Corso di Grafica Computazionale

Coordinate Frames

Docente:

Massimiliano Corsini

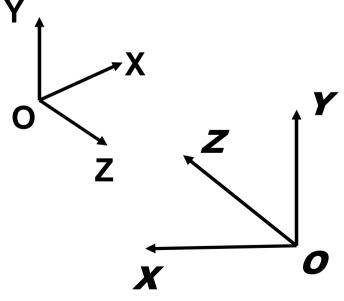
Laurea Specialistica in Ing. Informatica

Facoltà di Ingegneria Università degli Studi di Siena

Coordinate Frames

 Un sistema di coordinate locale, detto frame di coordinate, può essere rappresentato dalla seguente matrice (3x4) di coordinate:

$$F = \begin{bmatrix} X_x & Y_x & Z_x & O_x \\ X_y & Y_y & Z_y & O_y \\ X_z & Y_z & Z_z & O_z \end{bmatrix} \qquad \mathbf{Y}$$



Coordinate Frames

- Le proprietà di tale matrice sono strettamente collegate alle trasformazioni geometriche per passare dal sistema di coordinate locale a quello di riferimento.
- In particolare, lavorando in coordinate omogenee e considerando l'estensione della matrice (4x4):

$$F = \begin{bmatrix} X_x & Y_x & Z_x & O_x \\ X_y & Y_y & Z_y & O_y \\ X_z & Y_z & Z_z & O_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Si ottiene la matrice di trasformazione di un punto/vettore dal frame locale al sistema di riferimento globale.

Coordinate Frames

Origine (local frame) → World frame:

$$F = \begin{bmatrix} X_x & Y_x & Z_x & O_x \\ X_y & Y_y & Z_y & O_y \\ X_z & Y_z & Z_z & O_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} O_x \\ O_y \\ O_z \\ 1 \end{bmatrix}$$

Asse X (local frame) → World frame:

$$F = \begin{bmatrix} X_x & Y_x & Z_x & O_x \\ X_y & Y_y & Z_y & O_y \\ X_z & Y_z & Z_z & O_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} X_x \\ X_y \\ X_z \\ 0 \end{bmatrix}$$

Camera Frame

- Consideriamo le trasformazioni geometriche che definiscono la posizione e l'orientamento della camera.
- Matrice relativa al posizionamento della camera:

$$T = \begin{bmatrix} 1 & 0 & 0 & -O_x \\ 0 & 1 & 0 & -O_y \\ 0 & 0 & 1 & -O_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Frame

Matrice relative all'orientazione della camera:

$$R = \begin{bmatrix} X_x & X_y & X_z & 0 \\ Y_x & Y_y & Y_z & 0 \\ Z_x & Z_y & Z_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrice complessiva World-to-Camera:

$$TR = \begin{bmatrix} X_x & X_y & X_z & -O_x \\ Y_x & Y_y & Y_z & -O_y \\ Z_x & Z_y & Z_z & -O_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Camera Frame

 Considerando la trasformazione inversa si ottiene la trasformazione da Camera Space a World Space, ossia il camera frame.

$$(TR)^{-1} = (R^{-1}T^{-1}) = \begin{bmatrix} X_x & Y_x & Z_x & O_x \\ X_y & Y_y & Z_y & O_y \\ X_z & Y_z & Z_z & O_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\left[\begin{array}{cc} R & T \\ 0 & 1 \end{array}\right]^{-1} = \left[\begin{array}{cc} R^T & -T \\ 0 & 1 \end{array}\right]$$

Domande?