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Normal 

Let’s consider a 2 manifold surface S in R3

Suppose to have a mapping  R2 
➔R3

  S(u,v) ➔ R3

Then we can define the normal for each 
point of the surface as:

Where Xu and Xv are vectors on tangent space

Mark Pauly

Differential Geometry

• Continuous surface

• Normal vector

– assuming regular parameterization, i.e.
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x(u,v) =

⎛

⎝
x(u,v)

y(u,v)

z(u,v)

⎞

⎠ , (u,v) ∈ IR2

n = (xu × xv)/ ∥xu × xv∥

xu × xv ̸= 0
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Normals on triangle meshes

❖ Computed per-vertex and interpolated over the 
faces

❖ Common: consider the tangent plane as the 
average among the planes containing all the 

faces incident on the vertex



Normals on triangle meshes

❖  Does it work? Yes, for a “good” tessellation

❖Small triangles may change the result 

dramatically

❖ Weighting by area, angle, edge len  helps
❖ Note: if you get the normal as cross product of adj edges, if 

you leave it un-normalized its length is twice the area of the 

triangle -> you can get the area weighting for free  



Curvature

 Define a tangent vector
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• Normal Curvature

Differential Geometry
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 Consider the plane along n,t and the 2D curve defined on 
it

Curvature



 The curvature of C at P is then defined to be the reciprocal 
of the radius of osculating circle at point P. 

Curvature in 2D

The osculating circle of a 
curve C at a given point P is 

the circle that has the same 

tangent as C at point P as 
well as the same curvature. 

Just as the tangent line is the 

line best approximating a 

curve at a point P, the 
osculating circle is the best 

circle that approximates the 
curve at P



For each direction t , we define a 
curvature value k.

Let’s consider the two directions k1

and k2 where the curvature values k1

and k2 are maximum and minimum

Euler theorem
k1 and k2 are perpendicular and 
curvature along a direction t making an 
angle θ with k1 is:

kθ = k1 cos2θ + k2 sin
2θ

Main curvature directions
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Curvature principali



Defined as K= k1· k2

 >0 when the surface is a sphere

 0 if locally flat

 <0 for hyperboloids

Gaussian curvature

K>0

K<0

K=0



A point x on the surface is called:

 elliptic if K > 0 

(k1 and k2 have the same sign) 

 hyperbolic if K < 0 

(k1 and k2 have opposite sign) 

 parabolic if K = 0 

(exactly one of k1 and k2 is zero)

 planar if K = 0 

(equivalently k1=k2=0). 

Gaussian curvature

elliptic

hyperbolic

parabolic

planar



Different classes distributed on the surface

elliptic hyperbolicparabolic planar



Developable surface ⇔ K = 0

Flattening introduce no distortion

Developable surfaces



Gaussian curvature is an intrinsic 
properties of the surface (even if we 
defined in an extrinsic way)

It is possible to determine it by moving 
on the surface keeping the geodesic 
distance constant to a radius r and 
measuring the circumference C(r) :

Gaussian Curvature: intrinsic / extrinsic
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Differential Geometry

• Intrinsic geometry: Properties of the surface that 

only depend on the first fundamental form

– length

– angles

– Gaussian curvature (Theorema Egregium)
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K = lim
r→0

6πr − 3C(r)

πr3
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Curvatura Gaussiana

Positiva e negativa

K>0

10

Curvatura Gaussiana

Positiva e negativa

K<0



H=(k1+k2)/2

Measure the divergence of the normal in a local 
neighborhood of the surface

The divergence divs is an operator that measures a 

vector field's tendency to originate from or converge 
upon a given point

Mean Curvature



Imagine a vector field represents water flow:

 If divs is a positive number, then water is flowing out of the point.

 If divs is a negative number, then water is flowing into the point.

Divergence

divs >0 divs >0 divs =0 divs =0 divs >0



A surface is minimal iff H=0 everywhere

All surfaces of minimal AREA (subject to boundary constraints) have 
H= 0 (not always true the opposite!)

The surface tension of an interface, like a soap bubble, is 
proportional to its mean curvature

Minimal surface and minimal area surfaces



Red > 0 Blue < 0 , not the same scale

Then… finally…

mean gaussian min max



Given a function F: R2→R (our surface) the gradient of F is the vector 

field ∇F:R2→R2 defined by the partial derivatives: 

Intuitively: At the point p0, the vector ∇F(p0) points in the direction of 
greatest change of F. 

