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Features Detection 

and Description 

(2D case) 



Local and Global Features

• Features can be global or local.

• We concentrate on local features, which are 
more robust w.r.t:

– Occlusions

– Variations

• Local features can be widely applied.



Main Motivations

• Image Registration

• 3D Reconstruction

• Visual Tracking

• Object Recognition

• Etc..



Automatic Panorama

Musée du Louvre - Paris by David Engle (from GigaPan.com)



Panorama Creation

• We have two images – how do we combine 
them?



Panorama Creation

• Motivation: panorama stitching

– We have two images – how do we combine them?

Step 1: extract features
Step 2: match features



Panorama Creation

• We have two images – how do we combine 
them?

Step 1: extract features
Step 2: match features
Step 3: align images



Image matching

by Diva Sian

by swashford

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/


Harder case

by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/


Visual Tracking - SLAM

• Let’s me show you a video..



Features Properties
• Robustness

– Invariant to translation, rotation, scale

– Robust to affine geometric transformation

– Robust to photometric variations

• Distinctiveness (“interesting” structure)

• Locality (local features are usually robust to occlusions 
and clutter)

• Repeatability

• Accuracy

• Quantity

• Computational Efficiency



Features Detection and Description

• Image Features:

– Corners

– Edges

– Blobs

– Keypoints

• The features detected can be described using 
a feature descriptor.



Image Processing

• Many feature detectors involve the 
computation of first or second order 
derivatives.

• Often the image is filtered before to calculate 
its derivatives.

• Image derivatives are approximated using 
forward/backward of central differences.



Image Filtering

A generic filter of 3 x 3 kernel size.



Image Filtering

Filter kernel

(weights)

Pixel Filtered Normalization 

factor



Blurring – Box Filter

• Simpler form of blurring  averaging the pixel 
values on the support of the filter.

• Constant weighting function:

Example of 5 x 5 kernel (T = 25)



Box Filter

Original Image Image Filtered

(9x9 box filter)



Blurring – Gaussian Filter

• More the pixels are far from the central one 
and less they influence the average.

• 2D Gaussian:

Weights of a 7x7 

Gaussian filter



Gaussian Filter

Original Image Image Filtered

(9x9 Gaussian filter)



Image Derivatives

• Numerical approximations of derivatives:

Forward Differences:

Backward Differences:

Central Differences:



Image Derivatives

• First-order derivatives using the central 
differences:

Horizontal derivative

Vertical derivative



Image Derivatives

• Matrix form of the first-order derivatives:



Image Derivatives (Ix)



Image Derivatives (Iy)



Image Derivatives

• More accurate numerical approximations:

Sobel operator:

Prewitt operator:



Edge Detection with the Sobel 
Operator

• Apply the Sobel operator and obtain Ix and Iy

• Gradient magnitude:

• Gradient direction:

(edge strength)



Edge Detection with the Sobel 
Operator 



Edge extraction

• We know for each pixel the edge strength (and 
the direction).

• Some parts of the image lines are missing / 
some parts are noisy.

• Improve the detection  fit segments/lines

– RANSAC

– Hough transform



RANSAC

• Random Samples Consensus (RANSAC): an iterative 
general method to estimate parameters of a 
mathematical model starting from data containing 
(many) outliers.

• Not only for edges  widely applied in Computer 
Vision (!)  simple and very robust to the presence 
of outliers.

Martin A. Fischler and Robert C. Bolles, “Random Sample Consensus: A 

Paradigm for Model Fitting with Applications to Image Analysis and Automated 

Cartography“, Comm. of the ACM 24 (6): pp. 381–395, 1981.



RANSAC algorithm

• Get randomly a minimal set of data that solves 
the model we want to estimate

• Check the number of inliers (evaluate the 
consensus)

• Iterate

– Until a maximum number of iterations is reached

– Until a certain stop condition is reached

• Get the solution with the maximum consensus



RANSAC for edges



RANSAC for edges

Select two points



RANSAC for edges

Fit the line



RANSAC for edges

Evaluate consensus (3 inliers)



RANSAC for edges

Get other two points



RANSAC for edges

Fit the line



RANSAC for edges

Evaluate the consensus (7 inliers)



Hough Transform

• The Hough transform is a technique to detect 
features of a particular shape within an image.

