
A mesh processing library

Paolo Cignoni

ISTI – CNR

Intro

 Intro

 Capabilities

 Design/Structure

 Examples

What

 A C++ template based library

 Include only, no compilation hassle

 Research Driven Library

 The most amatorial professional library

 A rather rich and hopefully easy to use library for mesh
processing

 The core of the well known MeshLab system.

Where

 Main site:

 http://vcglib.net

 The code

 No rigid release scheme

 Sync with meshlab releases

 Just clone the git repo

 USE the DEVEL branch

 git clone –b devel https://github.com/cnr-isti-

vclab/vcglib.git

 Documentation by doxygen on the web

 A bunch of small samples

 vcglib/apps/sample

http://vcg.sf.net

Capabilities

 VCG library feature a large number of different algorithms

 In the next slides a fast browsing of some of the most known
things in the library

Simplification

 Fairly generic edge collapse simplification algorithms

 Probably one of the reason meshlab is famous.

 Link conditions for topology preserving

 Two optimized specializations

 Quadric error (with a few minor variants)

 Quadric error with texture coords optimization.

Sampling

 A variety of algorithm for distributing points over the surface of
a mesh

 a reasonably practical and fast adaptive poisson sampling

algorithm.

 Unbiased montecarlo

 Useful for computing sampled integral measures over meshes

Cleaning

 A variety of tools for correcting small annoying things

 Duplicated, unreferenced mesh elements

 Merging of close vertices

 Small hole filling

 Non manifold detection and correction

 Split of non manifold vertexes

 Heuristic Deletion of isolated non manifold faces

Color Processing

 VCG support color in various format

 Per vertex

 Per face

 Per wedge

 As texture

 Provides tools for converting from a representation to another
one.

Measuring

 Integral measures

 Volume, barycenter inertia tensor

 Distance between surfaces

 Sampled Hausdorff distance

 Distance and intersection between a lot of geometric
elements

 (point-triangle, triangle-triangle etc)

Smoothing

 A number of sophisticated noise removal tools.

 Basic laplacian (with or without cotangent weighting)

 Taubin smoothing

 Two step feature preserving smoothing.

 A number of smoothing algorithms can also be applied to
various attributes like color, normal, scalar field over the mesh

Texturing

 Support of per vertex and per wedge text coords

 Conversion between representations

 Packing algorithms

 Various texture optimization

Remeshing

 Subdivision surfaces

 (loop, butterfly)

 Generic

 Define your own predicate to decide if an edge has to be split

and where.

 Ball Pivoting surface reconstruction

 Clustering simplification

 Marching cubes

Spatial Indexing

 Uniform Grid

 Very good if your query points are quite near to the surface

 Kd-tree

 Perfect for point clouds

 Hierarchies of Bounding Volumes

File Format

 VCGLib provides importer and exporter for several file formats:

 import:

 PLY, STL, OFF, OBJ, 3DS, COLLADA, PTX, V3D, PTS, APTS, XYZ, GTS,

TRI, ASC, X3D, X3DV, VRML, ALN

 export:

 PLY, STL, OFF, OBJ, 3DS, COLLADA, VRML, DXF, GTS, U3D, IDTF, X3D

 Caveat it flattens everything to a polygon soup.

 No scene graph information is retained for the most complex
formats

 Many file formats require linking to other piece (only the bold ones

are .h pure

Basic Concepts: The Mesh

 encode a mesh in several ways,

 the most common is three vectors of vertices edges and
triangles.

 The following line is an example of the definition of a VCG
type of mesh:

class MyMesh :

public vcg::tri::TriMesh<

std::vector<MyVertex>,

std::vector<MyFace> ,

std::vector<MyEdge> > {};

 you need only to derive from vcg::tri::TriMesh and to provide
the type of containers of the elements

Basic Concepts: The simplexes 1

 The face, the edge and the vertex type are the crucial bits to
understand in order to be able to take the best from VCG Lib.

 A vertex, an edge, a face and a tetrahedron are just a user
defined (possibly empty) collection of attributes

 For example a vertex could contain position normal color etc.

