
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2006 ACM 1-59593-295-X/06/0003 $5.00
I3D 2006, Redwood City, California, 14–17 March 2006.

Interactive Refraction on Complex Static Geometry

using Spherical Harmonics

Olivier Génevaux∗ Frédéric Larue∗

LSIIT UMR CNRS-ULP 7005

Université Louis Pasteur Strasbourg I, France

Jean-Michel Dischler∗

Abstract

Accurate refraction, thanks to raytracing, has always been a popular
effect in computer graphics imagery. However, its use has been
severely hindered in interactive rendering due to the lack of efficient
and realistic techniques geared toward polygon oriented rendering.

In this paper, a method to achieve realistic and interactive refrac-
tive effects through complex static geometry is proposed. It relies
on an offline step where many light paths through the object are
pre-evaluated. During rendering, these precomputed paths are used
to provide approximations of actual refracted paths through the ge-
ometry, enabling further sampling of an environment map. Light
paths valuable information, namely final output direction when
leaving refractive object, is compressed using frequency domain
based spherical harmonics. The matching decompression proce-
dure, entirely offloaded onto graphics hardware, is handled at inter-
active speed.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: refraction, real-time rendering, spherical harmonics

1 Introduction

Refraction, bending light rays traveling through an interface be-
tween two transparent media of different densities, is one of the
most prominent optical effects to be seen. However, its simulation
in computer graphics remains challenging. Indeed, resulting effect
is complex since light rays are usually deflected more than once.
Such an effect can easily be simulated on complex objects using
raytracing. Nevertheless, interactive framerate cannot be reached
on commodity hardware.

The method proposed in this paper is designed to interactively
deal with multiple bounces refraction on a large class of complex
geometries. It is devised to be tractable on a hardware acceler-
ated feed-forward pipeline. This requires to simplify the refraction
model. The first simplification takes care of the environment sur-
rounding the object. As commonly done in hardware rendering,
environment is assumed to be far enough to be handled as a cube-
map. As a consequence, parallax effects are neglected. The second
approximation enables to drastically decrease computations as well

∗e-mail:{genevaux, larue, dischler}@dpt-info.u-strasbg.fr

Figure 1: Refractive shell and its bead. Light deflection is visible
on all the mesh, even on self-occluded parts.

as the amount of data. Fresnel laws induce both a reflected and
a refracted ray at each encountered interface. Retaining only the
most significant path of the whole ray tree reduces the number of
involved rays.

Similar to surface lightfields, the proposed technique stores numer-
ous directional data on the surface of the object. What is stored is
a mapping between the viewing direction and the final exiting ray
direction all over the surface. This mapping, evaluated using ray-
tracing during a precomputation step, is stored in a compact way
using spherical harmonics. It is then used during interactive render-
ing to index the environment map.

Previous work is summarized in section 2. Then, principles of the
method are given in section 3. Spherical harmonics, used to handle
the data view dependence, are reviewed in section 4. The decom-
pression step, using current programmable graphics hardware, is
described in section 5. Finally, results are discussed in section 6.

2 Previous Work

Simulating refraction is highly dependent on both the hidden sur-
face removal procedure used and the balance between the desired
level of accuracy and the rendering speed.

The only method where refraction is truly easy to simulate is ray-
tracing [Whitted 1980]. Indeed, due to its very nature, where rays
are traced back from the camera into the scene, correct refraction
can be handled without any difficulty: refractive rays are simply
spawned as necessary, enriching the ray tree. However, this sim-
plicity is only achieved when objects are described using smooth
formulations. In the case of discretely sampled volumetric objects,
more complex procedures are required to obtain high quality re-
sults [Li and Mueller 2005]. The more elaborate beam tracing tech-
nique exhibits the problem of describing refraction on finite area

145

surfaces. Addressing this problem might require approximating re-
fraction [Heckbert and Hanrahan 1984].

If interactive rendering is desired, raytracing proves impractical
on commodity hardware. Polygon rendering processes are then
preferred, simplifying the refraction model, thus trading accuracy
for rendering speed. Refraction on thin objects has been approxi-
mated using a distortion field applied to the scene background [Kay
and Greenberg 1979]. The same distortion field approach has also
been used to approximate complex virtual lenses behavior [Hei-
drich et al. 1997]. Lifting the thin object restriction, a hardware
accelerated technique has been developed [Wyman 2005], where
two-sided refraction on arbitrary geometry is approximated. This
technique provides realistic effects, even with objects of strongly
varying depth. However, only able to deal with double refraction,
accuracy strongly depends on the convexity of the object.

Matting algorithms have been developed [Zongker et al. 1999] to
capture refraction occurring inside real objects. The goal is to allow
further relighting using the exact same viewpoint.

