Multi-modal Registration of Visual Data

Massimiliano Corsini Visual Computing Lab, ISTI - CNR - Italy

Overview

- Introduction and Background
- Features Detection and Description (2D case)
- Features Detection and Description (3D case)
- Image-geometry registration
- Recent Advances and Applications

Overview

- Introduction and Background
- Features Detection and Description (2D case)
 - Image Filtering and Image Derivatives
 - Edge extraction (Hough Transform, RANSAC)
 - Corners Harris Corner Detector
 - Scale Invariant Detection (LoG, DoG)
 - Scale Invariant Feature Transform (SIFT)
 - SURF
 - Affine-invariant Regions (IBR, MSER)
 - Histogram of Oriented Gradients (HOG)
- Features Detection and Description (3D case)
- Image-geometry registration
- Recent Advances and Applications

Features Detection and Description (2D case)

Local and Global Features

- Features can be *global* or *local*.
- We concentrate on local features, which are more robust w.r.t:
 - Occlusions
 - Variations
- Local features can be widely applied.

Main Motivations

- Image Registration
- 3D Reconstruction
- Visual Tracking
- Object Recognition
- Etc..

Automatic Panorama

Musée du Louvre - Paris by David Engle (from GigaPan.com)

Panorama Creation

 We have two images – how do we combine them?

Panorama Creation

• Motivation: panorama stitching

– We have two images – how do we combine them?

Step 1: extract features Step 2: match features

Panorama Creation

 We have two images – how do we combine them?

Step 1: extract features Step 2: match features Step 3: align images

Image matching

by <u>Diva Sian</u>

by <u>swashford</u>

Harder case

by <u>Diva Sian</u>

by <u>scgbt</u>

Visual Tracking - SLAM

• Let's me show you a video..

Features Properties

- Robustness
 - Invariant to translation, rotation, scale
 - Robust to *affine* geometric transformation
 - Robust to photometric variations
- Distinctiveness ("interesting" structure)
- Locality (local features are usually robust to occlusions and clutter)
- Repeatability
- Accuracy
- Quantity
- Computational Efficiency

Features Detection and Description

- Image Features:
 - Corners
 - Edges
 - Blobs
 - Keypoints
- The features detected can be described using a *feature descriptor*.

Image Processing

- Many feature detectors involve the computation of first or second order derivatives.
- Often the image is filtered before to calculate its derivatives.
- Image derivatives are approximated using forward/backward of central differences.

Image Filtering

Input Image I (8 × 8 pixels)

A generic filter of 3 x 3 kernel size.

Image Filtering

Blurring – Box Filter

- Simpler form of blurring → averaging the pixel values on the support of the filter.
- Constant weighting function:

Example of 5 x 5 kernel (T = 25)

Box Filter

Original Image

Image Filtered (9x9 box filter)

Blurring – Gaussian Filter

- More the pixels are far from the central one and less they influence the average.
- 2D Gaussian: $g(x,y) = \frac{1}{2\pi\sigma}e^{-\frac{(x^2+y^2)}{2\sigma^2}}$

8

Weights of a 7x7 Gaussian filter

Gaussian Filter

Original Image

Image Filtered (9x9 Gaussian filter)

• Numerical approximations of derivatives:

Forward Differences: $\Delta_x(x_i) = f(x_{i+1}) - f(x_i)$

Backward Differences:
$$\Delta_x(x_i) = f(x_i) - f(x_{i-1})$$

Central Differences:
$$\Delta_x(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2}$$

• First-order derivatives using the central differences:

Horizontal derivative $\frac{\partial I}{\partial x} = I_x = I(x+1,y) - I(x-1,y)$ $\frac{\partial I}{\partial y} = I_y = I(x,y-1) - I(x,y+1)$ Vertical derivative

• Matrix form of the first-order derivatives:

$$W_{\Delta_x} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad W_{\Delta_y} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Image Derivatives (I_x)

Image Derivatives (I_y)

• More accurate numerical approximations:

Prewitt operator:

$$W_{\Delta_x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad W_{\Delta_y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Sobel operator:

$$W_{\Delta_x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad W_{\Delta_y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Edge Detection with the Sobel Operator

