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Features  Detection 

and Description 

(3D case)



Problem statement and motivations

• Correspondences problem:

– are the two (or more) pieces of geometry 
essentially the same? 

Range Maps
Registration

(rigid 
transformation)



Problem statement and motivations

• Correspondences problem: 

– are the two (or more) pieces of geometry similar ?

Animation Reconstruction
(non-rigid registration)

Image from: Hao Li, Robert Sumner, 

Mark Pauly, “Global Correspondance 

Optimization for Non Rigid 

Registration of Depth Scans”, 

Symposium on Geometry Processing 

(SGP08), 2008.



Problem statement and motivations

• Correspondences problem

– are the two or more pieces of geometry similar ?

Articulated Shape Matching
(parts-based rigid transformation)



Problem statement and motivations

Images from: W. Chang and M. Zwicker, “Automatic registration for articulated shapes”, 

Symposium on Geometry Processing (SGP08), 2008.



• Correspondences problem:

– Similar 3D models

Problem statement and motivations

Shape Analysis and Synthesis
(e.g. shape priors, editing, recognition)

Image from: Haslet et al. “A Statistical Model of Human Pose and Body Shape”, 

Proc. of Eurographics 2009. 



Problem statement and motivations

• Different correspondences problem.

• Different type of data (range maps, point 
clouds, point clouds with normals, polygonal 
meshes, geometry+color, etc.).

• These aspects and the specific application 
should be taken into account. 



Geometry Processing

• Representation and Data Structure

• (Discrete) Differential Geometry

• Parameterization

• Remeshing

• Simplification & Approximation

• Model Repair
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Parameterization

• Surface 

• Planar domain

• Define a mapping                      and



Parameterization



Parameterization

• Parameterization map must be bijective
triangles no overlap in the planar domain.

• Some distortions are always introduced:

– Some parameterizations are angle-preserving 
(conformal)

– Some parameterizations are area-preserving 
(equi-areal)

– Some parameterizations preserve area and angle 
(isometric)



Parameterization - cuts

• The surface may need to be cut (!)

sphere in 3D
2D surface disk



Parameterization - cuts

• More cuts usually produce less distortions.

sphere in 3D
2D surface



Parameterization – example

Image from: Lévy, Petitjean, Ray, and Maillot, “Least squares conformal maps 

for automatic texture atlas generation”, SIGGRAPH 2002.



Parameterization – Remeshing

f

f -1



Differential Geometry



Differential Geometry

Tangent vector



Curvature (2D)

• The curvature of C at P is the reciprocal of the 
radius of osculating circle at point P. 



Principal Curvatures

• For each t , we have a value of curvature.

• The two directions, k1 and k2, where the value 
of curvature is respectively the maximum and 
minimum are said to be the directions of 
principal curvature.



Differential Geometry



Surface Characterization with 
Gaussian Curvature

• K > 0 when the surface is elliptical.

• K = 0 locally flat.

• K < 0 for hyperboloids.

K>0

K<0
K=0



Mean Curvature

• Measure the divergence of the normal in a 
local neighborhood of the surface.

• The divergence is an operator that measures 
how much a vector field originate from or 
converge upon a given point.

• The Laplacian operator is the divergence of 
the gradient:



Divergence Operator

divs >0 divs >0 divs =0 divs =0 divs >0



Laplace Operator



Laplace-Beltrami Operator



Laplace-Beltrami Operator



Mean and Gaussian Curvature

Mean (H) Gaussian (K) Min (k2) Max (K1)



Discrete Differential Geometry

• Meshes are a piecewise linear approximation 
of the corresponding (smooth) surface.

• Surface normal ?

• Curvature ? 

• Laplace operator ?



Normal estimation

• Vertex normal  average the face normal of 
the incidents face

• Area-weighted face normal

• Angle-weighted face normal 



Discrete Curvatures



Discrete Laplace-Beltrami

Assuming uniform discretization



Discrete Laplace-Beltrami

More general formulation



Range Maps

• We do not need a parameterization (!)