Instead of considering arbitrary scenes, methods have been devoted
to specific scenes or particular objects. Refraction through a sin-
gle surface, such as an ocean surface viewed from above sea level,
can be devised analytically at mesh vertices, to further index some
texture map figuring the sea bottom [Ts’o and Barsky 1987]. Mul-
tiple effects, including refraction, occurring in gemstones, can be
faithfully rendered using hardware assisted beam tracing [Guy and
Soler 2004]. However, striving for accuracy, the method is tai-
lored to handle small models composed of a few hundredth planar
faces. Among polygon based rendering techniques, environment
mapping can be avoided. Yet, multiple rendering passes have to
be performed [Diefenbach and Badler 1997]. Each pass then han-
dles refraction through a single planar surface. Due to complex
handling of refraction with polygonal techniques alone, hybrid ap-
proaches combining polygon rendering and raytracing have been
proposed. They mainly operate full raytraced refraction computa-
tions at mesh vertices, combined with an adequate in-between poly-
gon filling procedure. To keep framerate at interactive level, dedi-
cated hardware may be used [Ohbuchi 2003] or an adaptive mesh
tesselation procedure can be used [Hakura and Snyder 2001].

If parallax effects are desired, elaborate techniques have been pro-
posed, such as representing the neighboring environment using
lightfields [Heidrich et al. 1999; Yu et al. 2005].

Outside of the previous techniques, completely simulating refrac-
tion during rendering, a method heavily relying on precomputa-
tion has been proposed [Heidrich et al. 1999]. Trading memory
consumption for interactivity, refraction induced patterns are ac-
curately precomputed and stored, allowing further interactive ren-
dering. The view-dependence of this information is handled using
a lightfield framework. However, even using vector quantization,
refraction can only be stored coarsely due to memory constraints,
lowering quality. Moreover, given the two planes parameterization
used for the lightfield, viewpoint freedom is restrained.

Using the same rationale, surface lightfields [Chen et al. 2002] uses
an optimized scheme to store exiting radiance directly on the ob-
ject surface. Complex objects are then captured in a fixed lighting
environment and rendered for any viewpoint afterwards. Going fur-
ther, precomputed radiance transfer [Sloan et al. 2002] represents a
transfer function on the surface to capture self-shadowing and inter-
reflections. Using spherical harmonics representation for both the
transfer functions and the light stage, environment can be interac-
tively and efficiently varied.

Building upon these ideas, the method presented in this paper stores
directional geometric informations directly on surface, instead of

o1
o2 ω1 ω1

ω2

ω3

R(o1,ω1)

R(o1,ω2)

R(o2,ω1) R(o2,ω3)

Figure 2: Refracted path mapping.

photometric quantities. Similar to Sloan [2002], the directional in-
formation stored on the surface is represented using spherical har-
monics. Yet, actual handling of spherical harmonics differs signifi-
cantly: basis functions are explicitly evaluated instead of capitaliz-
ing upon basis orthogonality.

3 Method Principles

The presented method falls in line with most of the polygon based
rendering methods designed to handle refraction. It makes the as-
sumption that the refractive object can be completely uncoupled
from its environment, considered as a distant environment map.

Under this assumption, all light paths interacting with the refrac-
tive object share the same common structure. A sight ray, leaving
the virtual camera lens, gets deflected several times by the interface
between the object and the environmental media, finally hitting the
distant environment. According to Fresnel equations, both reflected
and transmitted rays should be spawned at each encountered inter-
face [Guenther 1990]. Instead of handling the whole resulting ray
tree, which would prove impractical interactively, only the most
significant branch is retained. The representative path is chosen
greedily at each interface, between reflected and transmitted can-
didates, depending on their Fresnel attenuation factors [Hakura and
Snyder 2001]. Note that retained path might interact with the object
interface many times before finally leaving the object.

This single path approximation enables to establish a refracted path
mapping. As stated in equation 1, it is defined over the whole ob-
ject surface O and the whole viewing direction sphere S2. For any
point p ∈ O, and any viewing direction ω ∈ S2, it stores the exiting
direction of the path entering in the object at p along ω , as shown
by figure 2.

R(p,ω) : O×S2 → S2 (1)

Capturing this mapping requires to sample it. The set of samples
Od = {oi} ⊂ O spanning the object surface depends on the nature
of the handled object. The choice of this set is addressed in sec-
tion 5. The set of samples S2

d = {ω j} ⊂ S2 spanning the viewing

sphere is described in section 4.2. An interpolation R̂(p,ω) of these
sampled data is then required. Similar to lightfield mapping, the
four-dimensional mapping R is expressed as a sum of products of
lower dimensional functions as stated by equation 2.

R(p,ω) ≈ R̂(p,ω) = ∑
oi∈Od

Soi
(p) ·Roi

(ω) (2)

At each sample oi, the mapping Roi
= R(oi, ·) is represented us-

ing spherical harmonics. Such a frequency scheme has been cho-
sen because of its spherical nature and its compactness. Moreover,
note that each compressed function Roi

is intrinsically continuous

and does not explicitly interpolate between directional samples S2
d .

