From Point Clouds to tessellated surfaces *explicit methods*

Paolo Cignoni,

Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche

Problem Statement

Given a Point cloud $P = \{p_0, ..., p_n\}, p_i \in \mathbb{R}^3$, find the mesh M that it *represents*

- Q1: It is a very ill posed problem, what does *represents* means?
- Q2: why do we care about this problem?

Motivations

• A1: Ideally, we want to find the surface which sampling produced the input problem

4

- A2: Every 3D acquisition device or methods produces a discrete puntual sampling (measures) of the surface
	- **Laser scanning**
	- **Image based/photogrammetric techniques**
	- **Computerized Axial Tomography / simulation data**

... So that is what we are dealing with

• Laser scanning with a turntable

• Laser scanning with static laser scanner (range of 100, 200... meters)

• Laser scanning – mobile scanners

• Laser scanning – airborne LiDAR

• Structure from Motion (SfM) and Multi-view stereo (MVS)

Challenges

The positions and normals are generally noisy

- Sampling inaccuracy
- Scan misregistration

Challenges

The point samples may not be uniformly distributed

- Oblique scanning angles
- Laser energy attenuation

Challenges

Missing data

• Material properties, inaccessibility, occlusion, etc.

Explicit and Implicit Methods

Explicit methods

Build a tessellation over the point cloud. The points become to vertices of the mesh

Implicit Methods

- 1. Define the surface implicitly, as the zeroes of a function $f_P: \mathbb{R}^3 \to \mathbb{R}^3$
- 2. Tessellate $\{f_P(x)=0\}$

Explicit and Implicit Methods

Explicit methods

Build a triangulation over the point cloud. The points map to vertices of the mesh

- less robust to noise
- require a dense and even sampling
- Generally easier to implement

Implicit Methods

- 1. Define the surface implicitly, as the zeroes of a function $f_P: \mathbb{R}^3 \to \mathbb{R}^3$
- 2. Tessellate $\{f_p(x) = 0\}$
- more robust to noise
- more resilient to noise and uneven sampling

Alpha Shapes [Edelsbrunner83]

Convex Hull **Alpha Hull**

 $CH(S) = \mathbb{R}^d \setminus \left| \right|$ $EH(S)$

 $EH(S)$: halfspace not containing any point in S

$$
\alpha H(S) = \mathbb{R}^d \setminus \bigcup EB_\alpha(S)
$$

 $EB_\alpha(S)$: ball with radius α not containing any point in S

Computing Alpha Shapes

- **Alpha Diagram**: Voronoi Diagram restricted to space closest than α to one point in S
- **Alpha Complex**: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Computing Alpha Shapes

- **Alpha Diagram**: Voronoi Diagram restricted to space closest than α to one point in S
- **Alpha Complex**: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Alpha Diagram

Voronoi Diagram

Voronoi Diagram

Delaunay Triangulation

Point Set

ö *Point Set*

Voronoi Diagram

Delaunay Triangulation

Voronoi Diagram \bullet \bullet ٠ ٠ *Point Set*

Delaunay Triangulation

Voronoi Diagram \bullet \bullet ٠ ٠ *Point Set*

Delaunay Triangulation

- $\alpha = 0$ α -shape is the point set
- $\alpha \rightarrow \infty$ α -shape tends to the convex hull
- A finite number of thresholds $\alpha_0 < \alpha_1 < ... < \alpha_n$ defines all possible shapes (at most 2 $n^2 - 5n$)

Sampling Conditions for Alpha Shapes

Proposition

Given a smooth manifold M and a sampling S ,

if it holds that

- 1. The intersection of any ball of radius α with M is homeomorphic to a disk
- 2. Any ball of radius α centered in the manifold contains at least one point of S Then the α -shape of S is homeomorphic to M

Ball Pivoting [bernardini99]

- Motivations
	- Alpha shapes computation is fairly cumbersome
	- May produce non manifold surfaces
- Core idea: approximate the alpha shapes just «rolling» a ball of radius α on the sampling S
- Same sampling conditions as α -shape holds

The algorithm

- •Edge (s_i, s_j)
- –Opposite point so, center of empty ball c
- –Edge: "Active", "Boundary"

Initial seed triangle:

Empty ball of radius ρ passes through the three points

Active edge

Point on front

Ball pivoting around active edge **Communist Communist Point on front**

Active edge

Ball pivoting around active edge **Communist Communist Point on front**

Active edge

Ball pivoting around active edge **Communist Communist Point on front**

Active edge

Ball pivoting around active edge

Active edge Point on front **O** Internal point

Point on front \bullet Internal point \bullet

Ball pivoting around active edge No pivot found

Active edge Point on front Internal point \bullet

Ball pivoting around active edge

Active edge Point on front Internal point \bullet

Not only point clouds: the Range Maps

- 3D scanners produce a number of dense structured height fields, that is, a regular (X, Y) grid of points with a distance Z value. These are called **range maps**
- Trivial to triangulate but: How to merge different range maps?

Mesh Zippering [Turk94]

■Input: triangulated ranges maps (not just point clouds)

■Works in pairs:

- **□Remove overlapping portions**
- □Clip one RM against the other
- **□Remove small triangles**

- Input: triangulated ranges maps (not just point clouds) Works in pairs:
- **Remove overlapping portions**
- Clip one RM against the other
- Remove small triangles

■Input: triangulated ranges maps (not just point clouds) ■Works in pairs: **Remove overlapping portions** □Clip one RM against the other □Remove small triangles

Input: triangulated ranges maps (not just point clouds) Works in pairs:

- Remove overlapping portions
	- **Clip one RM against the other**
- □ Remove small triangles

- ■Input: triangulated ranges maps (not just point clouds)
- ■Works in pairs:
- **□Remove overlapping** portions
- □Clip one RM against the other
- **Remove small triangles**

■ Not so trivial to implement... for example... **remove overlapping regions**: «a face of mesh A overlaps if its 3 vertices project on mesh B» ■Hole may appear, to be fixed later...

■Not so trivial to implement…for example..

 remove overlapping regions: criterion?

■Not so trivial to implement…for example..

remove overlapping regions: criterion?

Preserve faces from left

Preserve faces from right

Halfway (distance from the border)