Some math…. Gradient and divergence



Example :

Some math…. Gradient and divergence



Given a function F(F1,F2): R
2→R2 the divergence of F is the function 

div:R2→R defined as:

 div F(x,y)= ∂F1/∂x + ∂F2/∂y 

Intuitively: At the point p0, the divergence div F(p0) is a measure of 
the extent to which the flow (de)compresses at p0. 

Some math…. Gradient and divergence



Example :

Some math…. Gradient and divergence

div ∇F(x,y) = 4 div ∇F(x,y) = 0



Given a function F(F1,F2): R
2→R 

the Laplacian of F is the function ΔF: R2→R defined by the 
divergence of the gradient of the partial derivatives:

ΔF= div(∇F(x,y))=∂2F/∂x2 + ∂2F/∂y2

Intuitively: The Laplacian of F at the point p0 measures the extent to 
which the value of F at p0 differs from the average value of F its 
neighbors.

Some math…. Laplacian



Discrete Differential Operators

Assumption: Meshes are piecewise linear 

approximations of smooth surfaces 

• Approach: Approximate differential properties at 

point x as spatial average over local mesh 

neighbourhood N(x), where typically 

• x = mesh vertex

• N(x) = n-ring neighborhood (or local geodesic ball)



Discrete Laplacian

Uniform discretization

depends only on connectivity → simple and 

efficient

bad approximation for irregular triangulations 



 Cotangent formula

Discrete Laplacian

Mark Pauly

Discrete Laplace-Beltrami

• Cotangent formula
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∆Sf (v) :=
2

A(v)
vi ∈ N1(v)

(cot αi + cot βi ) (f (vi ) − f (v))

v

vi vi

v A(v) v

vi

αi

βi



 Mean Curvature

 Gaussian Curvature

 Principal Curvatures

Discrete Curvatures
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Discrete Curvatures

• Mean curvature

• Gaussian curvature

• Principal curvatures

20

G= (2π−

j

θj )/A

A

θj

κ1 = H + H2− G κ2 = H − H2− G

H = ∥∆Sx∥
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Mean curvature on a triangle 
mesh



Gaussian curvature on a triangle 
mesh

❖ It's the angle defect over the area

❖

❖Gauss-Bonnet Theorem: The integral of the 

Gaussian Curvature on a closed surface 
depends on the Euler number 



Problems:

 Depends on triangulation!

 Very sensitive to Noise…

Discrete Curvatures



 The radius r of the neighborhood of 
each point p is used as a scale 
parameter

 1. gather all faces in a local 

neighborhood of radius r

 2. set an axis                          

 where nv is the number of vertices 
gathered and ni is the surface normal 
at each such vertex 

Curvature via Surface Fitting



 3. discard all vertices vi such that ni⋅w < 0

 4. set a local frame (u,v,w) where u and v 

are any two orthogonal unit vectors lying on 

the plane orthogonal to w, and such that 

the frame is right-handed

 5. express all vertices of the neighborhood in 

such a local frame with origin at p    

 6. fit to these points a polynomial of degree 

two through p (least squares fitting)

 Curvatures at p are computed analytically 
via first and second fundamental forms of f 
at the origin

Curvature via Surface Fitting
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curvature  via  surface fitting

 Curvatures extracted at different scales



Screen Space Mean Curvature

 Known effect as 
Cavity Shading

// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/)
#extension GL_OES_standard_derivatives : enable

varying vec3 normal;
varying vec3 vertex;

void main() {

  vec3 n = normalize(normal);

  // Compute curvature

  vec3 dx = dFdx(n);
  vec3 dy = dFdy(n);

  vec3 xneg = n - dx;
  vec3 xpos = n + dx;
  vec3 yneg = n - dy;

  vec3 ypos = n + dy;
  float depth = length(vertex);

  float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

  // Compute surface properties

  vec3 light = vec3(0.0);
  vec3 ambient = vec3(curvature + 0.5);

  vec3 diffuse = vec3(0.0);
  vec3 specular = vec3(0.0);
  float shininess = 0.0;

  // Compute final color

  float cosAngle = dot(n, light);
  gl_FragColor.rgb = ambient +
    diffuse * max(0.0, cosAngle) +

    specular * pow(max(0.0, cosAngle), shininess);
}



Curvature Directions (VCG)

Taubin Normal Cycle

PCA Multiscale
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