• To apply 2D features detectors/descriptors is  
more natural (but it works?).

• Local vs global methods.

• Pairwise vs multi-view registration.



Range Maps

• Let’s take a look at [1] and [2] (we are 
interested in the pairwise registration part 
only)



Range Maps

• Global methods often produce a coarse 
registration  fine registration is required.

• Standard method  ICP* (Iterative Closest 
Point)

• Many variants exists.

*Paul J. Besl and Neil D. MacKay, “A Method for Registration of 3D Shapes”, 

IEEE Tran. PAMI, Vol. 14(2), Feb, 1992.



Iterative Closest Points (ICP)

• Select points randomly (e.g. 1000 points)

• Match each point with the closest point on 
the other surface

• Reject pairs with distance > threshold

• Iterate to minimize:



Iterative Closest Points (ICP)

First step

After many steps..



ICP - Variants

• Better Selection (e.g. stable sampling)

• Points Matching

– Only plausible matching are confirmed (e.g. 
compatibility of normals)

• Reject certain pairs

• Comparison of many variants in [Rusinkiewicz 
& Levoy, 3DIM 2001]

*S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithms”, 

3DIM 2001.



ICP - example

Before ICP After ICP



Keypoints Detectors and Descriptors
(for meshes/point clouds)

• Many different keypoint detectors and 
descriptors
– Curvature-based (fixed-scale, multi-scale)

– SIFT-inspired

– Histogram-based (defined on a volume, on a tangent plane, 
etc.)

– .. and many others.

• Sometime complex/informative 
detection/description is not necessary.. (e.g. 
4PCS for point cloud registration).



• For an evaluation of keypoint detectors refer 
to [1].

• For an evaluation of keypoint descriptors refer 
to [2].

Keypoints Detectors and Descriptors
(for meshes/point clouds)

[1] F. Tombari, S. Salti, L. Di Stefano, ”Performance Evaluation of 3D Keypoint 

Detectors”, Int. J. of Computer Vision, Vol. 102(1), pp. 198-220, 2013.

[2] “A Comprehensive Performance Evaluation of 3D Local Feature Descriptors”, 

Int. J. of Computer Vision, Vol. 116(1), pp. 66-89, 2016.



Surface Descriptors along the 
Timeline



Spin Images

• Originally developed for surface matching.

• It is a dense description.

• Main idea  to associate to each vertex a 
small “image”. 

• It works in object-centered coordinate system.

Andrew E. Johnson and M. Hebert, “Using Spin Images for Efficient Object 

Recognition in Cluttered 3D Scenes”, IEEE Tran. PAMI, Vol. 21(5), May, 1999.



Main Idea Explained



Parameters

• α (radial coord.) : perpendicular distance to the line 
through the surface normal

• β (elevation): signed perpendicular distance w.r.t the 
tangent plane

• Bin size : geometric width of the bins in the spin image

• Image width: Number of rows and cols in a square spin 
image

• Support angle: the maximum angle between the 
normal direction and the normal of the points that are 
allowed to contribute to the spin image.



Effect of the parameters
Bin Size

¼ mesh resolution≈ mesh resolution4x mesh resolution

Andrew E. Johnson and M. Hebert, “Using Spin Images for Efficient Object 

Recognition in Cluttered 3D Scenes”, IEEE Tran. PAMI, Vol. 21(5), May, 1999.



Effect of the parameters
Image width

10 pixels40 pixels 20 pixels

Andrew E. Johnson and M. Hebert, “Using Spin Images for Efficient Object 

Recognition in Cluttered 3D Scenes”, IEEE Tran. PAMI, Vol. 21(5), May, 1999.



90 degree180 degree

60 degree

Andrew E. Johnson and M. Hebert, “Using Spin Images for Efficient Object 

Recognition in Cluttered 3D Scenes”, IEEE Tran. PAMI, Vol. 21(5), May, 1999.

Effect of the parameters
Support angle



Advantages / Disadvantages

• Sampling of the surfaces  we need an 
uniform sampling for reliably matching.

• Parameters definition.

