Discrete Differential Geometry

Paolo Cignoni paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni

Let's consider a 2 manifold surface S in \mathbb{R}^3

□Suppose to have a mapping R^2 **→** R^3 **Exercised**
Exercised o have a mapping $R^2 \rightarrow R^3$

$$
S(U,V) \rightarrow R^3
$$

Then we can define the normal for each point of the surface as: point of the surface as:

$n = (x_{u} \times x_{v})/||x_{u} \times x_{v}||$

Where Xu and Xv are vectors on tangent space

Normal

x(u,v) =

• Normal vector

O Normal $n = (x_u × x_v)/||x_u × x_v||$

z(u,v)

Normals on triangle meshes

- ❖ Computed per-vertex and interpolated over the faces
- ❖ Common: consider the tangent plane as the average among the planes containing all the faces incident on the vertex

Normals on triangle meshes

- ❖ Does it work? Yes, for a "good" tessellation
	- ❖Small triangles may change the result dramatically
	- ❖ Weighting by area, angle, edge len helps
		- ❖ Note: if you get the normal as cross product of adj edges, if you leave it un-normalized its length is twice the area of the triangle -> *you can get the area weighting for free*

Curvature p t

D Define a tangent vector **t = cosφ** xu $\overline{\|\mathsf{x}_{\mathsf{u}}\|}$ $+ \sin \varphi$ xv $\overline{\|\mathsf{X}_\mathsf{V}\|}$

Curvature

O Consider the plane along n,t and the 2D curve defined on it $\mathbf n$ $\overline{\mathbf{C}}$ O

Curvature in 2D

 \Box The curvature of C at P is then defined to be the reciprocal of the radius of osculating circle at point P.

The osculating circle of a curve C at a given point P is the circle that has the same **tangent** as C at point P as well as the same **curvature**.

Just as the tangent line is the line best approximating a curve at a point P, the osculating circle is the best circle that approximates the curve at P

Main curvature directions

For each direction **t** , we define a curvature value *k*.

Let's consider the two directions \mathbf{k}_1 and k_2 where the curvature values k_1 and *k2* are **maximum** and **minimum**

Euler theorem

k¹ and **k2** are perpendicular and curvature along a direction t making an angle θ with \mathbf{k}_1 is:

 $k_{\theta} = k_1 \cos^2 \theta + k_2 \sin^2 \theta$

Gaussian curvature

\Box Defined as $K = k_1 \cdot k_2$

- >0 when the surface is a sphere
- **0** 0 if locally flat
- **O** <0 for hyperboloids

Gaussian curvature

B a point x on the surface is called: \Box elliptic if $K > 0$ $(k_1$ and k_2 have the same sign)

hyperbolic if $K < 0$ $(k_1$ and k_2 have opposite sign)

 \blacksquare parabolic if $K = 0$ (exactly one of k_1 and k_2 is zero)

planar if $K = 0$ (equivalently $k_1=k_2=0$).

elliptic

parabolic

hyperbolic

Different classes distributed on the surface

Developable surfaces

Developable surface ⇔ K = 0

Elattening introduce no distortion

Gaussian Curvature: intrinsic / extrinsic

Gaussian curvature is an **intrinsic** properties of the surface (even if we defined in an extrinsic way) **F** Gaussian curvature is an **intrinsic**

 \blacksquare It is possible to determine it by moving on the surface keeping the geodesic distance constant to a radius r and distance constant to a radios rail and an analysis and the circumference $C(r)$: $\overline{}$

$$
K = \lim_{r \to 0} \frac{6\pi r - 3C(r)}{\pi r^3}
$$

Curvatura Gaussiana

Mean Curvature

 $H = (k_1 + k_2)/2$

Measure the **divergence** of the normal in a local neighborhood of the surface

The divergence div_s is an operator that measures a vector field's tendency to originate from or converge upon a given point

Divergence

Interpresents water flow: \blacksquare Imagine a vector field represents water flow:

- \blacksquare If div_s is a positive number, then water is flowing out of the point.
- If **div^s** is a **negative** number, then water is **flowing into** the point.

 $div_s >0$ div_s >0 div_s $=0$ div_s $=0$ div_s >0

Minimal surface and minimal area surfaces

A surface is **minimal** iff H=0 everywhere

All surfaces of minimal AREA (subject to boundary constraints) have H= 0 (not always true the opposite!)

OThe surface tension of an interface, like a soap bubble, is proportional to its mean curvature

Then… finally…

ERed > 0 Blue < 0, not the same scale

mean gaussian min max

Given a function **F: R²→R** (our surface) the **gradient** of **F** is the vector field ∇**F:R²→R²** defined by the partial derivatives:

$$
\nabla F(x, y) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)
$$

Intuitively: At the point p₀, the vector $\nabla F(p_0)$ points in the **direction of greatest change of F**.

■Given a function $F(F_1, F_2)$: $R^2 \rightarrow R^2$ the **divergence** of **F** is the function **div:R²→R** defined as:

div $F(x,y) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}$

Intuitively: At the point p₀, the divergence div F(p₀) is a measure of the extent to which the flow (de)compresses at p_0 .