Such a representation acts as a an efficient compression scheme too.
The Soi

are defined as linear or bilinear interpolation functions be-
tween surface sampling locations oi ∈ Od .

Given this mapping R, simulating refractive effects for any view-
point q is immediate. It reduces to query R̂ with adequate viewing

146

direction ωq on the whole surface and to sample the environment
accordingly.

The proposed method then proceeds along these lines. The map-
ping R is sampled during a precomputation step using raytracing.
At each spatial sample oi ∈Od , it is further compressed using spher-
ical harmonics, leading to the Roi

functions. Then, interactive ren-
dering is performed using a two-steps procedure. First, a refrac-
tion map Rρ,q matching the current viewpoint q is extracted from
the compressed data. Its layout is defined according to a param-
eterization ρ of the spatial samples set Od into texture space. In
essence, this map stores how light is refracted through the object
viewed from q, for all the object surface. The parameterization ρ is
chosen so that hardware texture filtering embodies the spatial inter-
polation functions Soi

. Formally, the refraction map Rρ,q is defined
as Rρ,q(ρ(oi)) = Roi

(ωq). Final rendering is then performed by
sampling the environment with respect to the directions stored in
Rρ,q.

To adequately capture the refractive object behavior, dense sam-
pling of the four dimensional mapping R is required. Yet, the spher-
ical harmonics representation is efficient enough to keep memory
usage tractable. Both this compression scheme and the matching
hardware implementation allow to provide interactive and plausi-
ble rendering of refractive effects on complex geometries. How-
ever, reliance on a precomputation step induces two major limita-
tions: object geometry cannot be modified at runtime and material
densities are held fixed. Moreover, the use of frequency based com-
pression tends to smooth data. This prevents discontinuities in the
refraction pattern to be accurately captured, reverting to smoother
variations. Furthermore, relying on fixed texture filtering restrains
Soi

to piecewise linear interpolation functions.

4 Spherical Harmonics

As previously stated, at each spatial sample oi ∈ Od , the refracted
path mapping Roi

is independently compressed using spherical har-
monics (SH) [MacRobert 1967]. It should be noted that the SH use
differs significantly from its common use in rendering. Frequently,
the orthogonality property of the basis is capitalized upon to reduce
the convolution operation to a single dot product [Sloan et al. 2002].
In this paper, no convolution is dealt with, and direct basis functions
evaluation is required.

4.1 Definition

Spherical harmonics, denoted Y m
l , constitute a family of increas-

ing frequency functions, defined over the sphere S2. As spherical
harmonics form a complete family of orthogonal polynomials, any
square-integrable function ϕ can be expressed as a linear combi-
nation of the Y m

l basis functions . The involved αm
l weights are

defined as the convolution of the compressed function with the de-
sired Y m

l basis function over the sphere, as stated in equation 3.

ϕ =
∞

∑
l=0

l

∑
m=−l

αm
l ·Y m

l αm
l =

∫

S2
ϕ ·Y m

l ds (3)

The Y m
l functions are complex valued functions defined for each

direction (θ ,φ), using the associated Legendre polynomials Pm
l and

a normalization constant Km
l , shown in equation 4.

Y m
l = Y m

l (θ ,φ) = Km
l Pm

l (cosθ)eimφ

Km
l =

√

2l +1

4π

(l −m)!

(l +m)!
(4)

Despite being compact and recursively computable, this formula-
tion of spherical harmonics is not suitable to be used in a hardware
supported decompression algorithm since it makes use of angu-
lar quantities and trigonometric functions. However, recalling the
sphere parameterization in use, described in equation 5, it is possi-
ble to rewrite basis functions using Cartesian coordinates, leading
to equation 6.

[x,y,z] ↔ [sinθ · cosφ ,sinθ · sinφ ,cosθ]

{

θ ∈ [0,π]
φ ∈ [0,2π[

(5)

Y m
l = Y m

l (x,y,z) = Km
l ∑

p,q,s

1

p!q!s!

(

− x+ iy

2

)p (

x− iy

2

)q

zs

p+q+ s ≥ 0
p+q+ s = l
p−q = m

(6)

Using this new formulation, all basis functions are seen to be poly-
nomials of the x, y, and z variables.

Since real-valued rather than complex-valued functions are going
to be represented, it is possible to define simpler ym

l real-valued
spherical harmonics, using equation 7.

ym
l =

√
2 Re(Y m

l) m > 0√
2 Im(Y m

l) m < 0

Y 0
l m = 0

(7)

4.2 Practical Compression

The projection on the spherical harmonics basis must be done on
the many sampling points distributed over the object surface. An
efficient way to perform the compression is therefore needed. At
each point oi, the mapping R is only known on sampled directions
ω j ∈ S2

d . It is assumed that the mapping is continuously interpo-
lated in-between thanks to interpolation functions B j as shown in
equation 8. In this paper, regular subdivision of the two angular
parameters of S2 was used to define S2

d . The B j functions then nat-
urally arise from bilinear interpolation in each quadrangular region
of the sphere.

