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Normal 

Let’s consider a 2 manifold surface S in R3

Suppose to have a mapping  R2 
➔R3

  S(u,v) ➔ R3

Then we can define the normal for each 
point of the surface as:

Where Xu and Xv are vectors on tangent space

Mark Pauly

Differential Geometry

• Continuous surface

• Normal vector

– assuming regular parameterization, i.e.
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x(u,v) =

⎛

⎝
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⎞

⎠ , (u,v) ∈ IR2

n = (xu × xv)/ ∥xu × xv∥

xu × xv ̸= 0
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Normals on triangle meshes

❖ Computed per-vertex and interpolated over the 
faces

❖ Common: consider the tangent plane as the 
average among the planes containing all the 

faces incident on the vertex



Normals on triangle meshes

❖  Does it work? Yes, for a “good” tessellation

❖Small triangles may change the result 

dramatically

❖ Weighting by area, angle, edge len  helps
❖ Note: if you get the normal as cross product of adj edges, if 

you leave it un-normalized its length is twice the area of the 

triangle -> you can get the area weighting for free  



Curvature

 Define a tangent vector
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• Normal Curvature

Differential Geometry
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xv

∥xv∥



 Consider the plane along n,t and the 2D curve defined on 
it

Curvature



 The curvature of C at P is then defined to be the reciprocal 
of the radius of osculating circle at point P. 

Curvature in 2D

The osculating circle of a 
curve C at a given point P is 

the circle that has the same 

tangent as C at point P as 
well as the same curvature. 

Just as the tangent line is the 

line best approximating a 

curve at a point P, the 
osculating circle is the best 

circle that approximates the 
curve at P



For each direction t , we define a 
curvature value k.

Let’s consider the two directions k1

and k2 where the curvature values k1

and k2 are maximum and minimum

Euler theorem
k1 and k2 are perpendicular and 
curvature along a direction t making an 
angle θ with k1 is:

kθ = k1 cos2θ + k2 sin
2θ

Main curvature directions
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Curvature principali



Defined as K= k1· k2

 >0 when the surface is a sphere

 0 if locally flat

 <0 for hyperboloids

Gaussian curvature

K>0

K<0

K=0



A point x on the surface is called:

 elliptic if K > 0 

(k1 and k2 have the same sign) 

 hyperbolic if K < 0 

(k1 and k2 have opposite sign) 

 parabolic if K = 0 

(exactly one of k1 and k2 is zero)

 planar if K = 0 

(equivalently k1=k2=0). 

Gaussian curvature

elliptic

hyperbolic

parabolic

planar



Different classes distributed on the surface

elliptic hyperbolicparabolic planar



Developable surface ⇔ K = 0

Flattening introduce no distortion

Developable surfaces



Gaussian curvature is an intrinsic 
properties of the surface (even if we 
defined in an extrinsic way)

It is possible to determine it by moving 
on the surface keeping the geodesic 
distance constant to a radius r and 
measuring the circumference C(r) :

Gaussian Curvature: intrinsic / extrinsic
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Differential Geometry

• Intrinsic geometry: Properties of the surface that 

only depend on the first fundamental form

– length

– angles

– Gaussian curvature (Theorema Egregium)
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K = lim
r→0

6πr − 3C(r)

πr3
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Curvatura Gaussiana

Positiva e negativa

K>0

10

Curvatura Gaussiana

Positiva e negativa

K<0



H=(k1+k2)/2

Measure the divergence of the normal in a local 
neighborhood of the surface

The divergence divs is an operator that measures a 

vector field's tendency to originate from or converge 
upon a given point

Mean Curvature



Imagine a vector field represents water flow:

 If divs is a positive number, then water is flowing out of the point.

 If divs is a negative number, then water is flowing into the point.

Divergence

divs >0 divs >0 divs =0 divs =0 divs >0



A surface is minimal iff H=0 everywhere

All surfaces of minimal AREA (subject to boundary constraints) have 
H= 0 (not always true the opposite!)

The surface tension of an interface, like a soap bubble, is 
proportional to its mean curvature

Minimal surface and minimal area surfaces



Red > 0 Blue < 0 , not the same scale

Then… finally…

mean gaussian min max



Given a function F: R2→R (our surface) the gradient of F is the vector 

field ∇F:R2→R2 defined by the partial derivatives: 

Intuitively: At the point p0, the vector ∇F(p0) points in the direction of 
greatest change of F. 

