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Problem statement

• Let m be a mesh:
• Which is the mesh element closest to a given point p? 
• Which are the elements inside a given region on the screen?
• Which elements are intersected by a given ray r?

• Let m’ be another mesh:
• Do m and m’ intersect? If so, where?

A spatial search data structure helps to answer efficiently to these



Problem statement

• Picking on a point

• Selecting a region 



Problem statement: Rendering

• Path tracing (aka unbiased ray tracing):
• From the eye, shoot a ray for each 

pixel, and find the first surface it 
encounters. 

• From this point shoot many other 
rays and find their intersection
Recur until you find either the sky
or an emissive surface



Problem statement: Rendering

• Path tracing (aka unbiased ray tracing):

• The core of the problem is 
Given a ray find the first primitive it 

encounters. 

• You shoot many rays (10~1000) for 
each hit surface

• Primitives can easily 
be O(10^5) ~ O(10^9)



Problem statement: Dynamics/Simulation 

• Simulating rigid body dynamics requires mainly two tasks:
• Computing the position 

according to current forces 

• Computing what are the 
new forces according the 
current positions

• Reaction forces after collision



Problem statement

• Without any spatial search data structure, the solutions to these 
problems require O(n) time, where n is the numbers of primitives ( 
O(n2) for the collision detection)

• Spatial data structure can make it (average) almost constant or 
expected logarithmic. 

• Strong complexity lower bound (worst case log) are possible only for 
restricted (often not-practical) settings.
• Hard to be proved, reasonable heuristics are the the standard



Indexing Structures

• Two Class of structures

• Non-Hierarchical / Flat space subdivision
• It would seem trivial, but there are reasons for them

• Hierarchical
• Divide et impera / adaptive subdivision



Uniform Grid

• Description: the space including the object is partitioned in cubic 
cells; each cell contains references to “primitives” (i.e., triangles) 

• Construction.
Primitives are assigned to: 
• The cell containing their feature point (e.g., barycenter or one of their 

vertices) 

• All the cells spanned by each primitive 

• Regular grids access by position is trivial:
• If you want to know if something is at (x,y,z) 

just use integer division… 



Uniform Grid

• Closest element (to point p):
• Start from the cell containing p

• Check for primitives inside growing 
spheres centered at p

• At each step the ray increases to the 
border of visited cells

• Cost
• Worst: O(#cells+n) 

• Average: O(1)



Uniform Grid

• Intersection with a ray:
• Find all the cells intersected by the 

ray

• For each intersected cell, test the 
intersection with the primitives 
referred in that cell

• Avoid multiple testing by flagging 
primitives that have been tested 
(mailboxing)

• Cost:
• Worst: 

• Aver:
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Uniform Grid

• Memory occupation: O(# cells + n) 

• Pros:
• Easy to implement 

• Fast query 

• Cons: 
• Memory consuming 

• Performance very sensitive to distribution of the primitives. 



Spatial Hashing

• The same as uniform grid, except that only non empty cells are 
allocated 



Spatial Hashing

• Cost: same as UG, except that in worst case the access  to a cell is 
O(#cells) because of collisions

• Memory occupation: 
• Worst.: all volumetric cells are used 
• Aver. : only a few surface intersecting cells are allocated

• Pros
• Fast query if good hashing is done 
• Easy to implement 
• Less memory consuming 

• Cons:
• Performance very sensitive to distribution of the primitives. 

Perfect spatial hashing [Lefebvre,Hoppe 06] 



UG Approach: Cell Size

• Uniform grids are input insensitive 

• What’s the best choice for the example below? 



Hierarchical Indexing 

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively 
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Hierarchical Indexing 

• Divide et impera strategies:
• The space is partitioned in sub regions

• ..recursively 



Basic Facts 

• The queries correspond to a visit of the tree
• The complexity is sublinear (logarithmic)

in the number of nodes 

• The memory occupation is linear 

• A hierarchical data structure is characterized by: 
• Number of children per node

• Spatial region corresponding to a node 



Binary Space Partition-Tree (BSP)

• Description: 
• It’s a binary tree obtained by recursively partitioning the space in two by a 

hyperplane 

• therefore a node always corresponds to a convex region 
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Binary Space Partition-Tree (BSP)

• Query: is the point p inside a primitive? 
• Starting from the root, move to the child associated with the half space 

containing the point 

• When in a leaf node, check all the primitives 

• Cost: 
• Worst: O(n) 

• Aver: O(log n)



Binary Space Partition-Tree (BSP)

• What could go wrong?
• What happen to split primitives? Can I bound them?