• It requires that the desired features be specified in 
some parametric form.

• The classical Hough transform is most commonly 
used for the detection of regular curves such as lines, 
circles, ellipses, etc.

• A generalized Hough transform can be employed in 
applications where a simple analytic description of a 
feature(s) is not possible (i.e. work using templates).



Hough Transform

• The idea is to pass from the image space to a 
parameter space; the Hough space.

• Lines are parameterized as:



Hough Transform

• Points (x,y) in image space corresponds to sinusoids 
in the Hough space.

• Points (r,ϑ) in Hough space corresponds to lines in 
image space. Co-liner points intersect at an unique point.

Hough space

Image space



Hough Transform



Hough Transform



Hough Transform

• In a nutshell: a voting scheme in a parameter 
space.

• Improvements:

– Direction information (gradient)

– Smoothing



Corners



What is a “corner” ?

“flat” region:
no change in all 
directions

“edge”:  
no change along the 
edge direction

“corner”:
significant change in 
all directions

Credit: S. Seitz, D. Frolova, D. Simakov



Consider shifting the window W by (u,v)

• how do the pixels in W change?

• compare each pixel before and after by
summing up the squared differences (SSD)

W

Harris Corner Detection



Small motion assumption

• Taylor expansion:

• First-order approximation is good for small 
motion:



Harris Corner Detection



Harris Corner Detection



The surface E(u,v) is locally approximated by a 
quadratic form. 

Second Moment Matrix (M)

M



Harris Corner Detection

E(u,v) can be rewritten as:



The surface E(u,v) is locally approximated by a quadratic form. 

Second Moment Matrix (M)
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The shape of M tells us something about the distribution 
of gradients around a pixel.

The eigenvectors of M identify the directions of fastest 
and slowest change.

direction of the 
slowest change

direction of the 
fastest change
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Ellipse equation:
max, min : eigenvalues of M

Second Moment Matrix (M)



Eigenvalues and eigenvectors of M

• Define shift directions with the smallest and largest change in error

• xmax = direction of largest increase in E

• max = amount of increase in direction xmax

• xmin = direction of smallest increase in E

• min = amount of increase in direction xmin

xmin

xmax

M

Second Moment Matrix (M)



Corners/Edges Classification



Cornerness Measure



Harris Detector – example



Harris Detector – example



Harris Detector – example



Harris Detector – threshold



Harris Detector – local maxima



Harris Detector – corners in red



Weighting the derivatives

• In practice, using a simple window W does not 
work well (noisy response):

• It is better to weight each derivative value 
based on its distance from the center pixel:



Harris Corner Detection -Robustness

• Partially invariant to intensity changes (I’(x,y) = a 
I(x,y) + b)

• Translation invariance (yes)  corner location is 
covariant.

• Rotational invariance  (yes)  eigenvalues remains 
the same (ellipse rotate).

• Scale invariance (no) :



Scale Invariant Detection

• The same feature in different images can have 
different size.

• Goal: find a function of the region size which 
responds equally for corresponding regions of 
different size.



Scale Invariant Detection

• For a point in one image, we can consider it as 
a function of the region size (e.g. radius of a 
circle):



Scale Invariant Detection

• It is common to consider the local maximum 
of such function  corresponding region size 
should be covariant with image scale.



Scale Invariant Detection

• A good function for scale detection should 
have a peak easily identifiable:



Scale Invariant Detection

• Common characteristic scale functions can be 
defined by composing the derivatives of the 
images convolved with Gaussians of different 
size.



Scale Space Image Representation

• A family of images convolved with a Gaussian 
kernel of different size.

(note that s = σ2 )



Original Image

Coarse Image

s
s = 2.5

s = 5.0

Original

s = 10.0

s = 25.0 s = 50.0



Why Gaussian Kernels ?

• Gaussian kernels satisfies scale-space axioms.

