Multi-modal Registration of Visual Data

Massimiliano Corsini
Visual Computing Lab, ISTI - CNR - Italy
Overview

- Introduction and Background
- Features Detection and Description (2D case)
- Features Detection and Description (3D case)
- Image-geometry registration
- Recent Advances and Applications
Overview

- Introduction and Background
- Features Detection and Description (2D case)
- Features Detection and Description (3D case)
 - Problem Statement and Motivations
 - Geometry Processing
 - Parameterization
 - Discrete Differential Geometry
 - Range Maps registration
 - Spin Images
 - MeshDOG and MeshHOG
 - Heat Kernel Signature (HKS)
- Image-geometry registration
- Recent Advances and Applications
Features Detection and Description (3D case)
Problem statement and motivations

• Correspondences problem:
 – are the two (or more) pieces of geometry *essentially the same*?
Problem statement and motivations

• Correspondences problem:
 – are the two (or more) pieces of geometry similar?

Animation Reconstruction
(non-rigid registration)

Problem statement and motivations

• Correspondences problem
 – are the two or more pieces of geometry similar?

Articulated Shape Matching
(parts-based rigid transformation)
Problem statement and motivations

Problem statement and motivations

- Correspondences problem:
 - Similar 3D models

Shape Analysis and Synthesis
(e.g. shape priors, editing, recognition)

Problem statement and motivations

- Different correspondences problem.
- Different type of data (range maps, point clouds, point clouds with normals, polygonal meshes, geometry+color, etc.).
- These aspects and the specific application should be taken into account.
Geometry Processing

• Representation and Data Structure
• (Discrete) Differential Geometry
• Parameterization
• Remeshing
• Simplification & Approximation
• Model Repair
Parameterization

- Surface $S \subset \mathbb{R}^3$
- Planar domain $\Omega \subset \mathbb{R}^2$
- Define a mapping $f : \Omega \rightarrow S$ and $f^{-1} : S \rightarrow \Omega$
Parameterization

- Mapping = 2D mesh with same connectivity
Parameterization

- Parameterization map must be *bijective* \(\rightarrow\) triangles no overlap in the planar domain.

- Some distortions are always introduced:
 - Some parameterizations are angle-preserving (*conformal*)
 - Some parameterizations are area-preserving (*equi-areal*)
 - Some parameterizations preserve area and angle (*isometric*)
Parameterization - cuts

- The surface may need to be cut (!)

sphere in 3D

2D surface disk
Parameterization - cuts

- More cuts usually produce less distortions.

sphere in 3D

2D surface
Parameterization – example

Parameterization – Remeshing
Differential Geometry

• Continuous surface

\[x(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}, \quad (u, v) \in \mathbb{R}^2 \]

• Normal vector

\[\mathbf{n} = (\mathbf{x}_u \times \mathbf{x}_v) / \|\mathbf{x}_u \times \mathbf{x}_v\| \]

– assuming regular parameterization, i.e.

\[\mathbf{x}_u \times \mathbf{x}_v \neq 0 \]
Differential Geometry

- Normal Curvature

\[n = \frac{x_u \times x_v}{\|x_u \times x_v\|} \]

\[t = \cos \phi \frac{x_u}{\|x_u\|} + \sin \phi \frac{x_v}{\|x_v\|} \]

Tangent vector
Curvature (2D)

• The curvature of C at P is the reciprocal of the radius of osculating circle at point P.
Principal Curvatures

- For each t, we have a value of curvature.
- The two directions, k_1 and k_2, where the value of curvature is respectively the maximum and minimum are said to be the directions of principal curvature.
Differential Geometry

- Principal Curvatures
 - maximum curvature $\kappa_1 = \max_{\phi} \kappa_n(\phi)$
 - minimum curvature $\kappa_2 = \min_{\phi} \kappa_n(\phi)$

- Euler Theorem: $\kappa_n(\overline{t}) = \kappa_n(\phi) = \kappa_1 \cos^2 \phi + \kappa_2 \sin^2 \phi$

- Mean Curvature $H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2\pi} \int_{0}^{2\pi} \kappa_n(\phi) d\phi$

- Gaussian Curvature $K = \kappa_1 \cdot \kappa_2$
Surface Characterization with Gaussian Curvature

- $K > 0 \rightarrow$ when the surface is elliptical.
- $K = 0 \rightarrow$ locally flat.
- $K < 0 \rightarrow$ for hyperboloids.
Mean Curvature

• Measure the *divergence* of the normal in a local neighborhood of the surface.

