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Normal

Let's consider a 2 manifold surface S in R3

Suppose to have a mapping R2=»R3
S(u,v) = RS

Then we can define the normal for each
point of the surface as:

N= Xy X Xy)/ I Xy x Xyl

Where Xu and Xv are vectors on fangent space



Normal

Normal N = (Xy X Xy)/ Xy X Xyl




Normals on triangle meshes

% Computed per-vertex and interpolated over the
faces

< Common: consider the tangent plane as the
average among the planes containing all the
faces incident on the vertex

Ty

My = IR 2o fen() U
N(v)=A{f:f coface of v}




Normals on triangle meshes

% Does it work? Yes, for a “"good” tessellation

“*Small triangles may change the result
dramatically
% Weighting by area, angle, edge len helps

< Note: if you get the normal as cross product of adj edges, if
you leave it un-normalized its length is twice the area of the
triangle -> you can get the area weighting for free




Curvature

X : X
Define a tangent vector 1 = COS(pm + Sn(pm
u \




Curvature

Consider the plane along n,t and the 2D curve defined on
it

An

.




Curvature in 2D

The curvature of C at P is then defined to be the reciprocal
of the radius of osculating circle at point P.

C

The osculating circle of a
curve C at a given point P is
the circle that has the same
tangent as C at point P as
well as the same curvature.

Just as the tangent line is the
line best approximating a
curve at a point P, the
osculating circle is the best
circle that approximates the
curve at P



Main curvature directions

For each direction t, we define a
curvature value k.

Let’s consider the two directions k;
and k, where the curvature values k;
and k, are maximum and minimum

Euler theorem
k, and k, are perpendicular and
curvature along a direction t making an
angle 6 with k; is:

ky = Kk, €0S%0 + kK, Sin%0




Gaussian curvature

Defined as K=k;- k,
O >0 when the surface is a sphere
O Oif locally flat
O <O for hyperboloids

1 K>0

K=0

K<0



Gaussian curvature

A point x on the surface is called:
O ellipticifK>0
(k; and k, have the same sign)

O hyperbolic if K <O
(k; and k, have opposite sign)

O parabolic if K=0
(exactly one of k; and k, is zero)

O planarifK=0
(equivalently k,=k,=0).

parabolic




Different classes distributed on the surface
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Developable surfaces

Developable surface & K=0

Flattening infroduce no distortion




Gaussian Curvature: intrinsic / extrinsic

Gaussian curvature is an intrinsic
properties of the surface (even if we
defined in an extrinsic way)

It is possible to determine it by moving
on the surface keeping the geodesic
distance constant fo a radius r and K>0
measuring the circumference CJr) :

K = lim o~ (1)
r—0 TIT3

K<O



Mean Curvature

H=(k;+k,)/2

Measure the divergence of the normal in a local
neighborhood of the surface

The divergence div, is an operator that measures o
vector field's tendency to originate from or converge
upon a given point



Divergence

Imagine a vector field represents water flow:
O If divgis a positive number, then water is flowing out of the point.
O If div,is a negative number, then water is flowing into the point.
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Minimal surface and minimal area surfaces

A surface is minimal iff H=0 everywhere

All surfaces of minimal AREA (subject to boundary constraints) have
H= 0 (not always true the oppositel)

The surface tension of an interface, like a soap bubble, is
proportional to its mean curvature




Then... finally...

Red > 0 Blue <0 , not the same scale

mean gaussian min mMax



Some math.... Gradient and divergence

Given a function F: R2—R (our surface) the gradient of F is the vector
field VF:R2—R2 defined by the partial derivatives:

OF 6F]

VF(x,y)=[ax,ay

Intuitively: At the point p,, the vector VF(p,) points in the direction of
greatest change of F.



Some math.... Gradient and divergence
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Some math.... Gradient and divergence

Given a function F(F,,F,): RZ—R? the divergence of F is the function
div:R2—R defined as:

div F(x,y)= dF,/ox + dF,/ay

Intuitively: At the point p,, the divergence div F(p,) is a measure of
the extent to which the flow (de)compresses at p,.



ivergence
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Some math....