• Where to place the plane?

• A common strategy is:
• Primitives are planar

faces:

• Use one of the primitive
as splitting plane and
decompose the rest



BSP-Tree Cost

• Building a BSP-tree requires to choose the partition plane 

• Choose the partition plane that: 
• Gives the best balance?

• Minimize the number of splits ?

• .....it depends on the application 

• Cost of a BSP-Tree
C(T) = 1 + P(TL) C(TL)+P(TR) C(TR)
• Where P(TL) is probability that TL is visited given that T has been visited.



BSP Tree Cost

• How to choose the splitting primitive?

• Try to guess the cost:

C(T) = 1 + P(TL)C(TL)+P(TR)C(TR)
• We choose the primitive that minimize

1+|S(TL)|α + |S(TR)|α + βs

• SL number of primitives in the left subtree

• s number of primitives split by the chosen primitive

• Big 𝛼, small 𝛽 yield a balanced tree

• Big 𝛽 , small 𝛼 yield a smaller tree



KD-Tree

• Kd-tree : k dimensions tree

• It’s a special kind of BSP tree with axis-aligned bisector planes

• It depends on:
• Choosen Axis

• Point on axis where to define the plane

• Advantages wrt BSP:
• Test are really fast (to explore the tree)

• Lower memory consumption



KD-Tree
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Kd-tree More on cost

• Example Ray intersection

• C(T) = 1 + P(TL)C(TL)+P(TR)C(TR)

• The cost of a final leaf is roughly the number of primitives
• (you have to test them)

• P(TL) is more interesting: 



Kd-tree More on cost

You can consider rays as pairs of points 
over the surface of the cell. 

Intuitively a ray (p1,p2) that hits T hits 
also TL IFF either p1 or p2 are on TL

With a few assumptions on ray distrib.



KD-Tree:construction

• Input:
• axis-aligned bounding box (“cell”)

• List of triangles

• Base Operations
• Split a cell using an axis aligned plane (where?)

• Distribute triangles among the two sets

• Recursive call

In the middle median Cost optimized



KD-Tree:range query

• Query: return the primitives inside a given box

• Algorithm:
• Compute intersection between the node and the box

• If the node is entirely inside the box add all the primitives contained in the 
node to the result

• If the node is entirely outside the box return

• If the nodes is partially inside the box recur to the children

• Cost: if the leaf nodes contain one primitive and the tree is 

balanced:𝑂(𝑛1−
1

𝑑 + 𝑘) n = #primitives d=dimension

• O(n2d ) possible results



Nearest Neighbor with kd-tree

• Query: return the nearest primitive to a given point c 

• Algorithm: 
• Find the nearest neighbor in the leaf containing c 

• If the sphere intersect the region boundary, check the primitives contained 
in intersected cells 



Quad-Tree (2D)

• The plane is recursively subdivided in 4 subregions by couple of 
orthogonal planes



Quad-Tree (2d):example

• Widely used: 
• Terrain rendering: each cross in the quatree is associated with a height 

value 



Oct-Tree (3d)

• The same as quad-tree but in 3 dimensions: 

Large meshes: out of core



Oct-Tree (3d)

• Extraction of isosurfaces on large dataset
• Build an octree on the 3D dataset

• Each node store min and max value of the scalar field

• When computing the isosurface for alpha, nodes whose interval doesn’t 
contain alpha are discarded



Advantages of quad/oct tree

• Position and size of the cells are implicit

• They can be explored without pointers by using a linear array
(convenient only if the hierarchies are complete) where:



Conclusion

• No perfect data structure

• Depend a lot on your pattern of query
• Close  to surface vs random

• Static vs dynamic
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