• The *divergence* is an operator that measures how much a vector field originate from or converge upon a given point.

• The Laplacian operator is the divergence of the gradient:
Divergence Operator

\(\text{div}_s > 0 \) \hspace{1cm} \(\text{div}_s > 0 \) \hspace{1cm} \(\text{div}_s = 0 \) \hspace{1cm} \(\text{div}_s = 0 \) \hspace{1cm} \(\text{div}_s > 0 \)
Laplace Operator

\[\Delta f = \text{div} \nabla f = \sum_i \frac{\partial^2 f}{\partial x_i^2} \]

- Laplace operator
- Gradient operator
- Function in Euclidean space
- Divergence operator
- 2nd partial derivatives
- Cartesian coordinates
Laplace-Beltrami Operator

\[\Delta_S f = \text{div}_S \nabla_S f \]

- Laplace-Beltrami
- Gradient operator
- Function on manifold \(S \)
- Divergence operator
Laplace-Beltrami Operator

\[\Delta_s x = \text{div}_s \nabla_s x = -2H n \]
Mean and Gaussian Curvature

Mean \((H)\) Gaussian \((K)\) Min \((k_2)\) Max \((K_1)\)
Discrete Differential Geometry

• Meshes are a piecewise linear approximation of the corresponding (smooth) surface.
• Surface normal ?
• Curvature ?
• Laplace operator ?
Normal estimation

• Vertex normal \rightarrow average the face normal of the incidents face
• Area-weighted face normal
• Angle-weighted face normal
Discrete Curvatures

- Mean curvature
 \[H = \| \Delta_s x \| \]

- Gaussian curvature
 \[G = (2\pi - \sum_j \theta_j) / A \]

- Principal curvatures
 \[\kappa_1 = H + \sqrt{H^2 - G} \]
 \[\kappa_2 = H - \sqrt{H^2 - G} \]
Discrete Laplace-Beltrami

Assuming uniform discretization

\[\Delta_{uni.f}(v) := \frac{1}{|N_1(v)|} \sum_{v_i \in N_1(v)} (f(v_i) - f(v)) \]
Discrete Laplace-Beltrami

More general formulation

\[\Delta_S f(v) := \frac{2}{A(v)} \sum_{v_i \in N_1(v)} (\cot \alpha_i + \cot \beta_i) (f(v_i) - f(v)) \]
Range Maps

• We do not need a parameterization (!)
• To apply 2D features detectors/descriptors is more natural (but it works?).
• Local vs global methods.
• Pairwise vs multi-view registration.
Range Maps

• Let’s take a look at [1] and [2] (we are interested in the pairwise registration part only)
Range Maps

• Global methods often produce a coarse registration → fine registration is required.
• Standard method → ICP* (Iterative Closest Point)
• Many variants exist.

Iterative Closest Points (ICP)

- Select points randomly (e.g. 1000 points)
- Match each point with the closest point on the other surface
- Reject pairs with distance > threshold
- Iterate to minimize:

\[E = \sum |(R_{p_i} + t) - q|^2 \]
ICP - Variants

• Better Selection (e.g. stable sampling)
• Points Matching
 – Only plausible matching are confirmed (e.g. compatibility of normals)
• Reject certain pairs
• Comparison of many variants in [Rusinkiewicz & Levoy, 3DIM 2001]

ICP - example

Before ICP

After ICP
Keypoints Detectors and Descriptors (for meshes/point clouds)

• Many different keypoint detectors and descriptors
 – Curvature-based (fixed-scale, multi-scale)
 – SIFT-inspired
 – Histogram-based (defined on a volume, on a tangent plane, etc.)
 – .. and many others.