 To build an simplex class you just derive from the base simplex
templated with the desired attributes:

class MyVertex2 :

public vcg::Vertex< MyUsedTypes,

vcg::vertex::Coord3f,

vcg::vertex::Color4b,

vcg::vertex::CurvatureDirf,

vcg::vertex::Normal3f,

vcg::vertex::BitFlags >{};

Basic Concepts: The simplexes 2

 Caveat first of all you have to pre-declare what are the
intended names for the various pieces

struct MyUsedTypes : public

vcg::UsedTypes<

vcg::Use<MyVertex> ::AsVertexType,

vcg::Use<MyEdge> ::AsEdgeType,

vcg::Use<MyFace> ::AsFaceType>{};

 In this way when you are declaring a vertex you alredy know
what are the types involved in mixed relations like the vertex
type adjacency

Basic Concepts: Using the mesh

 Most of the stuff in the library came in the shape of

static templated class

 Most of the time you see stuff like

vcg::tri::UpdateNormal<MyMesh>::PerVertexNormalized(m);

UpdateNormal is a static class (no need of an object to be
instanced) that act as a container of many algorithms
(PerVertexNormalized, PerVertex, PerFaceNormalized, etc…) all
devoted to Updating Normals

Example 1: trimesh_base

 Basic example of minimal use

 Load a mesh and just dump some info about it

 Note that also the mesh loading is done by mean of
templated class.

Basic Concept: Adjacency
 Vertex, Edge and triangle can store different topological info:

 The most common is the VertexRef field of the face, that store for
each triangular face three pointers to its vertexes

 To use certain Adjacency you need the corresponding
component in the vertex or face

 FF face face relation

 vcg::face::FFAdj

 VF vertex face relation

 vcg::vertex::VFAdj vcg::face::VFAdj

Basic Concept: Adjacency

 Adjacency Relations must be computed explicitly before
being used.

 tri::UpdateTopology<MyMesh>::FaceFace(m);

 tri::UpdateTopology<MyMesh>::VertexFace(m);

Basic Concept: Adjacency

 FF relation works for non manifold situations
faces around an edge are ring connected

 VF relation does not involve
any dynamic allocation,
the chain of face is distributed
onto the involved face

Basic Concepts: Navigating

 The Pos is the VCG Lib implementation of the Cell-Tuple
and it abstracts the concept of position over a mesh

 A Pos in a triangle mesh is a triple made of
pos = (v,e,f)

 For manifold meshes there are flip operators
that allow easy navigation on the mesh

 FlipV, FlipE, FlipF

 Each flip operator, applied to a pos
simply changes only the indicated element

 c2 = c1.FlipV()

 c0 = c1.FlipE()

 c3 = c0.FlipF()

Basic Concept: Navigating

 There are also classical retrieval functions:

 vcg::face::VFOrderedStarFF

 Compute the ordered set of faces adjacent to a given vertex

using FF adiacency

 vcg::face::VVStarVF

 vcg::face::VFStarVF

 vcg::face::VFExtendedStarVF

 vcg::face::EFStarFF

Example 2: trimesh_topology

 Note the face::FFAdj component in the face

 Note on marking

 Simplex can have a mark component (face::Mark) that offers

O(1) unmark of the whole mesh. Implemented by mean of

counters, useful to avoid the usually required O(n) clearing.

 If your simplex has bitflags, you have also standard
visiting/selection bits

Basic Concept: Allocation

 Simplex are kept into vectors

 Relations are kept by mean of pointers

 Pay attention to reallocations…

 Always use the library functions to manage the simplex vectors

MyMesh::VertexIterator vi = tri::Allocator<MyMesh>::AddVertices(m,3);

MyMesh::FaceIterator fi = tri::Allocator<MyMesh>::AddFaces(m,1);

Basic Concept: De-Allocation

 The library adopts a Lazy Deletion Strategy

 i.e. the elements in the vector that are deleted are only flagged

as deleted, but they are still there.

 m.vert.size() != m.VN()

 m.face.size() != m.FN()

 Therefore when you scan the containers of vertices and faces
you could encounter deleted elements

 You can get rid of deleted elements by explicitly calling the
two garbage collecting functions:

vcg::tri::Allocator<MyMesh>::CompactFaceVector(m);

vcg::tri::Allocator<MyMesh>::CompactVertexVector(m);

Example 3: trimesh_allocate

 Note

 How to simply build a minimal mesh from scratch

 the use of the PointerUpdater to cope with vector reallocation

 The use of explicit function to copy a mesh onto another

 The pitfall of having deleted elements

Basic Concept: Reflection

 VCG Lib provides a set of functions to implement reflection,

 i.e. to investigate the type of a mesh at runtime

 These functions follow the format

 tri::Has[attribute](mesh)

 tri::HasPerVertexNormal(m);

 tri::HasPerFaceColor(m);

 etc…

 Return a boolean stating if that particular attribute is present
or not

 These functions are not statically typed and need the mesh
object because of optional stuff…

 But they are statically solved if no optional stuff arise in your code

Basic Concept: Requiring data

 Reflection is often used to check the availability of
component for a given algorithm

 For example

 subdivision surface algorithms require FF adjacency

 Simplification require VF adjacency and per vertex marks

 Etc.

