Data Structures for 3D Meshes

Paolo Cignoni paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni

Representing 3D Shapes

Multiple different meanings:

- Representing the shape of its surface
- Sampling the volume
- Representing is visual appearearance

Surfaces

❖A 2-dimensional region of 3D space ❖*A portion of space having length and breadth but no thickness*

Defining Surfaces

❖ Analytic definitions

(aka exact)

❖ **Parametric surfaces**

A function that maps points on a 2D domain over a 3D surface

$$
S\colon \mathbb{R}^2 \to \mathbb{R}^3
$$

❖ **Implicit surfaces**

A surface defined where the points of the 3D space satisfy a certain property (usually a given function $= 0$)

$$
S = \{p \in \mathbb{R}^3 : f(p) = 0\}
$$

Analytic Surfaces

❖ **Parametric surfaces**

A function that maps points on a 2D domain over a 3D surface:

$$
S\colon \mathbb{R}^2 \to \mathbb{R}^3
$$

$$
S(x, y) = \left(x, y, \sin\left(\sqrt{(x^2 + y^2)}\right) / \sqrt{(x^2 + y^2)}\right)
$$

$$
x = (R + r \cdot \sin t) \cdot \cos s
$$

$$
y = (R + r \sin t) \cdot \sin s
$$

$$
z = r \cdot \cos t
$$

Analytic Surfaces

❖**Implicit surfaces**

A surface defined where the points of the 3D space satisfy a certain property (usually a given function $= 0$)

$$
S = \{p \in \mathbb{R}^3 : f(p) = 0\}
$$

 $S = \{(x, y, z): x^2 + y^2 + z^2 - r^2 = 0\}$

$$
S = \{(x, y, z) : (x^2 + y^2 + R^2 - r^2)^2 - 4R^2(x^2 + y^2) = 0\}
$$

Representing Real World Surfaces

❖Analytic definition falls short of representing *real world* surfaces in a *tractable* way

$$
S(x,y) = \ldots?
$$

... surfaces can be represented by *cell complexes*

Cell complexes (meshes)

❖Intuitive description: a continuous surface divided in polygons

triangles Generic polygons

Cell Complexes (meshes)

❖In nature, meshes arise in a variety of contexts:

- ❖Cells in organic tissues
- ❖Crystals
- **❖Molecules**
- \mathbf{A}

- ❖Mostly *convex* but *irregular* cells
- ❖Common concept: *complex* shapes can be described as *collections* of *simple building blocks*

9

Cell Complexes (meshes)

- ❖ Slightly more formal definition
	- ❖ a *cell* is a convex polytope in
	- ❖ a *proper face* of a cell is a lower dimension convex polytope subset of a cell

Cell Complexes (meshes)

- ❖ a collection of cells is a complex **iff**
	- ❖ every face of a cell belongs to the complex
	- ❖ For every cells C and C', their intersection either is empty or is a common face of both

Maximal Cell Complex

- ❖ the **order** of a cell is the number of its sides (or vertices)
- ❖ a complex is a **k-complex** if the maximum of the order of its cells is *k*
- ❖ a cell is **maximal** if it is not a face of another cell
- ❖ a k-complex is **maximal** *iff* all maximal cells have order k
- ❖ short form : no dangling edges!

Simplicial Complex

❖ A cell complex is a **simplicial complex** when the cells are simplexes

❖ A **d-***simplex* is the convex hull of *d+1* points in

Sub-simplex / face

 $\triangle A$ simplex σ' is called *face* of another simplex σ if it is defined by a subset of the vertices of σ

 $\cdot \cdot$ If σ σ it is a proper face

❖

Simplicial Complex

 $\triangle A$ collection of simplexes Σ is a simplicial k-complex iff:

OK Not Ok

Simplicial Complex

- $\triangle A$ simplex σ is maximal in a simplicial complex Σ if it is not a proper face of a another simplex σ of di Σ
- $\triangle A$ simplicial k-complex Σ is maximal if all its maximal simplex are of order k
	- ❖No dangling lower dimensional pieces