• Sometime complex/informative detection/description is not necessary.. (e.g. 4PCS for point cloud registration).
Keypoints Detectors and Descriptors (for meshes/point clouds)

- For an evaluation of keypoint detectors refer to [1].
- For an evaluation of keypoint descriptors refer to [2].

Surface Descriptors along the Timeline

- Spherical Harmonic Shape Signature [Kazhdan et al. 03]
- Local Surface Signature [Li and Guskov 05]
- RIFT descriptor [Skelly and Sclaroff 07]
- Heat diffusion Signature [Sun et al. 09]
- Point Signatures [Chua & Jarvis 97]
- 3D Shape Context [Frome et al. 04]
- Slippage Features [Bokeloh et al. 08]
- Spin Images [Johnson 97]
- 3D Tensor Descriptor [Mian et al. 04]
- Multi-scale Principal Curvature [Yang et al. 06] [Kalogerakis et al. 07]
- Scale dependent/Invariant features [Novatnack & Nishino 08]
- Multi-scale Line features [Pauly et al. 03]
- HMM Descriptor [Castellani et al. 08]
Spin Images

• Originally developed for surface matching.
• It is a dense description.
• Main idea → to associate to each vertex a small “image”.
• It works in object-centered coordinate system.

Main Idea Explained
Parameters

- α (radial coord.): perpendicular distance to the line through the surface normal
- β (elevation): signed perpendicular distance w.r.t the tangent plane
- Bin size: geometric width of the bins in the spin image
- Image width: Number of rows and cols in a square spin image
- Support angle: the maximum angle between the normal direction and the normal of the points that are allowed to contribute to the spin image.
Effect of the parameters
Bin Size

(a) 4x mesh resolution
(b) ≈ mesh resolution
(c) ¼ mesh resolution

Effect of the parameters
Image width

Advantages / Disadvantages

• Sampling of the surfaces \rightarrow we need an uniform sampling for reliably matching.
• Parameters definition.
• Spin images are able to deal with cluttering/occlusion in complex scene.
• Matching problems
 – False positive (not distinctive in some parts)
 – False negative (sensitive to noise)
MeshDOG / MeshHOG*

- For matching and tracking surface evolving during time (animation reconstruction).
- Detector+descriptor for any scalar field associated with a 2D manifold.
- It extends DOG and HOG.
- The descriptor is able to capture local geometric and/or photometric properties in an elegant fashion.

MeshDOG / MeshHOG

Photometric Information

Mean Curvature
MeshDOG

- Let’s consider the N-ring of a vertex v:
MeshDOG – Definitions

• Directional Derivative:

\[D_{\vec{u}} f(\mathbf{v}) = \nabla_{\mathbf{s}} f(\mathbf{v}) \cdot \vec{u} \]

• Discrete Directional Derivative:

\[D_{\vec{e}_{ij}} f(\mathbf{v}_i) = \frac{1}{\|\vec{v}_i \vec{v}_j\|} (f(\mathbf{v}_j) - f(\mathbf{v}_i)) \]
MeshDOG – Definitions

- Discrete Gradient:

\[\nabla_S f(v_i) = \sum_{v_j \in \text{rg}(v_i, 1)} (w_{ij} \overrightarrow{D_{e_{ij}}} f(v_i)) \overrightarrow{u_{ij}}, \]

- Discrete Convolution:

\[(f \ast k)(v_i) = \frac{1}{K} \sum_{v_j \in N_n(v_i)} k(||\overrightarrow{v_i v_j}||) f(v_j) \]
MeshDOG – Computation

• At this point MeshDOG is computed similarly to the 2D case:
 \[f_0 = f; f_1 = f_0 \times g; f_2 = f_1 \times g; \ldots \]
 \[\text{DOG}_1 = f_1 - f_0; \text{DOG}_2 = f_2 - f_1; \ldots \]

• Keypoints \(\rightarrow \) scale-space maxima (1-ring)

• Only the top 5% magnitude are considered.

