
3D GEOMETRIC MODELING 
& PROCESSING 

Sampling

(thanks to Massimiliano Corsini for slides)



Motivations: Rendering

point based rendering

Photorealistic rendering

[Layered Point clouds, Gobbetti 2004] 

Gaussian splatting



Motivations: Remeshing

Input mesh Point sampling Output mesh

sampling tessellation



Motivations: Image/Video stippling
[PixelPie: Maximal Poisson-disk Sampling with Rasterization]

[Instant Stippling]

[Bilateral blue noise sampling: Addi-
tional algorithms and applications]



Jittering

Random Uniform Jittered

Domain not 
uniformly 
sampled

Domain  
uniformly 
but not in a 
random way

Uniform & 
random.
Trading 
aliasing for 
noise

S JitteredSampling(){
for each Cell in GRID
   S = S + RandomPointInThe Cell()
return S
} 



Jittering: from aliasing to noise



How to do sampling 

• Characterization
• Domain: 2D,3D, surfaces..

• Metric: geodesic, euclidean

• Shape of the primitive: points, lines, balls

• Type of algorithms: jittering, dart Throwing, relaxation, Tiling



Poisson Disk Sampling

• A Poisson Disk Sampling is a sampling 𝑋 = { 𝑥𝑖 , 𝑟𝑖  𝑖 = 1, … , 𝑛} such 
that

1. Minimal distance: ∀(𝑥𝑖 , 𝑥𝑗) ∈ 𝑋, ||𝑥𝑖 − 𝑥𝑗|| > min (𝑟𝑖 , 𝑟𝑗)

2. Unbiased sampling: The probability of a region to be covered is proportional 
to its size

3. Maximal sampling property: Ω ⊆ ⋃𝑑𝑖𝑠𝑘 𝑥𝑖 , 𝑟𝑖

• Q: is any PDS a «good» sampling?

• A: No, a maximal PDS sampling (for a given 
radius) is obtained placing samples at the 
centers of cells of a hesagonal lattice



PDS: Dart Throwing [cook86]

DartThrowingPDS

n_miss = 0 

do{

 x_cand = RandomPoint()

 if  not x_cand ⊆ covered(X) // no disk in X contains x_cand

  X = X + x_cand // hit

 else

  n_miss = n_miss +1 // miss 

} while(n_miss / (n_miss +#X) < threshold )

• Works on any domain provided a metric

• Very slow convercence rate, 𝑂(𝑛2) asymptotic complexity

• Maximality not guaranteed in given time (likelability of «hit» tends to 0)

• Many approaches devoted to efficiency and maximality 



Efficiency in PDS algorithms

• Two basic operations that determine convercence speed of a PDS 
algorithms

1. choosing a sample location with unbiased probability

2. Testing if a new location is not already covered



Scalloping [Dunbar06](1/4): Dart Throwing in 
𝑂(𝑛 log 𝑛)
• Core idea: if a sampling is not maximal, there must be an available 

location in the neighborhood of the unavailable region

unavailable
neighborhood

𝑟

2𝑟
Selection 
of an 
available 
location

Update of the 
neighborhood

Algorithm and data structures 
to do these steps efficiently (next slide)



Scalloping (2/4): Dart Throwing in 𝑂(𝑛 log 𝑛)

• Scalloped regions:

• Def. Scalloped sector: a region of the domain bounded by two circular arcs

• Def: Scalloped region: a union of scalloped sectors



Scalloping (3/4): adding a new disk 

disk

Order of insertion

Available 
neighborhood



Scalloping (4/4): Speed

• The maximum number of scalloped sectors of r neighboorhod is 
bounded by a constant

• The update of neighboorhood is limited to the 4r radius from the 
sample and can be done in O(1)

• Unbiased sampling. All available neighborhoods are stored in a 
balanced tree O(log N)



Hierarchical Dart Throwing [White07]  (1/3)

• Regular grid where each cell is the root of a quadtree

• Size of each cell so that it is completely covered by a disk which center is 
inside the cell

• def: Active cell
Cell not yet entirely covered by a disk

• def: Active list with index i
List of active cells at level i

• Initial condition: Active list L0
contains all the cells of the grid 

𝑟

𝑟

2



Hierarchical Dart Throwing (2/3)

𝑆



HDT (3/3 ): Cost 

• Coverage test: a secondary uniform grid of cells with size 𝑟 stores a 
copy of the point set. By construction, no cell can contain more than 4 
points.  Therefore, the cost for coverage is constant

• Choice of sample: 
1. keep the sum of areas for each list 𝑎0, … , 𝑎𝑘

2. Generate a random number in [0,1]

3. Find m s.t. 

4. Pick a random square in the list 

1. Asyntoptic cost: how many cells are created? Authors claim 𝑂 𝑁 :
«While we cannot provide a rigorous proof, we are 
convinced that hierarchical dart throwing is O(N) in 

both space and time on average»



PDS on surfaces [Cline09] (1/6)

• «Essentially» the same as HDT
• Replace «uniform grid» with «triangulation»

• Replace «quadtree» with 1-4 triangle subdivision



PDS on surfaces [Cline09] (2/6)

Pick a point randomly, 
check that is not closer 
than r to any other 
point

until the triangle 
containing the point is 
not entirely within 
distance r, iterate 1-4 
splitting 

Remove entirely 
covered triangles from 
the activel list.
End when the list is 
empty.



