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Motivations: Rendering
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[Layered Point clouds, Gobbetti 2004]
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point based rendering

Gaussian splatting



Motivations: Remeshing
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sampling v “ tessellation

Input mesh Point sampling Output mesh



Motivations: ge/Video stippling

[PixelPie: Maximal Poisson-disk Sampling with Rasterization]

[Bilateral blue noise sampling: Addi-
tional algorithms and applications]



Jittering
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Jittering: from aliasing to noise

——

————

256 samples per pixel as reference

1 sample per pixel (no jitter) 4 samples per pixel (jittered)



How to do sampling

* Characterization
e Domain: 2D,3D, surfaces..
* Metric: geodesic, euclidean
e Shape of the primitive: points, lines, balls
* Type of algorithms: jittering, dart Throwing, relaxation, Tiling



Poisson Disk Sampling

* A Poisson Disk Sampling is a sampling X = {(x;,r;) i = 1, ...,n} such
that
1. Minimal distance: V(x;,x;) € X, ||x; — x;[| > min (r;,77)
2. Unbiased sampling: The probability of a region to be covered is proportional
to its size

3. Maximal sampling property: Q € Udisk(x;,1;)
e Q: is any PDS a «good» sampling?

 A:No, a maximal PDS sampling (for a given
radius) is obtained placing samples at the
centers of cells of a hesagonal lattice



PDS: Dart Throwing [cookss]

DartThrowingPDS

n_miss = ©

do{

x_cand = RandomPoint()

if not x _cand € covered(X)
X = X + x_cand

else

n_miss = n_miss +1

} while(n_miss / (n_miss +#X) < threshold )

Works on any domain provided a metric
Very slow convercence rate, 0(n?) asymptotic complexity
Maximality not guaranteed in given time (likelability of «hit» tends to 0)

Many approaches devoted to efficiency and maximality



Efficiency in PDS algorithms

* Two basic operations that determine convercence speed of a PDS
algorithms

1. choosing a sample location with unbiased probability
2. Testing if a new location is not already covered



Scalloping [punbaros)(1/4): Dart Throwing in
O(nlogn)

e Core idea: if a sampling is not maximal, there must be an available
location in the neighborhood of the unavailable region

2r

Selection
of an
available

_ Update of the
location

neighborhood

unavailable
neighborhood

Algorithm and data structures
to do these steps efficiently (next slide)



Scalloping (2/4): Dart Throwing in O(nlogn)

* Scalloped regions:
* Def. Scalloped sector: a region of the domain bounded by two circular arcs
* Def: Scalloped region: a union of scalloped sectors




Scalloping (3/4): adding a new disk  orerof insertion

D(p dr), ' <p
Np —D(pa47°) U D(p'.2r), p' >p

Avallable p'eP
neighborhood d'Sk




Scalloping (4/4): Speed

* The maximum number of scalloped sectors of r neighboorhod is
bounded by a constant

* The update of neighboorhood is limited to the 4r radius from the
sample and can be done in O(1)

* Unbiased sampling. All available neighborhoods are stored in a
balanced tree O(log N)



Hierarchical Dart Throwing whiteon1 (1/3)

* Regular grid where each cell is the root of a quadtree

* Size of each cell so that it is completely covered by a disk which center is
inside the cell

e def: Active cell

Cell not yet entirely covered by a disk
 def: Active list with index i r \\

List of active cells at level i

e |Initial condition: Active list LO \f/

contains all the cells of the grid




Hierarchical Dart Throwing (2/3)

Hierarchical Dart Throwing

Put base level squares on active list O (the base level). r )

Initialize the point set to be empty. /

L] * S
While there are active squares \
q N

Choose an active square, S, with prob. proportional to area. v

Let i/ be the index of the active list containing S.
Remove § from the active lists.

I[f S 1s not covered by a point currently in the point set
Choose a random point, P, inside square S.

If P satisfies the minimum distance requirement
Add P to the point set. }o )
Else
Split S into its four child squares. /'i@//
Check each child square to see if it is covered. ey
Put each non-covered child of S on active list i+ 1.




HDT (3/3 ): Cost

e Coverage test: a secondary uniform grid of cells with size r stores a
copy of the point set. By construction, no cell can contain more than 4
points. Therefore, the cost for coverage is constant

* Choice of sample:
1. keep the sum of areas for each list ay, ..., a;
2. Generate a random number in [0,1] .

3. Hndn1st‘Z%Samx<ZPf
4. Picka random square |n the list

1. Asyntoptic cost: how many cells are created? Authors claim O(N):
«While we cannot provide a rigorous proof, we are
convinced that hierarchical dart throwing 1s O(N) 1n
both space and time on average»



PDS on surfaces (cineos) (1/6)

e «Essentially» the same as HDT
* Replace «uniform grid» with «triangulation»
* Replace «quadtree» with 1-4 triangle subdivision




PDS on surfaces [Cline09] (2/6)

Pick a point randomly, until the triangle Remove entirely
check that is not closer containing the pointis covered triangles from
than r to any other not entirely within the activel list.

point distance r, iterate 1-4 End when the list is

splitting empty.



PDS on surfaces [Cline09] (3/6): Cost

e Coverage test. Constant like in [White07]

* Unbiased sampling: Logarithmic binning
e each bin store a list of triangles within a range area
1. a=random value in [O,total_area]
2. Linear search on the bins until sum_b>a
3

Pick a triangle and accept with prob triangle_area/bin_area. Repeat until
accept

4. Pick a random point in the triangle D v ii D

=V ADP>A -

2 D =A< -

3 > aan~ ...



