
Spatial Indexing
GMP 24/25

Paolo Cignoni

Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale
delle Ricerche

Problem statement

• Let m be a mesh:
• Which is the mesh element closest to a given point p?
• Which are the elements inside a given region on the screen?
• Which elements are intersected by a given ray r?

• Let m’ be another mesh:
• Do m and m’ intersect? If so, where?

A spatial search data structure helps to answer efficiently to these

Problem statement

• Picking on a point

• Selecting a region

Problem statement: Rendering

• Path tracing (aka unbiased ray tracing):
• From the eye, shoot a ray for each

pixel, and find the first surface it
encounters.

• From this point shoot many other
rays and find their intersection
Recur until you find either the sky
or an emissive surface

Problem statement: Rendering

• Path tracing (aka unbiased ray tracing):

• The core of the problem is
Given a ray find the first primitive it

encounters.

• You shoot many rays (10~1000) for
each hit surface

• Primitives can easily
be O(10^5) ~ O(10^9)

Problem statement: Dynamics/Simulation

• Simulating rigid body dynamics requires mainly two tasks:
• Computing the position

according to current forces

• Computing what are the
new forces according the
current positions

• Reaction forces after collision

Problem statement

• Without any spatial search data structure, the solutions to these
problems require O(n) time, where n is the numbers of primitives (
O(n2) for the collision detection)

• Spatial data structure can make it (average) almost constant or
expected logarithmic.

• Strong complexity lower bound (worst case log) are possible only for
restricted (often not-practical) settings.
• Hard to be proved, reasonable heuristics are the the standard

Indexing Structures

• Two Class of structures

• Non-Hierarchical / Flat space subdivision
• It would seem trivial, but there are reasons for them

• Hierarchical
• Divide et impera / adaptive subdivision

Uniform Grid

• Description: the space including the object is partitioned in cubic
cells; each cell contains references to “primitives” (i.e., triangles)

• Construction.
Primitives are assigned to:
• The cell containing their feature point (e.g., barycenter or one of their

vertices)

• All the cells spanned by each primitive

• Regular grids access by position is trivial:
• If you want to know if something is at (x,y,z)

just use integer division…

Uniform Grid

• Closest element (to point p):
• Start from the cell containing p

• Check for primitives inside growing
spheres centered at p

• At each step the ray increases to the
border of visited cells

• Cost
• Worst: O(#cells+n)

• Average: O(1)

Uniform Grid

• Intersection with a ray:
• Find all the cells intersected by the

ray

• For each intersected cell, test the
intersection with the primitives
referred in that cell

• Avoid multiple testing by flagging
primitives that have been tested
(mailboxing)

• Cost:
• Worst:

• Aver:

Spatial Search Data Structure

Uniform Grid (3/4)

! Intersection with a ray:

" Findallthe cellsintersectedbythe ray

" Foreachintersectedcell, test the intersectionwiththe

primitivesreferredin thatcell

" Avoidmultiple testingby

flaggingprimitivesthat

havebeentested

(mailboxing)

! Cost:

" Worst:

" Aver:)#(dd ncellsO +

)(# ncellsO +

Spatial Search Data Structure

Uniform Grid (3/4)

! Intersection with a ray:

" Findallthe cellsintersectedbythe ray

" Foreachintersectedcell, test the intersectionwiththe

primitivesreferredin thatcell

" Avoidmultiple testingby

flaggingprimitivesthat

havebeentested

(mailboxing)

! Cost:

" Worst:

" Aver:)#(dd ncellsO +

)(# ncellsO +

Uniform Grid

• Memory occupation: O(# cells + n)

• Pros:
• Easy to implement

• Fast query

• Cons:
• Memory consuming

• Performance very sensitive to distribution of the primitives.

Spatial Hashing

• The same as uniform grid, except that only non empty cells are
allocated

Spatial Hashing

• Cost: same as UG, except that in worst case the access to a cell is
O(#cells) because of collisions

• Memory occupation:
• Worst.: all volumetric cells are used
• Aver. : only a few surface intersecting cells are allocated

• Pros
• Fast query if good hashing is done
• Easy to implement
• Less memory consuming

• Cons:
• Performance very sensitive to distribution of the primitives.

Perfect spatial hashing [Lefebvre,Hoppe 06]

UG Approach: Cell Size

• Uniform grids are input insensitive

• What’s the best choice for the example below?

Hierarchical Indexing

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively

Hierarchical Indexing

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively

Hierarchical Indexing

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively

Hierarchical Indexing

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively

Basic Facts

• The queries correspond to a visit of the tree
• The complexity is sublinear (logarithmic)

in the number of nodes

• The memory occupation is linear

• A hierarchical data structure is characterized by:
• Number of children per node

• Spatial region corresponding to a node

Binary Space Partition-Tree (BSP)

• Description:
• It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane

• therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

• Description:
• It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane

• therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

• Description:
• It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane

• therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

• Description:
• It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane

• therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

• Description:
• It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane

• therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

• Query: is the point p inside a primitive?
• Starting from the root, move to the child associated with the half space

containing the point

• When in a leaf node, check all the primitives

• Cost:
• Worst: O(n)

• Aver: O(log n)

Binary Space Partition-Tree (BSP)

• What could go wrong?
• What happen to split primitives? Can I bound them?

• Where to place the plane?

• A common strategy is:
• Primitives are planar

faces:

• Use one of the primitive
as splitting plane and
decompose the rest

BSP-Tree Cost

• Building a BSP-tree requires to choose the partition plane

• Choose the partition plane that:
• Gives the best balance?

