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Problem Statement
Given a Point cloud 𝑃 = 𝑝0, … , 𝑝𝑛 , 𝑝𝑖 ∈ ℝ3, find the mesh 
𝑀 that it represents

• Q1: It is a very ill posed problem, what does represents 
means?

• Q2: why do we care about this problem?



Motivations

• A1: Ideally, we want to find the surface which sampling produced the 
input problem

• A2: Every 3D acquisition device or methods produces a discrete 
puntual sampling (measures) of the surface

• Laser scanning

• Image based/photogrammetric techniques

• Computerized Axial Tomography / simulation data

... So that is what we are dealing with
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Data sources

• Laser scanning with a turntable
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Data sources

• Laser scanning with static laser scanner (range of 100, 200... meters)
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Data sources

• Laser scanning – mobile scanners
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Data sources

• Laser scanning – airborne LiDAR
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Data sources

• Structure from Motion (SfM) and Multi-view stereo (MVS)
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Challenges

The positions and normals are generally noisy 
• Sampling inaccuracy

• Scan misregistration
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Challenges

The point samples may not be uniformly distributed
• Oblique scanning angles

• Laser energy attenuation
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Challenges

Missing data
• Material properties, inaccessibility, occlusion, etc. 
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Explicit and Implicit Methods

Explicit methods

Build a tessellation over the point cloud. 
The points become to vertices of the 
mesh

Implicit Methods

1. Define the surface implicitly, as the 
zeroes of a function 𝑓𝑃: ℝ3 → ℝ3

2. Tessellate {𝑓𝑃(𝑥) =0}
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Explicit and Implicit Methods

Explicit methods

Build a triangulation over the 
point cloud. The points map to 
vertices of the mesh

• less robust to noise

• require a dense and even 
sampling

• Generally easier to implement

Implicit Methods

1. Define the surface implicitly, as 
the zeroes of a function 
𝑓𝑃: ℝ3 → ℝ3

2. Tessellate {𝑓𝑃(𝑥) =0}

• more robust to noise

• more resilient to noise and 
uneven sampling

6



Alpha Shapes [Edelsbrunner83]
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𝐶𝐻 𝑆 = ℝ𝑑 ∖ ራ 𝐸𝐻(𝑆)

𝐸𝐻 𝑆 : halfspace not containing any point in S

𝛼𝐻 𝑆 = ℝ𝑑 ∖ ራ 𝐸𝐵𝛼(𝑆)

𝐸𝐵𝛼(S): ball with radius 𝛼 not containing any point in S

Convex Hull Alpha Hull

𝑆 𝑆 𝑆
Alpha Shape



Computing Alpha Shapes

• Alpha Diagram: Voronoi Diagram restricted to space closest than 𝛼 to 
one point in 𝑆

• Alpha Complex: Subset of Delaunay Triangulation computed as the 
dual of the alpha diagram 
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Delaunay Triangulation
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Delaunay Triangulation
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Delaunay triangulation Alpha Complex

•  = 0 -shape is the point set

•   →   -shape tends to the convex hull

• A finite number of thresholds 𝛼0 < 𝛼1 <  … < 𝛼𝑛 defines all 

possible shapes (at most 2𝑛2 − 5𝑛 ) 





Sampling Conditions for Alpha Shapes

Proposition

Given a smooth manifold 𝑀 and a sampling 𝑆, 

if it holds that

1. The intersection of any ball of radius 𝛼 with 𝑀 is homeomorphic to a disk

2. Any ball of radius 𝛼 centered in the manifold contains at least one point of 𝑆

Then the 𝛼-shape of 𝑆 is homeomorphic to 𝑀

violates 1

violates 2

𝑀



Ball Pivoting [bernardini99] 

• Motivations

– Alpha shapes computation is fairly cumbersome

– May produce non manifold surfaces

• Core idea: approximate the alpha shapes just «rolling» a ball of radius 𝛼 on the 

sampling 𝑆

• Same sampling conditions as 𝛼 –shape holds

OK Low sampling density Curvature grater than 
1

𝛼
 



The algorithm

•Edge (si, sj)

–Opposite point so, center of empty ball c

–Edge: “Active”, “Boundary”

si

sj

so

c



Pivoting example

Active edge

Point on front

Initial seed triangle:

Empty ball of radius ρ passes through the three points



Pivoting example

Active edge

Point on frontBall pivoting around active edge
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Pivoting example
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Pivoting example

Boundary edge

Point on front

Internal point

Ball pivoting around active edge

No pivot found

Active edge



Pivoting example

Point on front

Internal point

Active edge

Ball pivoting around active edge

Boundary edge
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge



Not only point clouds: the Range Maps

• 3D scanners produce a number of dense structured height fields, that 

is, a regular (X,Y) grid of points with a distance Z value. These are 

called range maps

• Trivial to triangulate but: How to merge   different range maps?



Mesh Zippering [Turk94]

◼Input: triangulated ranges maps (not just 

point clouds)

◼Works in pairs:

Remove overlapping portions

Clip one RM against the other

Remove small triangles
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Mesh Zippering
◼Input: triangulated ranges 

maps (not just point 

clouds)

◼Works in pairs:

Remove overlapping 

portions

Clip one RM against the 

other

Remove small triangles



Mesh Zippering

◼Not so trivial to implement…for example..

 remove overlapping regions: «a face of mesh A 

overlaps if its 3 vertices project on mesh B»

◼Hole may appear, to be fixed later…  
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Mesh Zippering

◼Not so trivial to 

implement…for 

example..

 remove 

overlapping regions: 

criterion?  

Preserve faces from left

Preserve faces from right

Halfway (distance from

the border)
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