Non maximal 2-simplicial complex

Meshes, at last

❖ When talking of *triangle mesh* the intended meaning is a **maximal 2 simplicial complex**

Topology vs Geometry

❖It is quite useful to discriminate between:

❖Geometric realization

❖**Where** the vertices are actually placed in space

❖Topological Characterization

❖**How** the elements are combinatorially connected

Topology vs geometry 2

Given a certain shape we can represent it in many different ways; topologically different but quite similar from a geometric point of view (demo klein bottle)

❖Note that we can say many things on a given shape just by looking at its topology:

- ❖Manifoldness
- **❖Borders**
- ❖Connected components
- ❖Orientability

Manifoldness

- ❖ a surface S is **2-manifold** *iff:*
	- ❖the neighborhood of each point is homeomorphic to Euclidean space in two dimension
		- *or … in other words..*
	- ❖the neighborhood of each point is homeomorphic to a disk (or a semidisk if the surface has boundary)

Orientability

- ❖ A surface is **orientable** if it is possible to make a consistent choice for the normal vector
	- ❖ …it has two sides
- ❖ Moebius strips, klein bottles, and non manifold surfaces are not orientable

Adjacency/Incidency

❖Two simplexes σ e σ' are **incident** if σ is a proper face of σ' (or viceversa) ❖Two k-simplexes σ e σ' s are **m-adjacent** (k>m) if there exists a m-simplex that is a proper face of σ e σ' ❖Two triangles sharing an edge are 1-adjacent ❖Two triangles sharing a vertex are 0-adjacent

Adjacency Relations

- ❖An intuitive convention to name practically useful topological relations is to use an *ordered* pair of letters denoting the involved entities:
	- ❖**FF** edge adjacency between triangular **F**aces
	- **❖ FV** from Faces to Vertices (e.g. the vertices composing a face)
	- ❖**VF** from a vertex to a triangle (e.g. the triangles incident on a vertex)

Adjacency Relationship

❖Usually we only keep a small subset of all the possible adjacency relationships

❖ The other ones are procedurally generated

Adjacency Relation

- \div FF \sim 1-adjacency
- ❖ EE ~ 0 adjacency
- \div FE ~ proper subface of F with dim 1
- \cdot FV ~ proper subface of F con dim 0
- \div EV ~ proper subface of E con dim 0
- $\mathbf{\hat{y}}$ VF ~ F in Σ : V proper subface of F
- $\leq \cdot$ VE ~ E in Σ : V proper subface of E
- \div EF ~ F in Σ : E proper subface of F
- $\mathbf{\hat{y}}$ VV ~ V' in Σ : it exists an edge E:(V,V')

Partial adiacency

- ❖For sake of conciseness, it can be useful to keep only a partial information
	- ❖VF* memorize only a reference from a vertex to a face and then surf over the surface using FF to find the other faces incident on V

Adjacency Relation

- ❖For a two manifoldsimplicial 2-complex in R3
	- ❖FV FE FF EF EV have bounded degree (are constant if there are no borders)

$$
|V| = 3 |EV| = 2 |FE| = 3
$$

$$
\cdot \cdot |FF| \leq 2
$$

$$
\cdot \cdot |EF| \leq 2
$$

❖VV VE VF EE have variable degree but we have some avg. estimations: ❖ $|VV|~$ \sim $|VE|~$ \sim $|VF|~$ \sim 6 ❖|EE|~10 \div F ~ 2V

The Five Platonic Solids **The Five Platonic Solids**

29

$$
\chi = V - E + F
$$

- V: number of vertices
- E : number of edges
- F : number of faces

❖

- $\hat{y} = 2$ for any *simply connected* polyhedron
- ❖ proof by construction…
- ❖ play with examples:

 $\chi = V - E + F$ $\chi = 4 - 6 + 4 = 2$

 $\chi = (V + 2) - (E + 3) + (F + 1) =$ $\chi = (4 + 2) - (6 + 3) + (4 + 1) = 2$

❖ let's try a more complex figure…

$$
\begin{array}{c}\n\chi = V - E + F \\
\chi = 16 - 32 + 16 = \mathbf{0}\n\end{array}
$$

Genus

❖ The **Genus** of a closed surface, orientable and 2-manifold is the maximum number of cuts we can make along non intersecting closed curves without splitting the surface in two.