R(oi,ω) = Roi
(ω) = Roi

(θ ,φ) = ∑
j

r j ·B j(θ ,φ) (8)

Considering this definition, weights wm
l can be related to samples

values r j = Roi
(ω j), leading to equation 9.

wm
l = ∑

j

r j ·
∫

S2
ym

l ·B j ds (9)

As expressed in equation 10, the weights vector W can be directly
related to the samples vector R. Since the matrix M is only depen-
dent upon the samples distribution S2

d spanning the sphere, it can be
accurately precomputed and reused across all hemispheres as long
as distribution is left unchanged.

W = M ·R Mi j =
∫

S2
yi ·B j ds (10)

Compressing a sampled function is hence reduced to a single
matrix-vector product. In the case at hand, the same compression

147

if first pass
s = 0

else
s = fetch current partial sum value

[x,y,z] = get local viewing direction

for all polynomials yi assigned to the pass
pi = evaluate yi(x,y,z)
wi = fetch weight matching yi

s = s+wi · pi

Shader generation control
output s Actual shader instructions

Figure 3: Decompression shader structure.

matrix is reused over all samples oi ∈ Od , performing sampling in
local tangent frames. Instead of sampling both sides of the ob-
ject surface, only outer viewpoints are considered. This imply that
only the hemisphere above the surface is sampled. The remaining
of the sphere is completed by mirroring existing data [Sloan et al.
2003]. The output direction is represented using Cartesian coordi-
nates. Each coordinate is compressed on its own, leading to a SH
coefficients vector for each component.

4.3 Deficiencies Handling

Since the infinite series described in equation 3 is necessarily trun-
cated in practical applications, it is not possible to exactly encode
the refracted path mapping and the highest frequencies are lost.
However, abruptly discarding coefficients above some given fre-
quency, hence applying a box filter in the frequency domain, re-
sults in spurious oscillations of the reconstructed function, called
the Gibbs phenomenon. To attenuate this problem, it is possible to
apply a semi-Gaussian low-pass filter instead of a box filter in the
frequency space. Directly updating spherical harmonics weights,
this smoothing is of no cost. The width of the filter is empirically
determined to balance ringing suppression against excessive blur-
ring of the reconstructed function [Westin et al. 1992].

Lossy compression using SH might result in noise in the rendered
refraction, especially if surface sampling is dense. To alleviate such
a problem, it is possible to further smooth reconstructed values.
While some pointwise accuracy may be lost during smoothing, vi-
sual results are much more pleasing while retaining their overall
appearance. The effects of both smoothing filters, the frequency
one and the spatial one, are demonstrated in figure 4.

5 Implementation

Data gathered in the refraction map Rρ,q arise from the Roi
(ωq)

evaluation for the current viewpoint q, based on SH decompres-
sion. Yet, decompressed values are not directly used, but processed
beforehand. The first processing prevents defects related to texture
filtering and the second one applies smoothing described in sec-
tion 4.3.

The raw SH decompression is first performed into a directional map
denoted Dµ,q. The refraction map Rρ,q is then the result of the
processing chain applied to Dµ,q. Since these two maps may not
share the same layout, they use two ρ and µ parameterizations.

Figure 4: Effects of filtering: raw decompression, semi-Gaussian
smoothing filter on SH weights and SH weights filter combined
with spatial smoothing.

Two different rendering algorithms are further detailed. The first
one deals with surfaces requiring no, or weak, refraction map con-
tinuity at their borders, as opposed to the second one, designed to
cope with more stringent continuity constraints. Both start with the
directional map Dµ,q, whose construction is detailed first, and end
by providing the refraction map Rρ,q used during final rendering.

5.1 Directional Map Building

In order to build the directional map Dµ,q from the weights com-
puted during compression, one has to expand the frequency series
described in equation 3. This must be done for each surface sample
oi ∈ Od , using the proper local viewing direction ωoi

(q) defined by
the current viewpoint q.

Recalling spherical harmonics Cartesian definition given in equa-
tion 6, decompression is reduced to evaluate the weighted sum of
the SH basis functions. Due to the limited workload that can be
carried through a programmable hardware rendering pass, multi-
pass rendering is necessary to achieve reconstruction as soon as
the number of basis functions increases beyond some modest fig-
ure. Indeed, decompression requires a large number of primitive
instructions and a consequent number of different textures. Each
pass, handling a subset of the basis functions, is run on all the map
Dµ,q, updating all samples simultaneously. Using the closed form
of the basis functions, an automatic shaders generation procedure
symbolically computes all involved polynomials, and distributes
them among passes. Distribution is governed by a greedy algorithm
based on polynomials computation cost. Such a procedure helps to
avoid the generation of unnecessary passes. The typical structure
of these passes is described in figure 3.