=x2+y2

F(x,y)
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div VF(x,y)



Some marth.... Laplacian

Given a function F(F,,F,): R2—R
the Laplacian of Fis the function AF: R2—R defined by the
divergence of the gradient of the partial derivatives:

AF= div(VF(X,y))=0%F/ox? + d%F/dy?

Intuitively: The Laplacian of F at the point p, measures the extent to
which the value of F at p, differs from the average value of Fits
neighbors.



Discrete Difterential Operators

Assumption: Meshes are piecewise linear
approximations of smooth surfaces

Approach: Approximate differential properties at
point x as spatial average over local mesh
neighbourhood N(x), where typically

* x = mesh vertex
* N(x) = n-ring neighborhood (or local geodesic ball)



Discrete Laplacian

Uniform discretization

Bunf 0) = T D (F0) = F (@)

v; EN1 (’U)

O depends only on connectivity - simple and
efficient

O bad approximation for irregular triangulations



Discrete Laplacian

Cotangent formula

2

Asf(v) :== A0)

> (cotai +cot ) (f(vi) = f(v))
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Discrete Curvatures

Mean Curvature H = ||AgX|l

A
Gaussian Curvature G = (21— Z Q) A ‘

| 9

Principal Curvatures

Ki=H+ VH2-G Ko=H— VH2- G



Mean curvature on a triangle
mesh

1
H(p) = 5 ) (cota; + cotfy) ip — pil

where o; and [; are the two angles opposite to the edge in the
two triangles having the edge e;; in common
A is the sum of the areas of the triangles




Gaussian curvature on a triangle
mesh
% It's the angle defect over the area

K(vi)=53 (27— 2, 6))
t.adjv,
< Gauss-Bonnet Theorem: The integral of the

Gaussian Curvature on a closed surface
depends on the Euler number
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Discrete Curvatures

Problems:
O Depends on friangulation!
O Very sensitive to Noise...



Curvature via Surface Fitting

The radius r of the neighborhood of

each point p is used as a scale
parameter

O 1. gather all faces in a local
neighborhood of radius r

1 T
O 2. .set anaxis W = n_ E 1;

™ .
1—1

where n, is the number of vertices

gathered and n; is the surface normall
at each such vertex




Curvature via Surface Fitting

O 3. discard all vertices v; such that n:w <0

O 4.set alocal frame (u,v,w) where u and v
are any two orthogonal unit vectors lying on
the plane orthogonal to w, and such that
the frame is right-handed

O 5. express all vertices of the neighborhood in
such a local frame with origin at p

O 4. fit to these points a polynomial of degree
two through p (least squares fitting)

flu,v) = au® + bv* + cuv + du + ev

Curvatures at p are computed analytically
via first and second fundamental forms of 1
at the origin




curvature via surtace fitfing

Curvatures extracted at different scales
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Screen Space Mean Curvature

// License: CCO (http://creativecommons.org/publicdomain/zero/1.0/) Known effeCT OS
#extension GL_OES_standard_derivatives : enable . .
Cavity Shading

varying vec3 nomal;
varying vec3 vertex;

void main() {
vec3 n = normalize(normal);

// Compute curvature

vec3 dx = dFdx(n);

vec3 dy = dFdy(n);

vec3 xneg =n - dx;

vec3 xpos = n +dx;

vec3 yneg =n -dy;

vec3 ypos = n+ dy;

float depth = length(vertex);

float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

// Compute surface properties

vec3 light =vec3(0.0);

vec3 ambient = vec3(curvature + 0.5);
vec3 diffuse = vec3(0.0);

vec3 specular =vec3(0.0);

float shininess = 0.0;

// Compute final color
float cosAngle = dot(n, light);
gl_FragColor.rgb = ambient +
diffuse * max(0.0, cosAngle) +
specular * pow(max (0.0, cosAngle), shininess);

}
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