• Cornerness is analyzed and non-corners are discarded.
MeshDOG - Example
MeshHOG

• The descriptor for the vertex v is computed using a support region of size r (r-ring).
• The size of the support region is chosen as a fraction of the total surface area.
• Local Coordinate System is defined as:

$$\{ \vec{a}_v, \vec{n}_v, \vec{a}_v \times \vec{n}_v \}$$

Dominant orientation

Vertex normal
MeshHOG

Orthonormal planes where the 3D histogram is projected

Polar Coordinate System for creating the histogram

4 Spatial polar slices
8 Orientation slices
MeshDOG+MeshHOG – Results

(c) Temple - Matches

(d) Temple - Errors
MeshDOG+MeshHOG - Results

(a) MeshHOG (b) MeshHOG (c) SIFT (d) SIFT
Heat Kernel Signature (HKS)

• **Goal:** find multi-scale signature:
 – Robust (not change if the shape is perturbed)
 – Intrinsic (invariant to isometric transformation)
 – Efficient (easy to compute at multiple scale)

• **The idea is to use as signature the heat diffusion process on a shape** ➔ the restriction of the heat kernel to the temporal domain is used.

Heat Diffusion on a Manifold

Heat kernel

\[k_t(x, y) : \mathbb{R}^+ \times \mathcal{M} \times \mathcal{M} \to \mathbb{R} \]

\[f(x, t) = \int_{\mathcal{M}} k_t(x, y) f(y, 0) dy \]

\(k_t(x, y) \) : amount of heat transferred from \(x \) to \(y \) in time \(t \).
Heat Kernel Properties

• *Intrinsic* \rightarrow invariant under *isometric* transformation (given an isometry $T : M \rightarrow N$)

\[k_t^M(x, y) = k_t^N(T(x), T(y)) \quad \forall x, y \in M \quad \forall t \]

• *Robust* (to local deformations \rightarrow all the paths are taken into account)

• *Multi-scale* (as t increase, heat diffusion influences larger and larger neighborhood)
Heat Kernel Signature

• We would like to use the heat kernel $k_t(x, \cdot)$ as the signature of the point x at scale t but..
 – It is function of the entire manifold !
 – It is difficult to compare two signatures.

• => *The heat kernel is restricted on the temporal domain.*
Heat Kernel Signature

• Given a point x on the manifold M, the Heat Kernel Signature (HKS) is defined as:

$$HKS(x) : \mathbb{R}^+ \rightarrow \mathbb{R}, \; HKS(x, t) = k_t(x, x)$$
Relation with the Gaussian Curvature

Valid for small values of t

$$k_t(x, x) = \frac{1}{4\pi t} \sum_{i=0}^{\infty} a_i t^i \quad a_0 = 1, \quad a_1 = \frac{1}{6}K$$
HKS – Multi-Scale Properties Illustration
HKS – Computation

• On a compact manifold:

\[k_t(x, y) = \sum_{i=0}^{N} e^{-t\lambda_i} \phi_i(x)\phi_i(y) \]

where \(\lambda_i, \phi_i \) are, respectively, the \(i-th \) eigenvalue and eigenfunction of the Laplace-Beltrami operator.

• Laplacian operator can be put in matrix form for the entire mesh \(\rightarrow \) use the eigenvalues and eigenvectors of this matrix.
HKS - Results
HKS – Results
Recap

• Different correspondence problems, different data types, different applications \(\rightarrow\) many different solutions to find correspondences on geometric data.

• Notions of geometry processing are fundamental (e.g. discrete curvature).

• Some solutions are
 – Curvature-based
 – Inspired by works about 2D features (e.g. SIFT-inspired)
 – Usually local descriptors are designed by aggregating geometric properties using different type of histograms (defined on a local tangent plane, on a volume, etc.).
Questions ?