- Apply the Sobel operator and obtain I_x and I_y
- Gradient magnitude: $|G| = \sqrt{I_x^2 + I_y^2}$

(edge strength)

• Gradient direction: $G_{\theta} = \operatorname{atan2}(I_y, I_x)$

Edge Detection with the Sobel Operator

Edge extraction

- We know for each pixel the edge strength (and the direction).
- Some parts of the image lines are missing / some parts are noisy.
- Improve the detection \rightarrow fit segments/lines
 - RANSAC
 - Hough transform

RANSAC

- Random Samples Consensus (RANSAC): an iterative general method to estimate parameters of a mathematical model starting from data containing (many) outliers.
- Not only for edges → widely applied in Computer
 Vision (!) → simple and very robust to the presence of outliers.

Martin A. Fischler and Robert C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", Comm. of the ACM 24 (6): pp. 381–395, 1981.

RANSAC algorithm

- Get randomly a minimal set of data that solves the model we want to estimate
- Check the number of inliers (evaluate the consensus)
- Iterate
 - Until a maximum number of iterations is reached
 - Until a certain stop condition is reached
- Get the solution with the maximum consensus

RANSAC for edges

RANSAC for edges

Select two points

RANSAC for edges

Fit the line

Evaluate consensus (3 inliers)

Get other two points

- The *Hough transform* is a technique to detect features of a particular shape within an image.
- It requires that the desired features be specified in some parametric form.
- The *classical* Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses, *etc*.
- A *generalized* Hough transform can be employed in applications where a simple analytic description of a feature(s) is not possible (i.e. work using templates).

- The idea is to pass from the image space to a parameter space; the *Hough space*.
- Lines are parameterized as:

- Points (x,y) in image space corresponds to sinusoids in the Hough space.
- Points (*r*, θ) in Hough space corresponds to lines in image space.
 Co-liner points intersect at an unique point.

- In a nutshell: a voting scheme in a parameter space.
- Improvements:
 - Direction information (gradient)
 - Smoothing

Corners

What is a "corner" ?

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":

significant change in all directions

Credit: S. Seitz, D. Frolova, D. Simakov

Harris Corner Detection

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)

$$E(u, v) = \sum_{(x,y)\in W} (I(x+u, y+v) - I(x, y))^2$$

Small motion assumption

• Taylor expansion:

 $I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$

• First-order approximation is good for small motion:

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

Harris Corner Detection

$$E(u, v) = \sum_{(x,y)\in W} (I(x+u, y+v) - I(x, y))^2$$

$$\approx \sum_{(x,y)\in W} \left(I_x(x,y)u + I_y(x,y)v \right)^2$$

$$\approx \sum_{(x,y)\in W} \left(I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2 \right)$$

Harris Corner Detection

$$E(u, v) = \sum_{(x,y)\in W} (I(x+u, y+v) - I(x, y))^2$$

$$\approx \sum_{(x,y)\in W} \left(I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2 \right)$$

 $\approx Au^2 + 2Buv + Cv^2$

$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

Second Moment Matrix (M)

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u, v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

Harris Corner Detection

E(u,v) can be rewritten as:

$$E(u,v) = \sum_{(x,y)\in W} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Second Moment Matrix (M)

The surface E(u,v) is locally approximated by a quadratic form.

-d----

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Second Moment Matrix (M)

The shape of **M** tells us something about the *distribution* of gradients around a pixel.

The *eigenvectors* of **M** identify the directions of fastest and slowest change.

