

d
s



29

T
h

e
 F

iv
e

 P
la

to
n

ic
 S

o
li

d
s



30

Euler characteristic

❖
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Euler characteristics

❖  = 2 for any simply connected polyhedron

❖  proof by construction…

❖  play with examples:
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Euler characteristics

❖ let’s try a more complex figure…

❖

 

❖ why =0 ?
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Genus

❖ The Genus of a closed surface, orientable and 2-manifold 
is the maximum number of cuts we can make along non 
intersecting closed curves  without splitting the surface in 
two.

 

❖ …also known as the number of handles

0 1 2  
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To a topologist, a coffee cup and a donut are the same thing

Genus
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Euler characteristics

❖ where g is the genus of the surface

𝜒 = 2 − 2𝑔
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Euler characteristics

❖ let’s try a more complex figure…remove a 
face. The surface is not closed anymore

❖

 

❖ why =-1 ?
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Euler characteristics

❖ where b is the number of borders of the 
surface

𝜒 = 2 − 2𝑔 − 𝑏



39

Euler characteristics

❖Remove the border by adding a new 
vertex and connecting all the k vertices 
on the border to it.

 

A A’

X' = X + V' -E' + F' = X + 1 – k + k = X +1  
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Converting Representations

Parametric Surface to Mesh

❖Easy. Just Sample the function on a 

regular domain and build a grid 

❖Issues

❖Regular sampling does not imply regular 
meshing
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Converting Representations

Implicit Representation to Mesh

𝑆 = 𝑝 ∈ ℝ3 ∶ 𝑓 𝑝 = 0  𝑆 = 𝑝 ∈ ℝ3 ∶ 𝑓 𝑝 = 0

Isosurface on a regular grid

❖Sample the function on a regular grid and 

apply marching cube algorithm
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Converting Representations

Implicit Representation to Mesh

Marching Cube 
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Converting Representations

Implicit Representation to Mesh

Marching Cube 
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Converting Representations

Mesh to Implicit Representation

Regularly Sampled Distance Field

For each point on a grid
store the signed distance
from the surface
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Converting Representations

Implicit Representation <-> Mesh

Issues: 

❖Sampling Artifacts



Mesh Data structures

❖How to store geometry & connectivity?

❖compact storage

❖file formats

❖efficient algorithms on meshes

❖identify time-critical operations

❖all vertices/edges of a face

❖all incident vertices/edges/faces of a vertex



Face Set (STL)

• face:

– 3 positions

Triangles

x11 y11 z11 x12 y12 z12 x13 y13 z13

x21 y21 z21 x22 y22 z22 x23 y23 z23

... ... ...

xF1 yF1 zF1 xF2 yF2 zF2 xF3 yF3 zF3

36 B/f = 72 B/v  

no connectivity!

6
7

67



Typical Mesh Operation

• Access to individual vertices, edges, and faces. (enumeration of all 

elements in unspecified order)

• Oriented traversal of the edges of a face, which refers to finding the 

next edge (or previous edge) in a face.

• Access to the incident faces of an edge. Depending on the 

orientation, this is either the left or right face in the manifold case. 

• Given an edge, access to its two endpoint vertices.

• Given a vertex, at least one incident face or edge must be 

accessible. Then for manifold meshes all other elements in the so-

called one-ring neighborhood of a vertex can be enumerated (i.e., all 

incident faces or edges and neighboring vertices).



Shared Vertex (OBJ, OFF)

• vertex:

– position

• face:

– vertex indices

Vertices

x1 y1 z1

...

xV yV zV

Triangles

v11 v12 v13

...

...

...

...

vF1 vF2 vF3

12 B/v + 12 B/f = 36 B/v  

no neighborhood info

6
8
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Face-Based Connectivity

• vertex:

– position

– 1 face

• face:

– 3 vertices

– 3 face neighbors

64 B/v  

no edges!

69
69



Edge-Based Connectivity

• vertex

– position

– 1 edge

• edge

– 2 vertices

– 2 faces

– 4 edges

• face

– 1 edge

120 B/v  

edge orientation?

70

70



Halfedge-Based Connectivity

• vertex

– position

– 1 halfedge

• halfedge

– 1 vertex

– 1 face

– 1, 2, or 3 halfedges

• face

– 1 halfedge

96 to 144 B/v

no case distinctions 

during traversal

7
1
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