Some math…. Gradient and divergence



Example :

Some math…. Gradient and divergence



Given a function F(F1,F2): R
2→R2 the divergence of F is the function 

div:R2→R defined as:

 div F(x,y)= ∂F1/∂x + ∂F2/∂y 

Intuitively: At the point p0, the divergence div F(p0) is a measure of 
the extent to which the flow (de)compresses at p0. 

Some math…. Gradient and divergence



Example :

Some math…. Gradient and divergence

div ∇F(x,y) = 4 div ∇F(x,y) = 0



Given a function F(F1,F2): R
2→R 

the Laplacian of F is the function ΔF: R2→R defined by the 
divergence of the gradient of the partial derivatives:

ΔF= div(∇F(x,y))=∂2F/∂x2 + ∂2F/∂y2

Intuitively: The Laplacian of F at the point p0 measures the extent to 
which the value of F at p0 differs from the average value of F its 
neighbors.

Some math…. Laplacian



Discrete Differential Operators

Assumption: Meshes are piecewise linear 

approximations of smooth surfaces 

• Approach: Approximate differential properties at 

point x as spatial average over local mesh 

neighbourhood N(x), where typically 

• x = mesh vertex

• N(x) = n-ring neighborhood (or local geodesic ball)



Discrete Laplacian

Uniform discretization

depends only on connectivity → simple and 

efficient

bad approximation for irregular triangulations 



 Cotangent formula

Discrete Laplacian
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Discrete Laplace-Beltrami

• Cotangent formula
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∆Sf (v) :=
2

A(v)
vi ∈ N1(v)

(cot αi + cot βi ) (f (vi ) − f (v))

v

vi vi

v A(v) v

vi

αi

βi



 Mean Curvature

 Gaussian Curvature

 Principal Curvatures

Discrete Curvatures
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Discrete Curvatures

• Mean curvature

• Gaussian curvature

• Principal curvatures
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G= (2π−

j

θj )/A

A

θj

κ1 = H + H2− G κ2 = H − H2− G

H = ∥∆Sx∥
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Mean curvature on a triangle 
mesh



Gaussian curvature on a triangle 
mesh

❖ It's the angle defect over the area

❖

❖Gauss-Bonnet Theorem: The integral of the 

Gaussian Curvature on a closed surface 
depends on the Euler number 



Problems:

 Depends on triangulation!

 Very sensitive to Noise…

Discrete Curvatures



 The radius r of the neighborhood of 
each point p is used as a scale 
parameter

 1. gather all faces in a local 

neighborhood of radius r

 2. set an axis                          

 where nv is the number of vertices 
gathered and ni is the surface normal 
at each such vertex 

Curvature via Surface Fitting



 3. discard all vertices vi such that ni⋅w < 0

 4. set a local frame (u,v,w) where u and v 

are any two orthogonal unit vectors lying on 

the plane orthogonal to w, and such that 

the frame is right-handed

 5. express all vertices of the neighborhood in 

such a local frame with origin at p    

 6. fit to these points a polynomial of degree 

two through p (least squares fitting)

 Curvatures at p are computed analytically 
via first and second fundamental forms of f 
at the origin

Curvature via Surface Fitting
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curvature  via  surface fitting

 Curvatures extracted at different scales



Screen Space Mean Curvature

 Known effect as 
Cavity Shading

// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/)
#extension GL_OES_standard_derivatives : enable

varying vec3 normal;
varying vec3 vertex;

void main() {

  vec3 n = normalize(normal);

  // Compute curvature

  vec3 dx = dFdx(n);
  vec3 dy = dFdy(n);

  vec3 xneg = n - dx;
  vec3 xpos = n + dx;
  vec3 yneg = n - dy;

  vec3 ypos = n + dy;
  float depth = length(vertex);

  float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

  // Compute surface properties

  vec3 light = vec3(0.0);
  vec3 ambient = vec3(curvature + 0.5);

  vec3 diffuse = vec3(0.0);
  vec3 specular = vec3(0.0);
  float shininess = 0.0;

  // Compute final color

  float cosAngle = dot(n, light);
  gl_FragColor.rgb = ambient +
    diffuse * max(0.0, cosAngle) +

    specular * pow(max(0.0, cosAngle), shininess);
}



Curvature Directions (VCG)

Taubin Normal Cycle

PCA Multiscale
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