Eigenvalues and eigenvectors of **M**

- Define shift directions with the smallest and largest change in error
- x_{max} = direction of largest increase in *E*
- λ_{max} = amount of increase in direction x_{max}
- x_{min} = direction of smallest increase in *E*
- λ_{\min} = amount of increase in direction x_{\min}

Corners/Edges Classification

Classification of image points using eigenvalues of M:

in all directions

Cornerness Measure

$$R = \det(M) - k \operatorname{Tr}(M)^2$$

 $det(M) = \lambda_1 \lambda_2$ $Tr(M) = \lambda_1 + \lambda_2$

Harris Detector – example

Harris Detector – example

Harris Detector – example

Harris Detector – threshold

Harris Detector – local maxima

Harris Detector – corners in red

Weighting the derivatives

 In practice, using a simple window W does not work well (noisy response):

$$M = \sum_{(x,y\in W)} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• It is better to *weight* each derivative value based on its distance from the center pixel:

$$M = \sum_{(x,y\in W)} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

 $w_{x,y}$

Harris Corner Detection -Robustness

- Partially invariant to intensity changes (l'(x,y) = a
 l(x,y) + b)
- Translation invariance (yes) → corner location is covariant.
- Rotational invariance (yes) → eigenvalues remains the same (ellipse rotate).

- The same feature in different images can have different size.
- **Goal:** find a function of the region size which responds equally for corresponding regions of different size.

 For a point in one image, we can consider it as a function of the region size (e.g. radius of a circle):

 It is common to consider the local maximum of such function → corresponding region size should be covariant with image scale.

• A good function for scale detection should have a peak easily identifiable:

 Common *characteristic scale functions* can be defined by composing the derivatives of the images convolved with Gaussians of different size.
Scale Space Image Representation

• A family of images convolved with a Gaussian kernel of different size.

$$L(x, y; s) = G(x, y; s) * I(x, y)$$

$$G(x,y;s) = \frac{1}{2\pi s} e^{-(x^2 + y^2)/2s}$$

(note that $s = \sigma^2$)

Original

S

s = 2.5

s = 5.0

s = 10.0

s = 25.0

s = 50.0

Original Image

Why Gaussian Kernels ?

- Gaussian kernels satisfies *scale-space axioms*.
- Derivatives of the scale space can be easily obtained through convolution with Gaussian derivatives:

$$\partial_{x^n y^m} L(x, y; s) = (\partial_{x^n y^m} G(x, y; s)) * I(x, y)$$
$$L_{x^n y^m}(x, y; s)$$

Scale Space Image Representation

 G_{xx}

Laplacian of Gaussian (LoG)

• The *Laplacian* of an image *I(x,y)* can be used to detect edges (zero-crossing).

$$\nabla^2 I(x,y) = \frac{\partial^2 I}{\partial_x^2} + \frac{\partial^2 I}{\partial_y^2}$$

In a scale-space representation this can be calculated as

$$\nabla^2 L = L_{xx} + L_{yy}$$

Laplacian of Gaussian

Laplacian of Gaussian (LoG)

Source: S. Seitz

Laplacian of Gaussian (LoG)

The LoG can be used also as a **blob detector**.

Blob Detection at Multiple Scale

 The local extrema of the LoG response in the scale-space representation can be used to detected "blob" region at different scale.

Automatic Scale Selection

 A scale-space representation can be made invariant to scales, by performing automatic local scale selection by using *y-normalized derivatives**:

$$\partial_{\xi} = s^{\gamma/2} \partial_x \ , \ \partial_{\eta} = s^{\gamma/2} \partial_y$$

$$\partial_{\xi^n \eta^m} L(x, y; s) = s^{(m+n)\gamma/2} L_{x^n y^m}(x, y; s)$$

T. Lindeberg, "Feature Detection with Automatic Scale Selection", *Int. Journal of Computer Vision,* Vol. 30(2), pp. 79-116, 1998.

Automatic Scale Selection

• The scale at which a *scale-normalized differential entity* assumes a local extremum over scales is proportional to the size of the corresponding image structure in the image domain.

$$\nabla^2 L = L_{xx} + L_{yy}$$

$$\det H = L_{xx}L_{yy} - L_{xy}^2$$

LoG

Determinant of the *Hessian matrix*

$$H = \left[\begin{array}{cc} L_{xx} & L_{xy} \\ L_{xy} & L_{yy} \end{array} \right]$$