PDS on surfaces [Cline09] (3/6): Cost

• Coverage test. Constant like in [White07]

• Unbiased sampling: Logarithmic binning
• each bin store a list of triangles within a range area

1. a = random value in [0,total_area]

2. Linear search on the bins until sum_b>a

3. Pick a triangle and accept with prob triangle_area/bin_area. Repeat until 
accept

4. Pick a random point in the triangle



PDS on surfaces [Cline09] (4/6)

• Does it work well?



PDS on surfaces [Cline09] (5/6)

• «Essentially» the same as HDT
• Replace «uniform grid» with «triangolation»

• Replace «quadtree» with 1-4 triangle subdivision

• Replace «Euclidean distance» with «geodesic distance»



PDS on surfaces (6/6)

Euclidean distance geodesic distance



HDT in 3D space [Corsini12]

• Surface immersed in a 3D uniform grid where each cell is the root of a 
oct-tree

• The data structure is a direct extension of HDT except that  the cell is 
not the domain but it contains the domain (the triangles)

• Basic operation: once an active cell is chosen, pick a point on the 
contained surface 

• Use of pregenerated samples



Samples generation

• Variant: just shuffle the initial overasampling and iterate point 
removal. No hierarchy needed anymore!

1. Generate the pool: a dense sampling of the surface

2. Until there are available samples 
1. Pick a sample randomly

2. Remove the sample closer than he disk radius from the pool

• Q: Both versions work well: where is the trick?

• A: the creation of the pool essentially converts the initial «continuous» domain 
(faces) in a point sampled one. The algorithm cannot guarantee maximality of the 
sampling up to the intersample distance of the initial pool 



Example uses

Importance sampling / variable radius

Subsampling Point clouds

Edge preserving sampling



Voronoi Decomposition



A recurring pattern in Nature



A recurring pattern in Nature



A recurring pattern in Nature



A recurring pattern in nature



A recurring pattern in Nature



Voronoi Diagrams

• Main idea: a discrete set 
of entities competing for 
resources

• Post office problem

• Discussed since: 
• René Descartes, Le Monde 

(1644)



Voronoi: a bit of theory

Consider a set P of points on the plane
P = {p0 , …, pi , …, pn}

P



Voronoi: a bit of theory

The Voronoi Diagram 
is a partition of the 

plane

Consider for each 

point pi

the region of the 

plane closest to pi

pi



Voronoi: a bit of theory

The Voronoi Diagram 
is a partition of the 

plane

Consider for each 

point pi

the region of the 

plane closest to pi

Regions are polygons 

bounded by half 
plane intersections

pi
pj



Voronoi: a bit of theory

The dual of the Voronoi 
Diagram is a nice

triangulation of the 

point set



Voronoi: a bit of theory

The dual of the Voronoi 
Diagram is a nice

triangulation of the 

point set

Each triangle has the 
empty-circle property



Voronoi: Distribution of seeds
The Voronoi Diagram is a 
partition of the plane

Nice Voronoi Diagrams came 

from nice point distributions

How to get nice point sets?
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Centroidal Voronoi Diagrams

• VD generated from random 
seeds are not well placed 
around the seeds.

• Region are not “centered”
around the seeds
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Centroidal Voronoi Diagrams

• VD generated from 
random seeds are not well 
placed around the seeds.

• Move the seeds towards 
the centroid of the region
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Centroidal Voronoi 

Diagrams

• VD generated from 
random seeds are not well 
placed around the seeds.

• Move the seeds toward 
the centroid of the region

• Recompute VD
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Centroidal Voronoi 

Diagrams

• Lloyd’s Relaxation

• Until VD sites are not 
centroids

– move site to centroid,

– recalculate VD



Lloyd’s method

1. generate the Voronoi tessellation 𝑉(𝑆) in Ω

2. move each site 𝑠𝑖 ∈ 𝑆 to the centroid 𝑝𝑖 of the corresponding 
Voronoi region 𝑉𝑖 ∈ 𝑉;

3. if the new sites in 𝑆 meet some convergence criterion, then 
terminate; otherwise return to step 1.

Do CVT necessary lead to 
a good sampling?



Relaxation methods

• Methods that iteratively optimize the position of the samples w.r.t. 
some energy function

• def: Centroidal Voronoi Tessellation (Diagram).
A CVT is a VT where each site (point) lies in the centroid of its region:

• The minimum of the energy function below is on a  CVT

𝜌(𝑥) Some density function



CVT methods

• Methods that modify CVT to obtain better sampling properties

• Capacity Constrained CVT [balzer09] : CVT plus the constraint that each 
region of the VT has the same area

Extension to surfaces. Capacity contrained Delaunay Triangulation 
[chen12]



Voronoi Diagrams over surfaces

• We just need a simple way to define the closest concept

• Geodesic: 
• Shortest path

on the surface 
connecting two  
points



Relaxing Voronoi Diagrams



VD: Relaxing over the surface

• Centroid is not well defined
• it could be outside the surface

• Switch to the energy minimizing center
• New site is the point having minimal sum of squared distances from all the 

points of the region. 



Voronoi Diagrams: Boundary

• Constraining seeds on
the boundary during
relaxation



Biasing the Voronoi Diagram

• The density of the pattern can be controlled

• Weight the distance according to a scalar field



Biasing the VD

• The orientation can also be 
controlled 

• You can bias the shape of the 
cells: we use a frame
field to define deformation

• General solution:
• Deform the space of the domain 

until the defined metric is isotropic. 
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