Spatial Indexing
GMP 24/25

Paolo Cignoni

Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale
delle Ricerche

@

)]

Problem statement

* Let m be a mesh:
* Which is the mesh element closest to a given point p?
* Which are the elements inside a given region on the screen?
 Which elements are intersected by a given ray r?

* Let m’ be another mesh:
* Do m and m’ intersect? If so, where?

A spatial search data structure helps to answer efficiently to these

Problem statement

€ MeshLab v0.6 - [elephant.ply]
@ File Filters Render View Windows Tools Hep

* Picking on a point CRT ik Xl

 Selecting a region

been selected ?

LOG MESSAGES VESH 1t ENV INFO
: Viewer 20 Nptane 1.0 Fplane 50
FOV: 60
FPS. 146

Problem statement: Rendering

e Path tracing (aka unbiased ray tracing):

* From the eye, shoot a ray for each
pixel, and find the first surface it
encounters.

* From this point shoot many other F o
rays and find their intersection HHEE
Recur until you find either the sky
or an emissive surface

Ray bouncing
ray off the surface

viewpoint
viewport

Problem statement: Rendering

e Path tracing (aka unbiased ray tracing):

* The core of the problem is
Given a ray find the first primitive it
encounters.

* You shoot many rays (10~1000) for
each hit surface

* Primitives can easily
be O(1075) ~ O(1019)

Ray bouncing
ray off the surface
viewpoint

viewport

Problem statement: Dynamics/Simulation

e Simulating rigid body dynamics reqwres mamly two tasks:

* Computing the position
according to current forces

e Computing what are the
new forces according the
current positions

* Reaction forces after collision

How to find out
which triangles
intersect?

\

 FULL REALISTIC SUSPENSION PHYSICS

& Damage System with Flat Tires

Problem statement

* Without any spatial search data structure, the solutions to these
problems require O(n) time, where n is the numbers of primitives (
O(n?) for the collision detection)

e Spatial data structure can make it (average) almost constant or
expected logarithmic.

* Strong complexity lower bound (worst case log) are possible only for
restricted (often not-practical) settings.

* Hard to be proved, reasonable heuristics are the the standard

Indexing Structures

e Two Class of structures

* Non-Hierarchical / Flat space subdivision
* |t would seem trivial, but there are reasons for them

* Hierarchical
 Divide et impera / adaptive subdivision

Uniform Grid

* Description: the space including the object is partitioned in cubic
cells; each cell contains references to “primitives” (i.e., triangles)

* Construction.
Primitives are assigned to:

* The cell containing their feature point (e.g., barycenter or one of their
vertices)

* All the cells spanned by each primitive
\ 7

* Regular grids access by position is trivial: \\ ED -
* If you want to know if something is at (x,y,z) B
just use integer division... \\

Uniform Grid

* Closest element (to point p):

e Start from the cell containing p

* Check for primitives inside growing
spheres centered at p

* At each step the ray increases to the
border of visited cells

* Cost

* Worst: O(#cells+n)
* Average: O(1)

e ——

- =

Uniform Grid

* Intersection with a ray:

* Find all the cells intersected by the
ray

* For each intersected cell, test the
intersection with the primitives
referred in that cell

* Avoid multiple testing by flagging
primitives that have been tested
(mailboxing)

* Cost:

« Worst: O (#cells + n)
* Aver: OE/# cells + %)

\

Uniform Grid

 Memory occupation: O(# cells + n)

* Pros:

e Easy to implement
* Fast query

* Cons:
* Memory consuming
* Performance very sensitive to distribution of the primitives.

Spatial Hashing

* The same as uniform grid, except that only non empty cells are
allocated
Uniform grid Spatial hashing

\ 7 \ =
Lap |7 Dap|<a

\ k \ k
N WL
W\ o ——> HASH(key(i,j,k))

~

O #cells D <<f#cells

Spatial Hashing

e Cost: same as UG, except that in worst case the access to a cell is
O(#cells) because of collisions

* Memory occupation:
* Worst.: all volumetric cells are used
* Aver. : only a few surface intersecting cells are allocated

° Pros Perfect spatial hashing [Lefebvre,Hoppe 06]
* Fast query if good hashing is done | |
* Easy to implement
* Less memory consuming _ @

@ Cons: Sparse 3D data Hash table H Offset table &

n=41,127 voxels in 128° volume m=35> (=42,875) r=19°

* Performance very sensitive to distribution of the primitives.