❖ …also known as the number of *handles*

Genus

To a topologist, a coffee cup and a donut are the same thing

 $\chi = 2 - 2g$

❖ where *g* is the genus of the surface

$$
\begin{array}{c}\n\chi = V - E + F \\
\chi = 16 - 32 + 16 = 0 = 2 - 2g\n\end{array}
$$

❖ let's try a more complex figure…remove a face. The surface is not closed anymore

$$
\chi=2-2g-b
$$

❖ where *b* is the number of borders of the surface

$$
\begin{array}{l}\n\chi = V - E + F \\
\chi = 16 - 32 + 15 = -1 = 2 - 2g - b\n\end{array}
$$

❖*Remove the border by adding a new vertex and connecting all the k vertices on the border to it.*

X' = X + V' -E' + F' = X + 1 – k + k = X +1

 A A'

Parametric Surface to Mesh

❖*Easy. Just Sample the function on a regular domain and build a grid*

❖*Issues*

❖*Regular sampling does not imply regular meshing*

Implicit Representation to Mesh

$$
S = \{ p \in \mathbb{R}^3 : f(p) = 0 \} S = \{ p \in \mathbb{R}^3 : f(p) = 0 \}
$$

Isosurface on a regular grid ❖*Sample the function on a regular grid and apply marching cube algorithm*

Implicit Representation to Mesh Marching Cube

Look-up table contour lines

Implicit Representation to Mesh Marching Cube

Mesh to Implicit Representation Regularly Sampled Distance Field

44

For each point on a grid store the signed distance from the surface

Implicit Representation <-> Mesh Issues:

❖*Sampling Artifacts*

Mesh Data structures

❖How to store geometry & connectivity? ❖compact storage ❖file formats ❖efficient algorithms on meshes ❖identify time-critical operations ❖all vertices/edges of a face ❖all incident vertices/edges/faces of a vertex

Face Set (STL)

- face:
	- 3 positions

 $36 B/f = 72 B/v$ no connectivity!

Typical Mesh Operation

- Access to individual vertices, edges, and faces. (enumeration of all elements in unspecified order)
- Oriented traversal of the edges of a face, which refers to finding the next edge (or previous edge) in a face.
- Access to the incident faces of an edge. Depending on the orientation, this is either the left or right face in the manifold case.
- Given an edge, access to its two endpoint vertices.
- Given a vertex, at least one incident face or edge must be accessible. Then for manifold meshes all other elements in the socalled one-ring neighborhood of a vertex can be enumerated (i.e., all incident faces or edges and neighboring vertices).

Shared Vertex (OBJ, OFF)

- vertex:
	- position
- face:
	- vertex indices

$12 B/v + 12 B/f = 36 B/v$ no neighborhood info

Face-Based Connectivity

- vertex:
	- position
	- 1 face
- face:
	- 3 vertices
	- 3 face neighbors

Edge-Based Connectivity

- vertex
	- position
	- 1 edge
- edge
	- 2 vertices
	- 2 faces
	- 4 edges
- face
	- 1 edge

120 B/v edge orientation?

Halfedge-Based Connectivity

- vertex
	- position
	- 1 halfedge
- halfedge
	- 1 vertex
	- 1 face
	- 1, 2, or 3 halfedges
- face
	- 1 halfedge

96 to 144 B/v no case distinctions during traversal

7 $\ddot{1}$