Automatic Scale Selection

Scale-normalized version

$$\nabla^2 L \to \nabla^2_{norm} L = s \left(L_{xx} + L_{yy} \right)$$

$$\det H \to \det H_{norm} = s^2 (L_{xx} L_{yy} - L_{xy}^2)$$

(these are an example of the characteristic scale function mentioned before)

original window

scale estimate

scale normalized

W

Lindeberg T (2013) "Invariance of visual operations at the level of receptive Fields" *PLoS ONE 8(7): e66990. doi:10.1371/journal.pone.0066990.*

Scale Invariant Harris Detector

K. Mikolajczyk and C. Schmid, "Indexing based on scale invariant interest points", *Proc. of ICCV 2001*, 2001.

Scale Inv. Harris Detector (Harris-Laplace)

• Scale-adapted Harris Corner detector:

$$\mathbf{C}(x,y,s,\bar{s}) = s^2 G(x,y,\bar{s}) * \begin{bmatrix} L_x^2(x,y,s) & L_x L_y(x,y,s) \\ L_x L_y(x,y,s) & L_y^2(x,y,s) \end{bmatrix}$$

$$R = \det(\mathbf{C}) - k \operatorname{Tr}(\mathbf{C})^2$$

• Local extrema of LoG is used for scale selection.

K. Mikolajczyk and C. Schmid, "Indexing based on scale invariant interest points", *Proc. of ICCV 2001*, 2001.

Harris-Laplace Detector

K. Mikolajczyk and C. Schmid, "Indexing based on scale invariant interest points", *Proc. of ICCV 2001*, 2001.

Scale Invariant Features Transform (SIFT*)

- Presented by Lowe* in 2004 (patented).
- Rotation and Scale invariant
- Robust to
 - Viewpoint change
 - Illumination change
- It is one of the most used detector/descriptor.

*David G. Lowe, "Distinctive image features from scale-invariant keypoints", *Int. J. of Computer Vision, 60(2), pp. 91-110*, 2004.

SIFT – Stages of Computation

Detector

Descriptor

- Find Scale-Space Extrema
- Keypoint Localization & Filtering

 Improve keypoints and throw out bad ones
- Orientation Assignment
 - Remove effects of rotation and scale
- Create descriptor
 - Using histograms of orientations

Detection of Scale Space Extrema

• Stable keypoints are localized using local extrema of *Difference of Gaussian (DoG)* function convolved with the image *I*.

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

 $D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) * I(x, y)$ = $L(x, y, k\sigma) - L(x, y, \sigma)$

DoG and LoG

D(x,y,σ) is efficient to compute and it is an approximation of the normalized Laplacian of Gaussian:

From the heat diffusion equation:

$$\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G$$

We can write:

$$\sigma \nabla^2 G = \frac{\partial G}{\partial \sigma} \approx \frac{G(x, y, k\sigma) - G(x, y, \sigma)}{k\sigma - \sigma}$$
$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k - 1)\sigma^2 \nabla^2 G$$

DoG and LoG

• Remember that:

$$\nabla_{norm}^2 L = s \nabla^2 L \qquad (s = \sigma^2)$$

From Digital Image Processing course by Bernd Girod, Stanford University. 2013.

Scale Space Extrema Detection

Scale Space Extrema Detection

The minimum/maximum is selected considering a 3 x 3 x 3 neighborhood.

Accurate Keypoints Detection

 The detection accuracy can be improved (sub-pixel, sub-space accuracy) by finding the extrema of a local 3D quadratic function which fit locally the scalespace representation (Brown and Lowe 2002):

From Taylor expansion:

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

Extrema at :
$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$

Keypoints Filtering

- Keypoints are filtered in two ways:
 - Low contrast (unstable extrema)
 - Keypoints that belong to an edge
- Low-contrast check:
 - a keypoint is removed if D(x*) < 0.03</p>

(image values are normalized in [0,1])

Keypoints Filtering

- A keypoint on an edge "can move" along the edge → not stable.
- Local Hessian matrix (*H*) provides information about curvature of the image.
- In analogy with the Harris Corner Detector, it is possible to use *Det(H)* and *Tr(H)* to write a condition of rejection without computing explicitly the eigenvalues of *H*