In order to accurately track partial series values between passes,
intermediate decompression buffers built out of floating point tex-
tures are employed. Floating point precision enables to use as
many passes as needed, providing that memory is not exhausted
and shader limitations are not violated. Spherical harmonics co-
efficients, as well as partial sum values, are fetched from texture
maps. All of these buffers are parameterized using µ . Each weights
texture holds the three coefficients pertaining to a given basis func-
tion, the three vector components being mapped to the texture color
channels. As a consequence, (l + 1)2 texture maps are required to
reach SH of order l. Their size is directly related to the cardinal of
Od . Integer quantization of the weights using eight bits per channel
has not been found to adversely affect the final result, as shown in
figure 5.

5.2 Isolated Surface Algorithm

Isolated surface is defined as a surface where no, or weak, conti-
nuity is desired at border, such as one of the six different sharply
bounded faces of a cube, some light bulb inserted into an electrical

148

Figure 5: Comparison between SH weights storage texture: 4×32
bits floating point and 4×8 bits quantized.

Directional map Refraction map

Expanded
directional map

Spherical harmonics
decompression

Dynamic gutters
filling

Final rendering

Smoothing

Expansion map

SH Weights

Viewpoint ρ = µ = πq

Dµ ,q

D+
µ ,q

D̂+
µ,q ≡ Rρ ,q

Figure 6: Isolated surface rendering pipeline.

fixture, or any object whose texture border cannot be viewed by the
user. A more precise definition is a surface whose texture space pa-
rameterization π is using a single chart, no vertex being duplicated,
preserving mesh topology once unfolded.

The set of surface samples Od is induced by the center of texels and
can be non uniformly distributed over the object surface. Anyway,
neighboring relations between oi samples are preserved inside the
map and µ = ρ = π can be chosen for simplicity.

Retaining mesh topology in texture space has other multiple impli-
cations. Firstly, the directional map building efficiency can be in-
creased. Indeed, the mesh footprint induced by µ rarely fills up all
the available texture space. Yet, valid samples are easily accessed
by rendering the unfolded mesh in texture space, saving compu-
tations. Secondly, samples local viewing directions ωoi

(q) can be
computed at vertex level and interpolated across triangles. Thirdly,
smoothing described in section 4.3 can be performed directly in
texture space, using simple local averaging filters.

Perfect continuity at border being not required, dynamic gutters
around mesh footprint are efficient enough to avoid processing of
unassigned texels during hardware texture filtering. Once com-
puted, the directional map Dµ,q is expanded inside gutters, lead-

ing to the map D+
µ,q. Care should be taken so these gutters are

made large enough to provide adequate safety margins, especially
if strong spatial smoothing is applied. The resulting smoothed map

is denoted D̂+
µ,q.

In the case of isolated surfaces, the refraction map Rρ,q used for

final rendering corresponds to the D̂+
µ,q map. The whole rendering

pipeline is summarized in figure 6.

5.3 Joining Surfaces Algorithm

Unfortunately, most of the surfaces do not satisfy with the previous
stringent requirements and all possible parameterizations include at

Figure 7: Continuity handling comparison. Left and Center: iso-
lated surface algorithm (section 5.2) without and with dynamic gut-
ter. In the center picture, small discontinuities might still be spotted.
Right: algorithm designed for seamless continuity (section 5.3).

least one duplicated edge. Most of borderless surfaces exhibit such
a property.

To behave satisfactorily during final rendering, this partition must
not induce any discontinuity at charts borders. Adjacent parts being
stored non contiguously in texture space, regular texture filtering
performs defectively. At first glance, filling dynamic gutter areas
with values matching the opposite chart border may seem an effec-
tive way to ensure continuity. However, despite providing improve-
ments, such a procedure cannot completely solve the problem due
to eventual dissimilar sampling of the duplicated edge. Figure 7
depicts this problem.

Due to the immutable nature of the interpolation algorithm provided
by graphics hardware, the only freedom lies in preprocessing data
to further circumvent undesirable effects.

Even if no π compatible parameterization of the object surface can
be found, an automatic procedure enabling to handle seamless con-
tinuity is proposed. This procedure devises the ρ parameteriza-
tion suitably and applies a simple algorithm executed at runtime
by graphics hardware to prevent potential filtering defects. The de-
vised ρ is based on regular sampling of all mesh triangles in texture
space, according to some user-supplied rate.

Since ρ involves significant duplication of samples in texture space,
this parameterization is not used all along the rendering process to
prevent computational waste. In fact, ρ is only used to layout data
for final rendering and thus used to format the refraction map Rρ,q.
The bulk of computation, especially building of the directional map
Dµ,q, is performed using the µ parameterization, chosen to avoid
samples duplication. This µ parameterization is computed by pack-
ing all samples oi ∈ Od inside a minimally sized texture map.