• Derivatives of the scale space can be easily 
obtained through convolution with Gaussian 
derivatives:



Scale Space Image Representation



Laplacian of Gaussian (LoG)

• The Laplacian of an image I(x,y) can be used 
to detect edges (zero-crossing).

• In a scale-space representation this can be 
calculated as

Laplacian of Gaussian



Laplacian of Gaussian (LoG)

g
dx

d
f

2

2



f

g
dx

d
2

2

Edge

Second derivative

of Gaussian 

(Laplacian)

Edge  zero crossing

of second derivative

Source: S. Seitz



Laplacian of Gaussian (LoG)

The LoG can be used also as a blob detector.



Blob Detection at Multiple Scale

• The local extrema of the LoG response in the 
scale-space representation can be used to 
detected “blob” region at different scale.



Automatic Scale Selection

• A scale-space representation can be made 
invariant to scales, by performing automatic 
local scale selection by using ɣ-normalized 
derivatives*:

T. Lindeberg, “Feature Detection with Automatic Scale Selection”,

Int. Journal of Computer Vision, Vol. 30(2), pp. 79-116, 1998.



Automatic Scale Selection

• The scale at which a scale-normalized differential 
entity assumes a local extremum over scales is 
proportional to the size of the corresponding image 
structure in the image domain.

Determinant of the 

Hessian matrix

LoG



Automatic Scale Selection

Scale-normalized version

(these are an example of the 
characteristic scale function 

mentioned before)



Lindeberg T (2013) “Invariance of visual operations at the level of receptive 

Fields” PLoS ONE 8(7): e66990. doi:10.1371/journal.pone.0066990.



Scale Invariant Harris Detector

K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant 

interest points”, Proc. of ICCV 2001, 2001.



Scale Inv. Harris Detector (Harris-Laplace)

• Scale-adapted Harris Corner detector:

• Local extrema of LoG is used for scale selection.

K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant 

interest points”, Proc. of ICCV 2001, 2001.



Harris-Laplace Detector

K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant 

interest points”, Proc. of ICCV 2001, 2001.



Scale Invariant Features Transform 
(SIFT*)

• Presented by Lowe* in 2004 (patented).

• Rotation and Scale invariant

• Robust to

– Viewpoint change

– Illumination change

• It is one of the most used detector/descriptor.

*David G. Lowe, “Distinctive image features from scale-invariant 

keypoints”, Int. J. of Computer Vision, 60(2), pp. 91-110, 2004.



SIFT – Stages of Computation

• Find Scale-Space Extrema

• Keypoint Localization & Filtering

– Improve keypoints and throw out bad ones

• Orientation Assignment

– Remove effects of rotation and scale

• Create descriptor

– Using histograms of orientations

Detector

Descriptor



Detection of Scale Space Extrema

• Stable keypoints are localized using local 
extrema of Difference of Gaussian (DoG)
function convolved with the image I.



DoG and LoG

• D(x,y,σ) is efficient to compute and it is an 
approximation of the normalized Laplacian of 
Gaussian:

From the heat diffusion equation:

We can write:



DoG and LoG

• Remember that:



From Digital Image Processing course by Bernd Girod, Stanford University. 2013.



Scale Space Extrema Detection



Scale Space Extrema Detection

The minimum/maximum is 
selected considering a 
3 x 3 x 3  neighborhood.



Accurate Keypoints Detection

• The detection accuracy can be improved (sub-pixel, 
sub-space accuracy) by finding the extrema of a local 
3D quadratic function which fit locally the scale-
space representation (Brown and Lowe 2002):

From Taylor expansion:

Extrema at :



Keypoints Filtering

• Keypoints are filtered in two ways:

– Low contrast (unstable extrema)

– Keypoints that belong to an edge

• Low-contrast check: 

– a keypoint is removed if D(x*) < 0.03

(image values are normalized in [0,1])



Keypoints Filtering

• A keypoint on an edge “can move” along the edge 
not stable.

• Local Hessian matrix (H) provides information about 
curvature of the image. 

