Discrete Differential Geometry

Paolo Cignoni

paolo.cignoni@isti.cnr.it

http://vcg.isti.cnr.it/~cignoni

Normal

Let's consider a 2 manifold surface S in R³

■Suppose to have a mapping $R^2 \rightarrow R^3$

$$S(U,V) \rightarrow \mathbb{R}^3$$

■Then we can define the normal for each point of the surface as:

$$n = (x_u \times x_v) / \|x_u \times x_v\|$$

Where Xu and Xv are vectors on tangent space

Normal

Normals on triangle meshes

- Computed per-vertex and interpolated over the faces
- Common: consider the tangent plane as the average among the planes containing all the faces incident on the vertex

Normals on triangle meshes

- Does it work? Yes, for a "good" tessellation
 - Small triangles may change the result dramatically
 - Weighting by area, angle, edge len helps
 - Note: if you get the normal as cross product of adj edges, if you leave it un-normalized its length is twice the area of the triangle -> you can get the area weighting for free

Curvature

Curvature

Consider the plane along n,t and the 2D curve defined on it

Curvature in 2D

■ The curvature of C at P is then defined to be the reciprocal of the radius of osculating circle at point P.

The osculating circle of a curve C at a given point P is the circle that has the same tangent as C at point P as well as the same curvature.

Just as the tangent line is the line best approximating a curve at a point P, the osculating circle is the best circle that approximates the curve at P

Main curvature directions

- \blacksquare For each direction \mathbf{t} , we define a curvature value k.
- Let's consider the two directions $\mathbf{k_1}$ and $\mathbf{k_2}$ where the curvature values k_1 and k_2 are **maximum** and **minimum**

□ Euler theorem

 $\mathbf{k_1}$ and $\mathbf{k_2}$ are perpendicular and curvature along a direction t making an angle θ with $\mathbf{k_1}$ is:

$$k_{\theta} = k_1 \cos^2 \theta + k_2 \sin^2 \theta$$

Gaussian curvature

Defined as $K = k_1 \cdot k_2$

■ >0 when the surface is a sphere

0 if locally flat

<0 for hyperboloids</p>

Gaussian curvature

- A point x on the surface is called:
 - **elliptic** if K > 0 (k_1 and k_2 have the same sign)
 - hyperbolic if K < 0(k_1 and k_2 have opposite sign)
 - **parabolic** if K = 0 (exactly one of k_1 and k_2 is zero)
 - **planar** if K = 0 (equivalently $k_1 = k_2 = 0$).

elliptic

parabolic

hyperbolic

planar

Different classes distributed on the surface

Developable surfaces

- □ Developable surface \Leftrightarrow K = 0
- ■Flattening introduce no distortion

Gaussian Curvature: intrinsic / extrinsic

- □ Gaussian curvature is an **intrinsic** properties of the surface (even if we defined in an extrinsic way)
- □ It is possible to determine it by moving on the surface keeping the geodesic distance constant to a radius r and measuring the circumference C(r):

$$K = \lim_{r \to 0} \frac{6\pi r - 3C(r)}{\pi r^3}$$

Mean Curvature

$$\Box H = (k_1 + k_2)/2$$

■ Measure the **divergence** of the normal in a local neighborhood of the surface

■The **divergence div**_s is an operator that measures a vector field's tendency to originate from or converge upon a given point

Divergence

- □ Imagine a vector field represents water flow:
 - \square If div_s is a positive number, then water is flowing out of the point.
 - If div_s is a negative number, then water is flowing into the point.

Minimal surface and minimal area surfaces

- A surface is **minimal** iff H=0 everywhere
- □ All surfaces of minimal AREA (subject to boundary constraints) have H= 0 (not always true the opposite!)
- ■The surface tension of an interface, like a soap bubble, is proportional to its mean curvature

Then... finally...

□Red > 0 Blue < 0 , not the same scale

□Given a function $F: \mathbb{R}^2 \to \mathbb{R}$ (our surface) the **gradient** of F is the vector field $\nabla F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the partial derivatives:

$$\nabla F(x,y) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)$$

□Intuitively: At the point p_0 , the vector $\nabla F(p_0)$ points in the direction of greatest change of F.

□Given a function $F(F_1,F_2)$: $R^2 \rightarrow R^2$ the **divergence** of F is the function $div:R^2 \rightarrow R$ defined as:

div
$$F(x,y) = \partial F_1/\partial x + \partial F_2/\partial y$$

Intuitively: At the point p_0 , the divergence div $F(p_0)$ is a measure of the extent to which the flow (de)compresses at p_0 .