5.3.1 Interpolation correction

Bilinear filtering Ibil interpolates four samples over a normalized
square cell, in a way described by equation 11, using notations re-
ferring to figure 8 left.

Ibil(α ,β) = (1−α) · (1−β) · v00 + α · (1−β) · v10

+ α ·β · v11 + (1−α) ·β · v01
(11)

Following this equation, one can state that the resulting value along
any edge of the cell is linearly interpolated from the two ends of the
edge. On the contrary, all values located strictly inside the cell get
non null contributions from all the four samples.

Yet, focusing on three samples and the subsequently enclosed area,
barycentric interpolation Ibar, described in equation 12, may be
achieved. Indeed, it stems from bilinear interpolation providing
the value carried by the fourth external sample complies with the

149

v00 v10

v11v01

α

β

Figure 8: Interpolation correction. Left: bilinear interpolation cell.
Center: triangle mixed interpolation setup. Right: triangles inter-
leaved storage.

requirement expressed in equation 13. In this case, along the di-
agonal edge, values arising from the interpolation also become lin-
early interpolated from the two ends of the edge. Considering this
scheme, any quantity can be correctly interpolated over the induced
triangular cell, on behalf of the immutable bilinear filtering.

Ibar(α ,β) = α · v10 +β · v01 +(1−α −β) · v00 (12)

v11 = v01 + v10 − v00 (13)

Such a scheme provides a way to interpolate three values across
a triangle. Nonetheless, it can be extended to increased sampling
rate, providing sampling pattern is regular, as can be seen in fig-
ure 8 center. Triangle yet requires to be aligned on axis, values to
be interpolated across the triangle defined at regularly distributed
locations. In this situation, interpolation cells can be divided into
two groups: those completely enclosed inside the triangle, where
regular bilinear filtering is suitable, and those featuring one of their
corner outside the triangle. The latter kind can be treated along the
previously described lines, reverting to barycentric interpolation.
As a result, more densely sampled triangles can be handled, still
providing satisfactory interpolation.

The mesh is then split and unconnected triangles are stored using
this scheme. To make better use of storage space, an interleaved
upside down layout is employed, as depicted in figure 8 right. All
triangles share the same sampling rate, hence their edges too, what-
ever their orientation in texture space. As a consequence, any two
edges can further be made matching by interpolation correction.

Starting from this layout, the set of surface samples Od is built from
the map texels centers, not taking account of copies generated by
duplicated edges. The parameterization ρ is in turn defined as the
transformation that maps Od to this layout.

5.3.2 Algorithm

In the first place, SH decompression is performed to compute the
directional map Dµ,q using the more efficient parameterization µ .
Mesh topology not being preserved in this parameterization, one
has to explicitly store local frames associated to samples oi to com-
pute the local viewing direction ωoi

(q). These data are stored in
texture maps.

Then, spatial smoothing described in section 4.3 is applied, still in
the µ optimized layout to avoid unnecessary computations. Un-
fortunately, samples neighboring relation not being preserved in µ
texture space, smoothing cannot be performed directly using a sim-
ple local averaging filter. As a consequence, smoothing requires
to precompute, for each sample, all involved neighboring samples.
This list of closest samples and their respective weighting coeffi-
cients are built during offline preprocessing and stored in textures.
Despite being more costly than smoothing in texture space, such

an approach enables to compute the smoothed map D̂µ,q avoiding
complications at mesh borders.

Correction map

Unpacking map

Final
refraction map

Local frames

Filter kernel
indirection maps

Spherical harmonics
decompression

Final rendering

Smoothing

Unpacking

Interpolation
correction

Directional
map

Packed smoothed
directional map

Unpacked smoothed
directional map

SH Weights

Viewpoint ρ 6= µq

Dµ,q

D̂µ ,q

D̂ρ ,q

D̂+
ρ,q ≡ Rρ ,q

Figure 9: Connected surface rendering pipeline.

Once smoothing has been performed, data are unpacked into the

map D̂ρ,q matching the ρ induced layout designed for final render-
ing. Due to proper layout, interpolation defects can then be fixed as

described in section 5.3.1. The resulting map D̂+
ρ,q corresponds to

the refraction map Rρ,q since refracted directions it contains can be
interpolated over the whole mesh surface in a continuous way.

The complete rendering pipeline is summarized in figure 9. While
more complex operations are required than in the case of an isolated
surface, the whole pipeline can still be completely offloaded onto
graphics hardware. Except for directional map building, each part
of the whole algorithm is run using a single hardware rendering
pass. Yet, circumventing interpolation artifacts is paid by requiring
an identical sampling rate on all triangles belonging to the mesh.
As a consequence, mesh geometry has to be as homogeneous as
possible so as to avoid large surface sampling discrepancies.