• In analogy with the Harris Corner Detector, it is 
possible to use Det(H) and Tr(H) to write a condition 
of rejection without computing explicitly the 
eigenvalues of H



Keypoints Filtering

Edge Check:

r is the ratio between the 

directions of principal curvature



832 keypoints

729 keypoints 536 keypoints



SIFT – Orientation Assignment

• To get orientation invariance a reference 
orientation is assigned to each keypoint.

• First, compute orientation at the selected 
scale:

(note the use of L(.) and not D(.) )



SIFT – Orientation Assignment

• An histogram of orientations 
is accumulated considering 
the surrounding pixels 
(σ=1.5).

• The orientation is given by the 
highest peak.

• A new keypoint (with orientation) is assigned to 
any peak within the 80% of the highest peak.



SIFT Descriptor
Orientation histogram accumulated over a 4 x 4 region

2x2 histograms from an 8x8 region



SIFT Descriptor

• SIFT descriptor is composed by 4 x 4 
histograms (with 8 bins) accumulated over 4 x 
4 regions of 4 x 4 size.

• SIFT has 128 components (4x4x8=128)



SIFT Performance

• Robust to lighting changes (gradient-based)

• Robust to image noise

• Robust to viewpoint changes

– about 80% repeatability at 35 degree viewpoint 
change (rotation in depth)

• Very effective in object recognition



SURF

• First presented at ECCV’06 (Bay et al. 2006*) 

• The aim is to build a robust (like SIFT) features 
detector and descriptor but fast to compute.

• Exploit integral image and box filters 
approximation of Gaussian derivatives.

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, 

“Speed Up Robust Features”, ECCV 2006.



SURF – Integral Image

• The integral image IΣ is an image such that the 
pixel (x,y) contains the sum of all the pixels 
within the rectangular region defined by the 
origin (0,0) of the image and the point (x,y):



SURF – Integral Image
• It is easy to use IΣ to calculate the sum of the 

pixels in any region of the image:

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.



Gaussian Derivatives Approximation

• Box filters can be used to approximate the 
computation of Gaussian derivatives:

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.



Keypoints Detection

• Interest point localization is based on the 
Hessian matrix:

• The maximum response of the determinant of 
the Hessian matrix is searched:

Dxx is the approximation of Lxx computed using the box filter, 
Dyy is the approximation of Lyy , and so on..



Scale Space Detection

• The scale space 
representation is 
build by increase the 
filter size instead of 
reducing the image 
size.

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.



Scale Space Detection

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.

• Maxima in a 3 x 3 x 3 
neighborhood.

• Localization 
improvement by the 
same approach in 
SIFT (Brown and Lowe 
2002).



SURF – Orientation Assignment

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.

• A neighborhood of size 6s is 
considered.

• At a sampling step of s the x
and y wavelet response is 
calculated.

• These responses are organized 
as points as in the figure on the 
right (dx/dy space).

• The longest sum of the vectors 
in a windows is taken as the 
dominant orientation.



SURF Descriptor
• An oriented window W of size 20s is constructed.

• W is subdivided in 4 x 4 sub-regions.

• For each sub-region, the Haar wavelet responses at 5 x 
5 regularly spaced sample points are computed. 

• Each sub-region is associated to the following 
descriptor vector:

• SURF-64: 4 x 4 x 4 = 64 components.

• SURF-128: the vector v is splitted in positive and 
negative dx and dy.



SURF Descriptor

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.



SURF Descriptor vs SIFT Descriptor

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speed Up 

Robust Features”, CVIU, Vol. 110, No. 3, pp. 346–359, 2008.



SURF vs SIFT

• SURF is faster than SIFT  (about 3x w.r.t the 
original implementation)

• Performance are similar, in general

– SURF is more precise

– SURF is less robust in viewpoint change and 
illumination change



Affine Invariant Regions

• The idea is to find image regions that have 
properties such that they are robust against  
affine transformations.

• We take a look at:

– IBR (Intensity-Based Regions) by Tuytelaars et al. 
(presented at BMVC’00)

– MSER by Matas et al. (presented at BMVC’02)



Intensity-Based Regions (IBR)

• A set of local maxima is found (non-maxima 
suppression is used).