Some math.... Laplacian

□Given a function $F(F_1,F_2)$: $R^2 \rightarrow R$ the Laplacian of F is the function ΔF : $R^2 \rightarrow R$ defined by the divergence of the gradient of the partial derivatives:

$$\Delta F = div(\nabla F(x,y)) = \partial^2 F/\partial x^2 + \partial^2 F/\partial y^2$$

Intuitively: The Laplacian of F at the point p_0 measures the extent to which the value of F at p_0 differs from the average value of F its neighbors.

Discrete Differential Operators

- Assumption: Meshes are piecewise linear approximations of smooth surfaces
- Approach: Approximate differential properties at point x as spatial average over local mesh neighbourhood N(x), where typically
 - x = mesh vertex
 - N(x) = n-ring neighborhood (or local geodesic ball)

Discrete Laplacian

Uniform discretization

$$\Delta_{uni} f(v) := \frac{1}{|\mathcal{N}_1(v)|} \sum_{v_i \in \mathcal{N}_1(v)} (f(v_i) - f(v))$$

- depends only on connectivity → simple and efficient
- bad approximation for irregular triangulations

Discrete Laplacian

Cotangent formula

$$\Delta_{\mathcal{S}} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal{N}_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v))$$

Discrete Curvatures

■ Mean Curvature $\mathbf{H} = \|\Delta_{\mathbf{S}}\mathbf{X}\|$

Principal Curvatures

$$\kappa_1 = H + \sqrt{H^2 - G}$$

$$\kappa_2 = H - \sqrt{H^2 - G}$$

Mean curvature on a triangle mesh

$$H(p) = \frac{1}{2A} \sum (\cot \alpha_i + \cot \beta_i) \|p - p_i\|$$

where α_j and β_j are the two angles opposite to the edge in the two triangles having the edge e_{ij} in common A is the sum of the areas of the triangles

Gaussian curvature on a triangle mesh

It's the angle defect over the area

*

$$\kappa_G(\nu_i) = \frac{1}{3A} \left(2\pi - \sum_{t_j \text{ adj } \nu_i} \theta_j \right)$$

Gauss-Bonnet Theorem: The integral of the Gaussian Curvature on a closed surface depends on the Euler number

$$\int_{S} \kappa_{G} = 2\pi \chi$$

Discrete Curvatures

- □ Problems:
 - Depends on triangulation!
 - Very sensitive to Noise...

Curvature via Surface Fitting

- The radius r of the neighborhood of each point p is used as a scale parameter
 - 1. gather all faces in a local neighborhood of radius r

where n_v is the number of vertices gathered and n_i is the surface normal at each such vertex

Curvature via Surface Fitting

- 3. discard all vertices v_i such that $n_i \cdot w < 0$
- 4. set a local frame (u,v,w) where u and v are any two orthogonal unit vectors lying on the plane orthogonal to w, and such that the frame is right-handed
- 5. express all vertices of the neighborhood in such a local frame with origin at *p*
- 6. fit to these points a polynomial of degree two through *p* (least squares fitting)

$$f(u,v) = au^2 + bv^2 + cuv + du + ev$$

Curvatures at p are computed analytically via first and second fundamental forms of f at the origin

curvature via surface fitting

Curvatures extracted at different scales

Screen Space Mean Curvature

```
// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/)
#extension GL OES standard derivatives: enable
varying vec3 normal;
varying vec3 vertex;
void main() {
 vec3 n = normalize(normal);
 // Compute curvature
 vec3 dx = dFdx(n);
 vec3 dy = dFdy(n);
 vec3 xneq = n - dx;
 vec3 xpos = n + dx;
 vec3 yneg = n - dy;
 vec3 ypos = n + dy;
 float depth = length(vertex);
 float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;
 // Compute surface properties
 vec3 light = vec3(0.0);
 vec3 ambient = vec3(curvature + 0.5);
 vec3 diffuse = vec3(0.0);
 vec3 specular = vec3(0.0);
 float shininess = 0.0:
 // Compute final color
 float cosAngle = dot(n, light);
 al FraaColor.rab = ambient +
  diffuse * max(0.0, cosAngle) +
  specular * pow(max(0.0, cosAngle), shininess);
```

Known effect as Cavity Shading

Curvature Directions (VCG)