5.4 Improvements

Reliance on preprocessing implies that sampled geometry has to
remain static as well as material properties. Yet, while sampling is
tied to object space, the mesh can be rigidly transformed provid-
ing appropriate space remapping is performed. Concerning mate-
rials, variations can be achieved using some fallback approxima-
tion. When materials carry identical densities, no perturbation of
sight ray occurs. One can then interpolate between this straight path
and the precomputed one to simulate variable indices of refraction.
Still, it should be clearly stated that this procedure does not rely on
any physical assumption.

More significantly, considering that only three of the four texture
maps channels are filled in weights textures, one can store another
information for free. This available slot is dedicated to store the
distance d traveled by the light inside the object. It is then possible
to modulate the refracted environment during final rendering. The

transmittance τ(d) = e−κ·d can be computed on the fly, given the
material optical depth κ . Due to the vectorized nature of graphics
hardware and the fact that basis polynomials are already computed,
no additional computations are induced.

6 Results

Results computed using the technique described in section 5.3 are
now presented. Main statistics of all examples are gathered in ta-

150

Model Samples / Rays Tri. SH Tex. Mem. Fps
count count size usage

Shell 34 k / 70 M 4288 1862 17 MB 52

Bunny 35 k / 72 M 69451 1872 35 MB 40

Mug 42 k / 86 M 9184 2052 24 MB 43

Teapot 41 k / 84 M 2256 2032 23 MB 45

Lucy 119 k / 244 M 238734 3462 121 MB 7

Table 1: Rendering statistics. All examples use SH of order 8.

ble 1. All measurements are made on an AMD Athlon XP1800+,
equipped with a 128 MB ATI Radeon 9700 Pro. Using this graph-
ics hardware, SH can be handled up to order eight. In all situations,
viewport comprises approximately 1350× 1100 pixels. Yet, im-
age size remains mostly of no significant influence in performance
since refraction map building occurs in texture space. In all pre-
sented examples, primary reflection is added to refraction, both be-
ing weighted according to their respective Fresnel coefficients.

On this hardware, interactive timings are achieved by a significant
margin, even on objects such as the Stanford bunny. This example
is depicted in figure 10, along a glass mug half filled with water.
This latter example demonstrates the ability of the method to handle
complex objects involving multiple media. Indeed, even if such
sampled optical device is more complex than a single object, the
same technique can still be applied unchanged.

The presented technique can be visually compared to existing tech-
niques in figure 11. It compares the presented method with the
classical single-sided refraction, the double-sided approximation
technique [Wyman 2005] and a raytraced reference. Except for the
method presented in this paper, the bead inside the shell is visually
discarded, due to the layered structure of the object. Moreover, on
this highly non-convex object, double-sided refraction approxima-
tions may prove wrong enough to generate visible artifacts.

Finally, effects of compression are presented in figure 12, varying
the order of SH. Even if low orders significantly miss important
features of refractive patterns, behavior still appears realistic. This
latter fact hints that decompression can be performed progressively.
Trading visual quality to interactivity, the order of basis can be var-
ied according to some target framerate. Moreover, to further im-
prove interactivity, one might as well easily split the SH decom-
pression process over multiple frames, albeit at the price of a slight
visual latency.

One might note sparkling or aliasing on some parts of the ob-
jects. Indeed, spatial sampling pattern on object surface is cho-
sen at precomputation time. If the chosen fixed sampling rate is
higher than actual display rate, aliasing artifacts may appear. Un-
fortunately, due to continuity constraints on the refraction map, one
cannot filter the latter using mipmapping. This problem is even
more acute since refraction map behaves inherently as an indirec-
tion map. Strong variations in the environment may then translate in
visible sparkling. This hints that care should be exercised concern-
ing the sampling rate choice. Nevertheless, it may prove difficult
to handle objects presenting strong distance discrepancies, such as
sea surface. Another source of sparkling lies in the pointwise sam-
pling of the environment. Indeed, on areas of high curvature, large
environment regions tend to be projected on small groups of pixels.
Consequently, strong variations in the environment may result in
noisy refraction.

Concerning preprocessing, presented examples were computed us-
ing the regular sampling of a reference hemisphere using 2048 di-
rections. As an example, the bunny, comprising about 35,000 spa-
tial samples, was sampled in about 26 minutes, using about 71.5

Figure 10: Significant model and multiple media composite object
made of glass and water.

million rays. It was further compressed in 320 seconds.

7 Conclusions and Future Work

A method allowing to display refractive behavior has been pre-
sented. Building on both raytracing and polygon rendering
schemes, the method provides realistic effects at interactive framer-
ate. Raytracing is used to precompute light travel inside the object
for any viewpoint. Then, sampled data, stored using a compact rep-
resentation, are used to deduce rays exiting the object and to sample
the environment map accordingly. This rendering step can be per-
formed at interactive framerate thanks to programmable graphics
hardware. A suitable SH formulation is used to devise an adequate
hardware basis functions evaluation procedure.