UG Approach: Cell Size

* Uniform grids are input insensitive

* What's the best choice for the example below?

r2
ri

/7

pal
<

AA

=

2=

/

N

p—
B ——

A
fx
7@ %

a

r2
ri

!

pal

N\

Hierarchical Indexing

* Divide et impera strategies:
* The space is partitioned in sub regions

..recursively

d
d

=4
L4, me

Hierarchical Indexing

* Divide et impera strategies:
* The space is partitioned in sub regions

..recursively

=4
a0

Hierarchical Indexing

* Divide et impera strategies:

* The space is partitioned in sub regions
..recursively

=4
Sl

Hierarchical Indexing

* Divide et impera strategies:

* The space is partitioned in sub regions
..recursively

A \\
ﬁ\ AN

Basic Facts

* The queries correspond to a visit of the tree

* The complexity is sublinear (logarithmic)
in the number of nodes

* The memory occupation is linear

* A hierarchical data structure is characterized by:
 Number of children per node
* Spatial region corresponding to a node

Binary Space Partition-Tree (BSP)

* Description:

* It’s a binary tree obtained by recursively partitioning the space in two by a
hyperplane

* therefore a node always corresponds to a convex region

N 4
. ©

Binary Space Partition-Tree (BSP)

* Description:

* It’s a binary tree obtained by recursively partitioning the space in two by a
hyperplane

* therefore a node always corresponds to a convex region

N
J/%

Binary Space Partition-Tree (BSP)

* Description:

* It’s a binary tree obtained by recursively partitioning the space in two by a
hyperplane

* therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

* Description:

* It’s a binary tree obtained by recursively partitioning the space in two by a
hyperplane

* therefore a node always corresponds to a convex region

@ o &%
aol

Binary Space Partition-Tree (BSP)

* Description:
* It’s a binary tree obtained by recursively partitioning the space in two by a

hyperplane
* therefore a node always corresponds to a convex region
BSP tree 3

Binary Space Partition-Tree (BSP)

* Query: is the point p inside a primitive?

 Starting from the root, move to the child associated with the half space
containing the point

e When in a leaf node, check all the orimitives
* Cost:

* Worst: O(n) _
* Aver: O(log n) /i
D
Ad AB 4

Binary Space Partition-Tree (BSP)

 What could go wrong?
 What happen to split primitives? Can | bound them?

 Where to place the plane?
* A common strategy is:

* Primitives are planar C/\ C/B
B
A

faces:

e Use one of the primitive /
as splitting plane and
decompose the rest

BSP-Tree Cost

* Building a BSP-tree requires to choose the partition plane

* Choose the partition plane that:
* Gives the best balance?
* Minimize the number of splits ?

*itdepends on the application

e Cost of a BSP-Tree
C(T) =1+ P(T) C(T)+P(Tg) C(Tg)
* Where P(T,) is probability that T, is visited given that T has been visited.

BSP Tree Cost

* How to choose the splitting primitive?
* Try to guess the cost:
C(T) =1 + P(T)C(T)+P(Tg)C(TR)
We choose the primitive that minimize
1+|S(T,) |a + |S(Tg) |a + Bs

S, humber of primitives in the left subtree
s number of primitives split by the chosen primitive

Big a, small S yield a balanced tree
Big 5, small a yield a smaller tree

KD-Tree

e Kd-tree : k dimensions tree
* It’s a special kind of BSP tree with axis-aligned bisector planes

* It depends on:
* Choosen Axis
* Point on axis where to define the plane

* Advantages wrt BSP:
* Test are really fast (to explore the tree)
* Lower memory consumption

KD-Tree

KD-Tree

A

A

4

A
Y

KD-Tree

A

A

N
A
A

A

KD-Tree

A
A 44
LA

A

Kd-tree More on cost

 Example Ray intersection
* C(T) =1+ P(T)C(T)+P(Tg)C(Tg)

* The cost of a final leaf is roughly the number of primitives

* (you have to test them) . '
rays intersecting 77|

* P(T,) is more interesting: P(TL) - \rays intersecting T\

Kd-tree More on cost | |
rays intersecting 77|

P(I7) =
(1) rays intersecting 7’|

cell

You can consider rays as pairs of points
over the surface of the cell.