Keypoints Filtering

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \qquad \operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta, \\ \operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta$$

Edge Check:

r is the ratio between the directions of principal curvature

832 keypoints

729 keypoints

536 keypoints

SIFT – Orientation Assignment

- To get orientation invariance a reference orientation is assigned to each keypoint.
- First, compute orientation at the selected scale:

$$m(x,y) = \sqrt{L_x^2 + L_y^2}$$
$$\theta(x,y) = \tan^{-1}(L_y/L_x)$$

(note the use of *L(.)* and not *D(.)*)

SIFT – Orientation Assignment

- An histogram of orientations is accumulated considering the surrounding pixels (σ=1.5).
- The orientation is given by the highest peak.

• A new keypoint (with orientation) is assigned to any peak within the 80% of the highest peak.

2x2 histograms from an 8x8 region

SIFT Descriptor

- SIFT descriptor is composed by 4 x 4 histograms (with 8 bins) accumulated over 4 x 4 regions of 4 x 4 size.
- SIFT has 128 components (4x4x8=128)

SIFT Performance

- Robust to lighting changes (gradient-based)
- Robust to image noise
- Robust to viewpoint changes

 about 80% repeatability at 35 degree viewpoint change (rotation in depth)

• Very effective in object recognition

SURF

- First presented at ECCV'06 (Bay et al. 2006*)
- The aim is to build a *robust* (like SIFT) features detector and descriptor but *fast* to compute.
- Exploit integral image and box filters approximation of Gaussian derivatives.

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "Speed Up Robust Features", *ECCV 2006.*

SURF – Integral Image

The *integral image I_Σ* is an image such that the pixel (*x*, *y*) contains the sum of all the pixels within the rectangular region defined by the origin (0,0) of the image and the point (*x*, *y*):

$$I_{\Sigma}(x,y) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(x,y)$$

SURF – Integral Image

• It is easy to use I_{Σ} to calculate the sum of the pixels in any region of the image:

*Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "Speed Up Robust Features", *CVIU*, Vol. 110, No. 3, pp. 346–359, 2008.
Gaussian Derivatives Approximation

• *Box filters* can be used to approximate the computation of Gaussian derivatives:

Keypoints Detection

 Interest point localization is based on the Hessian matrix:

$$H = \left[\begin{array}{cc} L_{xx} & L_{xy} \\ L_{xy} & L_{yy} \end{array} \right]$$

• The maximum response of the determinant of the Hessian matrix is searched:

$$\det(\mathcal{H}_{\text{approx}}) = D_{xx}D_{yy} - (wD_{xy})^2$$

 $\rightarrow D_{xx}$ is the approximation of L_{xx} computed using the box filter, D_{yy} is the approximation of L_{yy} , and so on..

Scale Space Detection

 The scale space representation is build by increase the filter size instead of reducing the image size.

Scale Space Detection

- Maxima in a 3 x 3 x 3 neighborhood.
- Localization

 improvement by the
 same approach in
 SIFT (Brown and Lowe
 2002).

SURF – Orientation Assignment

- A neighborhood of size 6s is considered.
- At a sampling step of s the x and y wavelet response is calculated.
- These responses are organized as points as in the figure on the right (*dx/dy space*).
- The longest sum of the vectors in a windows is taken as the *dominant orientation*.

SURF Descriptor

- An oriented window *W* of size *20s* is constructed.
- *W* is subdivided in 4 x 4 sub-regions.
- For each sub-region, the Haar wavelet responses at 5 x
 5 regularly spaced sample points are computed.
- Each sub-region is associated to the following descriptor vector:

$$\mathbf{v} = \left(\sum d_x, \sum d_y, \sum |d_x|, \sum |d_y|\right)$$

- *SURF-64*: 4 x 4 x 4 = 64 components.
- SURF-128: the vector v is splitted in positive and negative d_x and d_y.