Some math…. Laplacian

Given a function **F(F¹ ,F2): R²→R** the **Laplacian** of **F** is the function **ΔF: R²→R** defined by the divergence of the gradient of the partial derivatives:

$\Delta F = \text{div}(\nabla F(x,y)) = \partial^2 F/\partial x^2 + \partial^2 F/\partial y^2$

Intuitively: The Laplacian of F at the point p₀ measures the extent to which the value of F at p_0 differs from the average value of F its neighbors.

Discrete Differential Operators

- **L** Assumption: Meshes are piecewise linear approximations of smooth surfaces
- Approach: Approximate differential properties at point *x* as spatial average over local mesh neighbourhood *N(x)*, where typically
	- \bullet $x =$ mesh vertex
	- $N(x) = n$ -ring neighborhood (or local geodesic ball)

Discrete Laplacian

<u>O</u> Uniform discretization

$$
\Delta_{uni} f\left(v\right) \ := \ \frac{1}{\left|\mathcal{N}_{1}\left(v\right)\right|} \sum_{v_i \in \mathcal{N}_{1}\left(v\right)}\left(f\left(v_i\right)-f\left(v\right)\right)
$$

 \Box depends only on connectivity \rightarrow simple and efficient

■ bad approximation for irregular triangulations

Discrete Laplacian

O Cotangent formula \blacksquare Ω Ω ent for

2

• Cotangent formula

$$
\Delta_{\mathcal S} f(v) := \frac{2}{A(v)} \sum_{v_i \in \mathcal N_1(v)} \left(\cot \alpha_i + \cot \beta_i\right) \left(f(v_i) - f(v)\right)
$$

) (f (vi

en al Discrete Curvatures • Mean curvature H = ∥∆Sx∥

• Mean curvature

Discrete Curvatures

- Mean Curvature H = $\|\Delta_S x\|$ \Box Mean Curvature \Box \Box \Box
- **O** Gaussian Curvature \sim Gu \sim \sim $r e \bullet = (\angle H - \sum_{j} q j/2)$ G= $(2π \sum$ θ $)/A$ j Mean Curvature $H = \parallel$
Gaussian Curvature **G**=)
Gaussian Curvature **G = (2π**

 Principal Curvatures • Principal curvatures • Principal curvatures **<u>• Principal Curvatures</u>**

$$
\kappa_1 = H + \sqrt{H^2 - G} \qquad \qquad \kappa_2 = H - \sqrt{H^2 - G}
$$

$$
x_1 = H + \sqrt{H^2 - G}
$$
 $\kappa_2 = H - \sqrt{H^2 - G}$

Mean curvature on a triangle mesh

$$
H(p) = \frac{1}{2A} \sum (cot \alpha_i + cot \beta_i) ||p - p_i||
$$

where α_j and β_j are the two angles opposite to the edge in the two triangles having the edge e_{ij} in common A is the sum of the areas of the triangles

Gaussian curvature on a triangle mesh

❖ It's the *angle defect* over the area

❖

$$
\kappa_G(\nu_i) = \frac{1}{3A} \left(2 \pi - \sum_{t_j \text{adj } \nu_i} \theta_j \right)
$$

❖ **Gauss-Bonnet Theorem:** The integral of the Gaussian Curvature on a closed surface depends on the Euler number

$$
\int_{S} \kappa_{G} = 2\pi \chi
$$

Discrete Curvatures

Problems:

- **Depends on triangulation!**
- Very sensitive to Noise...

Curvature via Surface Fitting

- \Box The radius r of the neighborhood of each point p is used as a scale parameter
	- **1.** gather all faces in a local neighborhood of radius r

2 . set an axis
$$
\mathbf{w} = \frac{1}{n_v} \sum_{i=1}^{n} \mathbf{n}_i
$$

 \blacksquare where n_v is the number of vertices gathered and n_i is the surface normal at each such vertex

Curvature via Surface Fitting

- \Box 3. discard all vertices v_i such that $n_i \cdot w < 0$
- \Box 4. set a local frame (u,v,w) where u and v are any two orthogonal unit vectors lying on the plane orthogonal to w, and such that the frame is right-handed
- 5. express all vertices of the neighborhood in such a local frame with origin at *p*
- 6. fit to these points a polynomial of degree two through *p* (least squares fitting)

$$
f(u, v) = au^2 + bv^2 + cuv + du + ev
$$

 Curvatures at *p* are computed **analytically via first and second fundamental forms** of *f* at the origin

curvature via surface fitting

<u>n</u> Curvatures extracted at different scales

Screen Space Mean Curvature

// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/) #extension GL_OES_standard_derivatives : enable

varying vec3 normal; varying vec3 vertex;

}

void main() { vec3 n = normalize(normal);

 // Compute curvature $vec3 dx = dFdx(n);$ $vec3$ dy = dFdy(n); $vec3$ xneg = $n - dx$; $vec3 xpos = n + dx$; $vec3$ yneg = $n - dy$; $vec3$ ypos = $n + dy$; float depth = length(vertex); float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

 // Compute surface properties $vec3$ light = $vec3(0.0)$; $vec3$ ambient = $vec3$ (curvature + 0.5); $vec3$ diffuse = $vec3(0.0)$; vec3 specular = vec3(0.0); float shininess $= 0.0$;

 // Compute final color float $cosAngle = dot(n, light);$ gl_FragColor.rgb = ambient + diffuse * max(0.0, cosAngle) + specular * pow(max(0.0, cosAngle), shininess);

E Known effect as Cavity Shading

Curvature Directions (VCG)