Intuitively a ray (p4,p,) that hits T hits
also T, IFF either p, orp,areon T,

left: cell

With a few assumptions on ray distrib.

f T
P(T,) 'surface area 717

surface area T'|

KD-Tree:construction

* Input:
* axis-aligned bounding box (“cell”)
* List of triangles

* Base Operations
 Split a cell using an axis aligned plane (where?)
* Distribute triangles among the two sets
* Recursive call

A A " A

In the middle median Cost optimized

KD-Tree:range query

* Query: return the primitives inside a given box

* Algorithm:
 Compute intersection between the node and the box

* If the node is entirely inside the box add all the primitives contained in the
node to the result

* If the node is entirely outside the box return
* If the nodes is partially inside the box recur to the children

e Cost: if the leaf nlodes contain one primitive and the tree is

baIanced:O(nl_E + k) n = #primitives d=dimension

e O(n29) possible results

Nearest Neighbor with kd-tree

* Query: return the nearest primitive to a given point ¢

* Algorithm:
* Find the nearest neighbor in the leaf containing ¢

* If the sphere intersect the region boundary, check the primitives contained

in intersected ceAs A
X X

° ° AT A, RAX

. °cy
. - C Bé/iﬁv Cﬁ&
BY

Quad-Tree (2D)

* The plane is recursively subdivided in 4 subregions by couple of
orthogonal planes

Region Quad-tree Point Quad-tree
o o
o o > O
o o
© ° e} © L)
o o o o
o o
o o
° @ (e L @ @

Quad-Tree (2d):example

* Widely used:

* Terrain rendering: each cross in the quatree is associated with a height
value

AN AN

Oct-Tree (3d

* The same as quad-tree but in 3 dimensions:

avid.oct - Octree
Edit View Help

[= T 2 P 7 I e I Y = =T I N s o e |
Bl dL|1|s|xlx2e] B E[E o8| [a8 Alale| D
TR e e) 'l‘ y

= NS §o

Large meshes: out of core

Oct-Tree (3d)

e Extraction of isosurfaces on large dataset
e Build an octree on the 3D dataset
 Each node store min and max value of the scalar field

 When computing the isosurface for alpha, nodes whose interval doesn’t
contain alpha are discarded

Il

Tnciiml]
al

iid'

ntl : ﬁ 'x‘-
oV M
[|

Advantages of quad/oct tree

* Position and size of the cells are implicit

* They can be explored without pointers by using a linear array
(convenient only if the hierarchies are complete) where:

quadtree

octree

Children(i) = 4i+1,...4*({+1)
Parent(i) = _i / 4J

Children(i) = 8i+1,...8*%(+1)
Parent(i) = _i / 8J

Conclusion

* No perfect data structure

* Depend a lot on your pattern of query
* Close to surface vs random
e Static vs dynamic

	Slide 1: Spatial Indexing GMP 24/25
	Slide 2: Problem statement
	Slide 3: Problem statement
	Slide 4: Problem statement: Rendering
	Slide 5: Problem statement: Rendering
	Slide 6: Problem statement: Dynamics/Simulation
	Slide 7: Problem statement
	Slide 8: Indexing Structures
	Slide 9: Uniform Grid
	Slide 10: Uniform Grid
	Slide 11: Uniform Grid
	Slide 12: Uniform Grid
	Slide 13: Spatial Hashing
	Slide 14: Spatial Hashing
	Slide 15: UG Approach: Cell Size
	Slide 16: Hierarchical Indexing
	Slide 17: Hierarchical Indexing
	Slide 18: Hierarchical Indexing
	Slide 19: Hierarchical Indexing
	Slide 20: Basic Facts
	Slide 21: Binary Space Partition-Tree (BSP)
	Slide 22: Binary Space Partition-Tree (BSP)
	Slide 23: Binary Space Partition-Tree (BSP)
	Slide 24: Binary Space Partition-Tree (BSP)
	Slide 25: Binary Space Partition-Tree (BSP)
	Slide 26: Binary Space Partition-Tree (BSP)
	Slide 27: Binary Space Partition-Tree (BSP)
	Slide 28: BSP-Tree Cost
	Slide 29: BSP Tree Cost
	Slide 30: KD-Tree
	Slide 31: KD-Tree
	Slide 32: KD-Tree
	Slide 33: KD-Tree
	Slide 34: KD-Tree
	Slide 35: Kd-tree More on cost
	Slide 36: Kd-tree More on cost
	Slide 37: KD-Tree:construction
	Slide 38: KD-Tree:range query
	Slide 39: Nearest Neighbor with kd-tree
	Slide 40: Quad-Tree (2D)
	Slide 41: Quad-Tree (2d):example
	Slide 42: Oct-Tree (3d)
	Slide 43: Oct-Tree (3d)
	Slide 44: Advantages of quad/oct tree
	Slide 45: Conclusion