• For each local maxima a set of rays is shot.

• Along each ray the extremum of:

is found.

• These extremum points are connected to form 
an affine invariant region.



Intensity-Based Regions (IBR)

Tinne Tuytelaars and Luc Van Gool, “Wide Baseline Stereo Matching

based on Local, Affinely Invariant Regions”, BMVC 2000.



Intensity-Based Regions (IBR)

• Each region is described using the 
“Generalized Color Moments”:

• These moments characterize the shape, the 
intensity and the color distribution of the 
region in a robust and uniform way.



MSER - definitions

• Region Q is a contiguous subset of D, i.e. for 
each p, q ∈ Q there is a sequence p, a1 , a2 , … , 
anq and pAa1 , ai Aai+1 , anAq.

• (Outer) Region Boundary ∂Q = {q ∈ D\Q : ∃p 
∈ Q : qAp}, i.e. the boundary ∂Q of Q is the set 
of pixels being adjacent to at least one pixel of 
Q but not belonging to Q.

J. Matas, O. Chum, M.Urban, T. Pajdla, “Robust Wide Baseline Stereo 

from Maximally Stable Extremal Regions”, BMVC 2002.



MSER - definitions
• Extremal Region Q ⊂ D is a region such that 

for all p ∈ Q, q ∈ ∂Q : I(p) > I(q) (maximum 
intensity region) or I(p) < I(q) (minimum 
intensity region).

• Maximally Stable Extremal Region (MSER). 
Let Q1 , . . . ,Qi−1 ,Qi , . . . be a sequence of 
nested extremal regions, i.e. Qi ⊂ Qi+1. 
Extremal region Qi∗ is maximally stable iff q(i) 
= |Qi+Δ \ Qi−Δ|/|Qi| has a local minimum at i∗

(|.| denotes cardinality). Δ ∈ S is a parameter 
of the method.



MSER “visualized”

1

2

3

4

5

[Images from Matas’ presentation]

Threshold increase at each step



MSER

J. Matas, O. Chum, M.Urban, T. Pajdla, “Robust Wide Baseline Stereo 

from Maximally Stable Extremal Regions”, BMVC 2002.



J. Matas, O. Chum, M.Urban, T. Pajdla, “Robust Wide Baseline Stereo 

from Maximally Stable Extremal Regions”, BMVC 2002.

MSER



Histogram of Oriented Gradients 
(HOG)

• First proposed by Dalal and Triggs* in 2005 for 
human detection.

• Now used in thousands of Computer Vision 
works.

• Based on the orientation of the image 
gradient  dense descriptor (!)

N. Dalal and B. Triggs, “Histograms of Oriented Gradients 

for Human Detection”, CVPR 2005.



Histogram of Oriented Gradients 
(HOG)



Histogram of Oriented Gradients 
(HOG)



HOG - Pipeline

N. Dalal and B. Triggs, “Histograms of Oriented Gradients 

for Human Detection”, CVPR 2005.



HOG – Implementation Details
• Image gradient  simple 1-D mask works 

best!! ([-1 0 1] , [1 0 -1 ]T)

• Spatial binning  16 x 16 pixel blocks of four 8 
x 8 pixel cells.

• Orientation binning  9 orientations (in the 
range 0-180).

• Block normalization  clipped L2-norm.

• The descriptor is all the components of the 
normalized cell responses for all the blocks in 
the detection window (blocks are overlapped).



HOG for Person Detection

Max positive 

weights

Min positive 

weights

Average 

gradient

image

R-HOG

R-HOG weighted

(positive weights)

R-HOG weighted

(negative weights)



Person detection with HOG & linear SVM

N. Dalal and B. Triggs, “Histograms of Oriented Gradients 

for Human Detection”, CVPR 2005.



Recap

• Many types of feature detectors and 
descriptors have been developed during the 
last 10 years. 

• Local features together with different 
descriptors are used in many applications. 

• Scale invariance is very important (!)

• SIFT-related ideas and HOG are used in 
thousands of papers. 



Questions ?