While not cheap, neither in memory consumption nor in computa-
tions, the method is able to deal with many complex static geome-
tries in a satisfactory way. Nonetheless, visual artifacts may appear
if the surface sampling rate exceeds the display sampling rate. This
prevents the method to correctly deal with objects that are stretched
away from the viewer. Moreover, all effects cannot be captured be-
cause of their high directional frequencies. Yet, in this case, method
always provides believable effects, gracefully reverting to smoother
variations due to the progressive nature of the SH based compres-
sion.

Future work should investigate ways to further reduce memory
consumption and to improve data representation. To achieve this
goal, presenting similarities with surface lightfields, the presented
approach might take advantage of related advanced compression
techniques. Moreover, the presented method might benefit from in-
creasing programmability of graphics hardware to group all steps
into a single rendering pass. A single pass may alleviate aliasing
problems, rendering being made directly in screen space instead of
using intermediate textures. Finally, an alternate algorithm should
be proposed to handle joining surfaces with more flexibility with
respect to the sampling choice.

Acknowledgements

Environment maps courtesy of Paul Debevec. Stanford bunny pro-
vided by the Stanford University Computer Graphics Laboratory.
Decimated lucy model courtesy of Project Gamma of Inria.

151

Figure 11: Comparison of methods. Top: raytracing reference and
single-sided refraction. Bottom: double sided approximation and
proposed method.

References

CHEN, W.-C., BOUGUET, J.-Y., CHU, M. H., AND

GRZESZCZUK, R. 2002. Light field mapping: efficient
representation and hardware rendering of surface light fields.
ACM Transactions on Graphics 21, 3, 447–456.

DIEFENBACH, P. J., AND BADLER, N. I. 1997. Multi-pass
pipeline rendering: Realism for dynamic environments. In Pro-
ceedings of the 1997 symposium on Interactive 3D graphics,
ACM, 59–70.

GUENTHER, R. D. 1990. Modern Optics. John Wiley & Sons.

GUY, S., AND SOLER, C. 2004. Graphics gems revisited. ACM
Transactions on Graphics 23, 3, 231–238.

HAKURA, Z. S., AND SNYDER, J. M. 2001. Realistic reflections
and refractions on graphics hardware with hybrid rendering and
layered environment maps. In 12th Eurographics Workshop on
Rendering, Eurographics, 289–300.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. Computer Graphics 18, 3, 119–127.

HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. 1997. An
image-based model for realistic lens systems in interactive com-
puter graphics. In Graphics Interface, 68–75.

HEIDRICH, W., LENSCH, H., COHEN, M. F., AND SEIDEL, H.-
P. 1999. Light field techniques for reflexions and refractions. In
Rendering Techniques ’99, Eurographics, 187–196.

KAY, D. S., AND GREENBERG, D. P. 1979. Transparency for
computer synthesized images. Computer Graphics 13, 2, 158–
164.

LI, S., AND MUELLER, K. 2005. Accelerated, high-quality refrac-
tion computations for volume graphics. In International Work-
shop on Volume Graphics 2005, 73–81.

MACROBERT, T. M. 1967. Spherical harmonics: an elemen-
tary treatise on harmonic functions with applications. Pergamon
Press.

Figure 12: Different levels of decompression. Raytracing reference
and SH up to order l = 1,4,8. Memory usage and framerate respec-
tively 9, 13, 23 MB and 122, 100, 45 fps.

OHBUCHI, E. 2003. A real-time refraction renderer for volume ob-
jects using a polygon-rendering scheme. In Computer Graphics
International, 190–195.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Transactions on Graph-
ics 21, 3, 527–536.

SLOAN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clus-
tered principal components for precomputed radiance transfer.
ACM Transactions on Graphics 22, 3, 382–391.

TS’O, P. Y., AND BARSKY, B. A. 1987. Modeling and render-
ing waves: Wave-tracing using beta-splines and reflective and
refractive texture mapping. ACM Transactions on Graphics 6, 3,
191–214.

WESTIN, S. H., ARVO, J. R., AND TORRANCE, K. E. 1992. Pre-
dicting reflectance functions from complex surfaces. Computer
Graphics 26, 2, 255–264.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

WYMAN, C. 2005. An approximate image-space approach for in-
teractive refraction. ACM Transactions on Graphics 24, 3, 1050–
1053.

YU, J., YANG, J., AND MCMILLAN, L. 2005. Real-time reflection
mapping with parallax. In SI3D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games, ACM, 133–
138.

ZONGKER, D. E., WERNER, D. M., CURLESS, B., AND

SALESIN, D. H. 1999. Environment matting and compositing.
In Proceedings of ACM SIGGRAPH 99, ACM, 205–214.

152