 If something is missing an exception is raised

 Tri::RequireFFAdjacency(mesh);

 Raise a missing component exception if the FF adj is missing

Basic Concept: Optional Component

 Simplex components imply storage

 E.g. FF adjacency means 4 words per face.

 Components are stored into the simplex type

 Most components can be done optional

 E.g. you can control the allocation space of that component at

runtime

class CFaceOcf : public vcg::Face< MyUsedTypesOcf,

vcg::face::InfoOcf, vcg::face::FFAdjOcf,

vcg::face::VertexRef, vcg::face::BitFlags,

vcg::face::Normal3fOcf > {};

class CMeshOcf : public vcg::tri::TriMesh<

vcg::vertex::vector<CVertex>,

vcg::face::vector_ocf<CFaceOcf> > {};

Basic Concept: Optional Component

 Storage of optional component is separated

 E.g. The data for the FF adjacency is stored in a ‘parallel’ vector

alongside the face vector.

 Access is exactly the same.

 You explicitly control the allocation

assert(tri::HasFFAdjacency(cmof) == false);

cmof.face.EnableFFAdjacency();

assert(tri::HasFFAdjacency(cmof) == true);

Example4: trimesh_optional

 Note the different definition of the type

 Note the enabling of the needed components

 Try to raise exceptions by commenting out the needed
enabling

Basic Concept: User Def Attribute

 VCG Lib provides a mechanism to associate user-defined
'attributes' to the simplicies and to the mesh

 Attribute vs Components

 Components are conceptually inside the simplex

 (*vi).N();

 Attributes need an handle to be accessed

 irradHandle[vi];

 To use an attribute

 Build an handle (find or create the attribute)

 Use the handle to access the data

Basic Concept: User Def Attribute

 Getting a named attribute handle

MyMesh::PerVertexAttributeHandle<float> named_hv =

vcg::tri::Allocator<MyMesh>::GetPerVertexAttribute<float>

(m,std::string("Irradiance"));

 Using an handle

MyMesh::VertexIterator vi; int i = 0;

for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)

{

named_hv[vi] = 1.0f; // [] operator takes a iterator

named_hv[*vi] = 1.0f; // or a MyMesh::VertexType object

named_hv[&*vi]= 1.0f; // or a pointer to it

named_hv[i] = 1.0f; // or an integer index

}

Basic Concept: ForEach construct

 to traverse all the vertexes of a mesh you can simply write
something like:

ForEachVertex(m, [&](const VertexType &v){

MakeSomethingWithVertex(v);

});

 There are similar constructs for edges and faces

 Main advantage, avoid verbose checking of deleted
elements

MyMesh::VertexIterator vi;

for(vi = m.vert.begin(); vi != m.vert.end(); ++vi,++i)

{

if(!vi->IsD())

{

MakeSomethingWithVertex(v);

}

}

Example5: trimesh_attribute

 Note the creation/test/delete functions

 Note the multiple way of accessing thru handles

	Slide 1: A mesh processing library
	Slide 2: Intro
	Slide 3: What
	Slide 4: Where
	Slide 5: Capabilities
	Slide 6: Simplification
	Slide 7: Sampling
	Slide 8: Cleaning
	Slide 9: Color Processing
	Slide 10: Measuring
	Slide 11: Smoothing
	Slide 12: Texturing
	Slide 13: Remeshing
	Slide 14: Spatial Indexing
	Slide 15: File Format
	Slide 16: Basic Concepts: The Mesh
	Slide 17: Basic Concepts: The simplexes 1
	Slide 18: Basic Concepts: The simplexes 2
	Slide 19: Basic Concepts: Using the mesh
	Slide 20: Example 1: trimesh_base
	Slide 21: Basic Concept: Adjacency
	Slide 22: Basic Concept: Adjacency
	Slide 23: Basic Concept: Adjacency
	Slide 24: Basic Concepts: Navigating
	Slide 25: Basic Concept: Navigating
	Slide 26: Example 2: trimesh_topology
	Slide 27: Basic Concept: Allocation
	Slide 28: Basic Concept: De-Allocation
	Slide 29: Example 3: trimesh_allocate
	Slide 30: Basic Concept: Reflection
	Slide 31: Basic Concept: Requiring data
	Slide 32: Basic Concept: Optional Component
	Slide 33: Basic Concept: Optional Component
	Slide 34: Example4: trimesh_optional
	Slide 35: Basic Concept: User Def Attribute
	Slide 36: Basic Concept: User Def Attribute
	Slide 37: Basic Concept: ForEach construct
	Slide 38: Example5: trimesh_attribute