• Spin images are able to deal with 
cluttering/occlusion in complex scene.

• Matching problems

– False positive (not distinctive in some parts)

– False negative (sensitive to noise) 



MeshDOG / MeshHOG*

• For matching and tracking surface evolving 
during time (animation reconstruction).

• Detector+descriptor for any scalar field 
associated with a 2D manifold. 

• It extends DOG and HOG.

• The descriptor is able to capture local 
geometric and/or photometric properties in 
an elegant fashion.

*A. Zaharescu, E. Boyer, K. Varasani and R. Horaud, “Surface Feature Detection

and Description with Applications to Mesh Matching”, CVPR’09, 2009.



MeshDOG / MeshHOG

Mean
Curvature

Photometric
Information



MeshDOG

• Let’s consider the N-ring of a vertex v :



MeshDOG – Definitions

• Directional Derivative:

• Discrete Directional Derivative:



MeshDOG – Definitions

• Discrete Gradient:

• Discrete Convolution:



MeshDOG – Computation 

• At this point MeshDOG is computed similarly 
to the 2D case:

– f0 = f ; f1 = f0 * g ; f2 = f1 * g ; …

– DOG1 = f1 - f0 ; DOG2 = f2 - f1 ; …

• Keypoints  scale-space maxima (1-ring)

• Only the top 5% magnitude are considered.

• Cornerness is analyzed and non-corners are 
discarded. 



MeshDOG - Example



MeshHOG

• The descriptor for the vertex v is computed 
using a support region of size r (r-ring).

• The size of the support region is chosen as a 
fraction of the total surface area.

• Local Coordinate System is defined as:

Dominant
orientation

Vertex normal



MeshHOG

4 Spatial polar slices
8 Orientation slices

Orthonormal planes
where the 3D histogram

is projected Polar Coordinate System
for creating the histogram



MeshDOG+MeshHOG – Results



MeshDOG+MeshHOG - Results



Heat Kernel Signature (HKS)

• Goal: find multi-scale signature:

– Robust (not change if the shape is perturbed)

– Intrinsic (invariant to isometric transformation)

– Efficient (easy to compute at multiple scale)

• The idea is to use as signature the heat 
diffusion process on a shape  the restriction 
of the heat kernel to the temporal domain is 
used.

J. Sun, M. Ovsjanikov and L. Guibas, “A Concise and Provably Informative Multi-scale 

Signature Based on Heat Diffusion”, Symp. on Geometry Processing (SGP’09), 2009.



Heat Diffusion on a Manifold



Heat Kernel Properties

• Intrinsic invariant under isometric
transformation (given an isometry T : M  N)

• Robust (to local deformations  all the paths 
are taken into account)

• Multi-scale (as t increase, heat diffusion 
influences larger and larger neighborhood)



Heat Kernel Signature

• We would like to use the heat kernel kt(x,·) as 
the signature of the point x at scale t but..

– It is function of the entire manifold !

– It is difficult to compare two signatures.

• => The heat kernel is restricted on the 
temporal domain.



Heat Kernel Signature

• Given a point x on the manifold M, the Heat 
Kernel Signature (HKS) is defined as: 



Relation with the Gaussian Curvature
Valid for small values of t



HKS – Multi-Scale Properties Illustration



HKS – Computation

• On a compact manifold:

where            are, respectively, the i-th eigenvalue and 
eigenfunction of the Laplace-Beltrami operator.

• Laplacian operator can be put in matrix form 
for the entire mesh  use the eigenvalues 
and eigenvectors of this matrix.



HKS - Results



HKS – Results



Recap

• Different correspondence problems, different data 
types, different applications many different 
solutions to find correspondences on geometric data.

• Notions of geometry processing are fundamental 
(e.g. discrete curvature).

• Some solutions are 

– Curvature-based

– Inspired by works about 2D features (e.g. SIFT-inspired)

– Usually local descriptors are designed by aggregating 
geometric properties using different type of histograms 
(defined on a local tangent plane, on a volume, etc.).



Questions ?