SURF Descriptor

SURF Descriptor vs SIFT Descriptor

Image sub-region SIFT gradients

SURF sums

SURF vs SIFT

- SURF is faster than SIFT (about *3x* w.r.t the original implementation)
- Performance are similar, in general
 - SURF is more precise
 - SURF is less robust in viewpoint change and illumination change

Affine Invariant Regions

- The idea is to find image regions that have properties such that they are robust against affine transformations.
- We take a look at:
 - IBR (Intensity-Based Regions) by Tuytelaars et al. (presented at BMVC'00)
 - MSER by Matas et al. (presented at BMVC'02)

Intensity-Based Regions (IBR)

- A set of local maxima is found (non-maxima suppression is used).
- For each local maxima a set of rays is shot.
- Along each ray the extremum of:

$$f(t) = \frac{|I(t) - I_0|}{\max\left(\frac{\int_0^t |I(t) - I_0| dt}{t}, d\right)}$$
 is found.

• These extremum points are connected to form an affine invariant region.

Intensity-Based Regions (IBR)

Tinne Tuytelaars and Luc Van Gool, "Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions", *BMVC 2000*.

Intensity-Based Regions (IBR)

• Each region is described using the "Generalized Color Moments":

$$M_{pq}^{abc} = \iint_{\Omega} x^p y^q [R(x,y)]^a [G(x,y)]^b [B(x,y)]^c \, dxdy$$

• These moments characterize the shape, the intensity and the color distribution of the region in a robust and uniform way.

MSER - definitions

- **Region** Q is a contiguous subset of D, i.e. for each p, $q \in Q$ there is a sequence p, $a_1, a_2, ..., a_n q$ and $pAa_1, a_iAa_{i+1}, a_nAq$.
- (Outer) Region Boundary ∂Q = {q ∈ D\Q : ∃p ∈Q : qAp}, i.e. the boundary ∂Q of Q is the set of pixels being adjacent to at least one pixel of Q but not belonging to Q.

J. Matas, O. Chum, M.Urban, T. Pajdla, "Robust Wide Baseline Stereo from Maximally Stable Extremal Regions", *BMVC 2002*.

MSER - definitions

- Extremal Region Q ⊂ D is a region such that for all p ∈ Q, q ∈ ∂Q : I(p) > I(q) (maximum intensity region) or I(p) < I(q) (minimum intensity region).
- Maximally Stable Extremal Region (MSER). Let Q₁,...,Q_{i-1},Q_i,... be a sequence of nested extremal regions, i.e. Q_i ⊂ Q_{i+1}. Extremal region Qi* is maximally stable iff q(i) = /Q_{i+Δ} \ Q_{i-Δ}//|Q_i| has a local minimum at i* (/./ denotes cardinality). Δ ∈ S is a parameter of the method.

MSER "visualized"

MSER

J. Matas, O. Chum, M.Urban, T. Pajdla, "Robust Wide Baseline Stereo from Maximally Stable Extremal Regions", *BMVC 2002*.

MSER

J. Matas, O. Chum, M.Urban, T. Pajdla, "Robust Wide Baseline Stereo from Maximally Stable Extremal Regions", *BMVC 2002*.

Histogram of Oriented Gradients (HOG)

- First proposed by Dalal and Triggs* in 2005 for human detection.
- Now used in thousands of Computer Vision works.
- Based on the orientation of the image gradient → dense descriptor (!)

N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", *CVPR 2005*.

Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG)

+++++++++++ +++++++ ++++++

HOG - Pipeline

N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", *CVPR 2005*.

HOG – Implementation Details

- Image gradient → simple 1-D mask works best!! ([-1 0 1], [1 0 -1]^T)
- Spatial binning → 16 x 16 pixel blocks of four 8 x 8 pixel cells.
- Orientation binning → 9 orientations (in the range 0-180).
- Block normalization \rightarrow clipped L2-norm.
- The descriptor is all the components of the normalized cell responses for all the blocks in the detection window (blocks are overlapped).

HOG for Person Detection

Person detection with HOG & linear SVM

N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", *CVPR 2005*.

Recap

- Many types of feature detectors and descriptors have been developed during the last 10 years.
- Local features together with different descriptors are used in many applications.
- Scale invariance is very important (!)
- SIFT-related ideas and HOG are used in thousands of papers.

Questions ?