4/6)
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PDS on surfaces [ClineQ9]

 Does it work well?




PDS on surfaces [Cline09] (5/6)

e «Essentially» the same as HDT
* Replace «uniform grid» with «triangolation»
* Replace «quadtree» with 1-4 triangle subdivision
* Replace «Euclidean distance» with «geodesic distance»




6/6)

(

Euclidean distance

PDS on surfaces

geodesic distance




HDT in 3D space [corsini12]

e Surface immersed in a 3D uniform grid where each cell is the root of a
oct-tree

* The data structure is a direct extension of HDT except that the cell is
not the domain but it contains the domain (the triangles)

* Basic operation: once an active cell is chosen, pick a point on the
contained surface

A\

e Use of pregenerated samples //
</ [ ] ~~——— \‘>\
\\ selected sample / J
aiE
\
\\\\ 7




Samples generation

 Variant: just shuffle the initial overasampling and iterate point
removal. No hierarchy needed anymore!
1. Generate the pool: a dense sampling of the surface

2. Until there are available samples

1. Pick asample randomly
2. Remove the sample closer than he disk radius from the pool

e Q: Both versions work well: where is the trick?

* A: the creation of the pool essentially converts the initial «continuous» domain
(faces) in a point sampled one. The algorithm cannot guarantee maximality of the

sampling up to the intersample distance of the initial pool



xample uses

Importance sampling / variable radius

Edge preserving sampling



Voronol Decomposition



A recurring pattern in Nature




A recurring pattern in Nature




A recurring pattern in Nature
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Voronol Diagrams

* Main idea: a discrete set
of entities competing for
resources

* Post office problem

e Discussed since:

 René Descartes, Le Monde
(1644)




VVoronoi: a bit of theory

Consider a set P of points on the plane
P:{po, oo oy pl' e ooy pn}



Voronol: a bit of theory

The Voronoi Diagram
IS a partition of the \
plane

Consider for each
point p;

the region of the
plane closest to p;




Voronoi: a bit of theory

The Voronoi Diagram
IS a partition of the \
plane

Consider for each
point p;

the region of the
plane closest to p;

Regions are polygons ,
bounded by half °
olane intersections |



Voronol: a bit of theory

The dual of the Voronoi
Diagram is a nice \
triangulation of the

it sef T




Voronol: a bit of theory

The dual of the Voronoi
Diagram is a nice \
triangulation of the

noint set

Each triangle has the
empty-circle property




Voronol: Distribution of se,ed?
The Voronoi Diagram is o { ]
oartition of the plane |

Nice Voronoi Diagrams came
from nice point distributions
How to get nice point sets?

7




Centroidal Voronoi Diagrams

* VD generated from random
seeds are not well placed
around the seeds.

* Region are not “centered”
around the seeds

42



Centroidal Voronoi Diagrams

* VD generated from
random seeds are not well
placed around the seeds.

e Move the seeds towards
the centroid of the region




Centroidal Voronol
Diagrams

* VD generated from
random seeds are not well
placed around the seeds.

* Move the seeds toward
the centroid of the region

* Recompute VD




Centroidal Voronol
Diagrams

e Lloyd’ s Relaxation

e Until VD sites are not
centroids
— move site to centroid,
— recalculate VD




Lloyd’s method

1. generate the Voronoi tessellation V' (S) in Q

2. move each site s; € S to the centroid p; of the corresponding
Voronoi region V; € V/;

3. ifthe new sites in S meet some convergence criterion, then
terminate; otherwise return to step 1.

NN b Do CVT necessary lead to
2 VAR agood sampling? (e Ce e
— N\ / N \
A\ < ~ ~ |
/- .
~ \
NV N
~
— \ - e



Relaxation methods

* Methods that iteratively optimize the position of the samples w.r.t.

some energy function
 def: Centroidal Voronoi Tessellation (Diagram).

A CVT is a VT where each site (point) lies in the centroid of its region:

qu; rp(zx)dr

p(x) Some density function
Jv. p(z)dz

Pi =

+

+

+

+

* The minimum of the energy function below isona CVT

F(S,V) Z/ x) |z — si|” de,
1=1




CVT methods

 Methods that modify CVT to obtain better sampling properties
e Capacity Constrained CVT [balzer09] : CVT plus the constraint that each

region of the VT has the same area

input sites initial state ——  capacity-constrained optimization = —— final state output sites

Extension to surfaces. Capacity contrained Delaunay Triangulation
[chen12] o & '




Voronoi Diagrams over surfaces

* We just need a simple way to define the closest concept

e Geodesic:

* Shortest path
on the surface
connecting two
points




Relaxing Voronoi Diagrams




VD: Relaxing over the surface

e Centroid is not well defined
it could be outside the surface

* Switch to the energy minimizing center

* New site is the point having minimal sum of squared distances from all the
points of the region.



Voronoi Diagrams: Boundary

* Constraining seeds on
the boundary during
relaxation



Biasing the Voronoi Diagram

* The density of the pattern can be controlled
* Weight the distance according to a scalar field




Biasing the VD

* The orientation can also be
controlled

* You can bias the shape of the
cells: we use a frame
field to define deformation

* General solution:

e Deform the space of the domain
until the defined metricis isotropic.
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