• Minimize the number of splits ?

•it depends on the application

• Cost of a BSP-Tree
C(T) = 1 + P(TL) C(TL)+P(TR) C(TR)
• Where P(TL) is probability that TL is visited given that T has been visited.

BSP Tree Cost

• How to choose the splitting primitive?

• Try to guess the cost:

C(T) = 1 + P(TL)C(TL)+P(TR)C(TR)
• We choose the primitive that minimize

1+|S(TL)|α + |S(TR)|α + βs

• SL number of primitives in the left subtree

• s number of primitives split by the chosen primitive

• Big 𝛼, small 𝛽 yield a balanced tree

• Big 𝛽 , small 𝛼 yield a smaller tree

KD-Tree

• Kd-tree : k dimensions tree

• It’s a special kind of BSP tree with axis-aligned bisector planes

• It depends on:
• Choosen Axis

• Point on axis where to define the plane

• Advantages wrt BSP:
• Test are really fast (to explore the tree)

• Lower memory consumption

KD-Tree

KD-Tree

KD-Tree

KD-Tree

Kd-tree More on cost

• Example Ray intersection

• C(T) = 1 + P(TL)C(TL)+P(TR)C(TR)

• The cost of a final leaf is roughly the number of primitives
• (you have to test them)

• P(TL) is more interesting:

Kd-tree More on cost

You can consider rays as pairs of points
over the surface of the cell.

Intuitively a ray (p1,p2) that hits T hits
also TL IFF either p1 or p2 are on TL

With a few assumptions on ray distrib.

KD-Tree:construction

• Input:
• axis-aligned bounding box (“cell”)

• List of triangles

• Base Operations
• Split a cell using an axis aligned plane (where?)

• Distribute triangles among the two sets

• Recursive call

In the middle median Cost optimized

KD-Tree:range query

• Query: return the primitives inside a given box

• Algorithm:
• Compute intersection between the node and the box

• If the node is entirely inside the box add all the primitives contained in the
node to the result

• If the node is entirely outside the box return

• If the nodes is partially inside the box recur to the children

• Cost: if the leaf nodes contain one primitive and the tree is

balanced:𝑂(𝑛1−
1

𝑑 + 𝑘) n = #primitives d=dimension

• O(n2d) possible results

Nearest Neighbor with kd-tree

• Query: return the nearest primitive to a given point c

• Algorithm:
• Find the nearest neighbor in the leaf containing c

• If the sphere intersect the region boundary, check the primitives contained
in intersected cells

Quad-Tree (2D)

• The plane is recursively subdivided in 4 subregions by couple of
orthogonal planes

Quad-Tree (2d):example

• Widely used:
• Terrain rendering: each cross in the quatree is associated with a height

value

Oct-Tree (3d)

• The same as quad-tree but in 3 dimensions:

Large meshes: out of core

Oct-Tree (3d)

• Extraction of isosurfaces on large dataset
• Build an octree on the 3D dataset

• Each node store min and max value of the scalar field

• When computing the isosurface for alpha, nodes whose interval doesn’t
contain alpha are discarded

Advantages of quad/oct tree

• Position and size of the cells are implicit

• They can be explored without pointers by using a linear array
(convenient only if the hierarchies are complete) where:

Conclusion

• No perfect data structure

• Depend a lot on your pattern of query
• Close to surface vs random

• Static vs dynamic

	Slide 1: Spatial Indexing GMP 24/25
	Slide 2: Problem statement
	Slide 3: Problem statement
	Slide 4: Problem statement: Rendering
	Slide 5: Problem statement: Rendering
	Slide 6: Problem statement: Dynamics/Simulation
	Slide 7: Problem statement
	Slide 8: Indexing Structures
	Slide 9: Uniform Grid
	Slide 10: Uniform Grid
	Slide 11: Uniform Grid
	Slide 12: Uniform Grid
	Slide 13: Spatial Hashing
	Slide 14: Spatial Hashing
	Slide 15: UG Approach: Cell Size
	Slide 16: Hierarchical Indexing
	Slide 17: Hierarchical Indexing
	Slide 18: Hierarchical Indexing
	Slide 19: Hierarchical Indexing
	Slide 20: Basic Facts
	Slide 21: Binary Space Partition-Tree (BSP)
	Slide 22: Binary Space Partition-Tree (BSP)
	Slide 23: Binary Space Partition-Tree (BSP)
	Slide 24: Binary Space Partition-Tree (BSP)
	Slide 25: Binary Space Partition-Tree (BSP)
	Slide 26: Binary Space Partition-Tree (BSP)
	Slide 27: Binary Space Partition-Tree (BSP)
	Slide 28: BSP-Tree Cost
	Slide 29: BSP Tree Cost
	Slide 30: KD-Tree
	Slide 31: KD-Tree
	Slide 32: KD-Tree
	Slide 33: KD-Tree
	Slide 34: KD-Tree
	Slide 35: Kd-tree More on cost
	Slide 36: Kd-tree More on cost
	Slide 37: KD-Tree:construction
	Slide 38: KD-Tree:range query
	Slide 39: Nearest Neighbor with kd-tree
	Slide 40: Quad-Tree (2D)
	Slide 41: Quad-Tree (2d):example
	Slide 42: Oct-Tree (3d)
	Slide 43: Oct-Tree (3d)
	Slide 44: Advantages of quad/oct tree
	Slide 45: Conclusion

