
Interactive Refraction on Complex Static
Geometry using Spherical Harmonics

Olivier Génevaux
Frédéric Larue

Jean-Michel Dischler

LSIIT
Strasbourg I University, France

UMR CNRS-ULP 7005

2

Goal

� Interactive
refraction
� Hardware

accelerated

� “Complex”
geometry
� Multiple bounces
� Multiple media

3

Summary

� Previous work
� Method
� Results, Limitations
� Conclusion

4

� Raytracing
� [Whitted, 1980]

Previous work

5

� Feed forward pipeline
� Rough approximation

� [Kay & Greenberg,
1979]

� Scene dedicated
techniques
� [Ts’o & Barsky, 1987]

� [Guy & Soler, 2004]

� Double sided refraction
� [Wyman, 2005]

Previous work

6

� Hybrid [Hakura & Snyder, 2001]

� Offline distortion
evaluation
� Stored using lightfield

parameterization
[Heidrich et al., 1999]

Previous work

7

Summary

� Previous work
� Method
� Results
� Conclusion

8

� Refraction
� Fresnel equations
� Snell’s law

� Binary tree of rays
� Cannot be handled

interactively

Method
Optics reminder

9

Method
Refraction model

� Model approximation
� Pruned ray tree [Hakura & Snyder, 2001]

� Surface x S2 � (Surface, S2)

� Further approximation
� Without parallax effects
� Output position drop
� Surface x S2 � S2

� Refraction reduced to a view dependant information over the
object surface

� For each point on surface and each viewing direction, a single
‘refracted direction’ is defined: distortion field

10

Method
Technique outline

� Offline: Distortion field sampling
� Static geometry
� Evaluated using ray tracing
� Compressed

� Online: Rendering
� Uncompress wrt. current

viewpoint
� Index environment map

� HW friendly storage
� Stored on surface
� Directional information

� Spherical harmonics

11

Method
Precomputation

� Sampling
� Whole surface
� Incident directions

hemisphere
� Above each sample

� Large data

� Example: bunny
� 35k surface samples
� 2048 directions
� ~ 1.1GB data

� Compression scheme:
Spherical Harmonics
� Convenient for directional

variations

12

Method
Stored data

� At each surface sample
� Output direction [x, y, z](ωin)

� 3 view dependant functions

� 3 SH coefficients vectors

� Hardware storage
� One texture per SH basis

function

� XYZ � RGB channels
� 8 bits / channel quantization

� No visual loss

13

Method
Decompression

� Data to be used directly
� No PRT-like convolution [Sloan et al. 2002]

� Requires actual decompression

� Decompression: series expansion
� SH polynomials evaluated wrt. current

viewpoint
� Basis functions Cartesian definition

� Multiple rendering passes
� Offscreen: data space
� Count related to basis functions #

� SH order 8: 7 passes (DirectX PS 2.0b)

() ∑

 −

 +−=
sqp

s
qp

m
l

m
l z

iyxiyx

sqp
KzyxY

,, 22!!!

1
,,

() inzyx ω=,,

() ()ini
i z

i

y
i

x
i

in

out

out

out

Y

w

w

w

z

y

x

ωω ⋅

=

∑

14

Method
Rendering – Straightforward technique

� Samples distribution given
by mesh unfolding

� Output directions correctly
located for hardware
bilinear filtering

� Discontinuity artifacts
� Chart borders
� Gutters

� No perfect continuity

15

Method
Rendering – Revised technique

� Full mesh split
� Automatic
� Increased memory

consumption

� Adequate correction
procedure
� Details in paper

� Perfect continuity

16

Method
Visual improvements – Smoothing

� Frequency domain
[Westin, 92]
� Directly on SH coefficients
� Free of charge

� Spatial domain
Raw Frequency

Spatial (3 pts)
+ Frequency

17

Method
Rendering summary

18

Summary

� Previous work
� Method
� Results
� Conclusion

19

Results
Visual Comparison

20

Results
Complex media

Multiple media: Air, Glass & Water Interactive
view-dependant

attenuation

21

Results
SH order influence

l=1: 4 functions l=4: 25 functions l=8: 81 functions

22

0

20

40

60

80

100

120

140

DC2 2 DC2 5 DC2 8 Bunny 2 Bunny 5 Bunny 8 Lucy 2 Lucy 5 Lucy 8

M
B

Auxiliary
SH Data
Geometry

Results
Memory consumption

35k samples
70k triangles

120k samples
239k triangles

7k samples
3.5k triangles

Revised technique: geometry duplication

5 points spatial smoothing

23

Results
Rendering speed

44

18

165

39

15

126

30

11

190

0

20

40

60

80

100

120

140

160

180

200

DC-2 Bunny Lucy

fp
s

2 5 8

GeForce 6800GT

~ 1350 x 1100

24

Results
Limitations

� Noise prone
� Fixed sampling set

on surface
� Mip-mapping

unavailable

� Point sampling of
environment
� High curvature area

Worst case

25

Results
Limitations

� Low frequency
variations capture

� Example
� Increasing distance

between star and
glass pane

� Details lost when
frequency increase

26

Summary

� Previous work
� Method
� Results
� Conclusion

27

Conclusion
Pros & Cons

� Cons
� Quality issues

� Sparkling

� SH: low frequency
� Blurry
� Precision requires too

many resources

� Static geometry

28

Conclusion
Pros & Cons

� Pros
� Pleasing refraction approximation

� Reasonable cost on many objects
� Multiple media

� At interactive framerate
� Continuous behavior

� Believable even if not well captures
� Major bounces captured

� Progressive decompression

29

Conclusion
Future work

� Single rendering pass
� Much simpler
� Certainly faster
� Partially alleviate sampling problems

� Continuity handling
� Extension to straightforward approach

� Compression scheme

30

Thanks for your attention

Questions?

31

Tech 1

32

Tech 2

Memory Usage

0

5

10

15

20

25

30

35

Bunny 5 DC2 5 SphereUnfold 5

M
B

Final Rendering

Interpolation Correction

Unpacking

Smoothing

SH Decompression

SH data

Geometry

33

Tech 3

SH decompression Passes Number

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

SH order

P
as

s
#

DirectX
PS 2.0b

34

Tech 4
[…]

sampler2D shTc0 : register(s0);
uniform float4 scale0 : register(c0);
uniform float4 bias0 : register(c1);

[…]

uniform float4 bias8 : register(c17);
uniform float4 camPos : register(c31);
uniform float4 scaledOpticalDepth : register(c30);

float4 main(VS_OUTPUT params) : COLOR0
{
[…]

mr0 = tex2D(mr0Sampler, params.shTC);
mr1 = tex2D(mr1Sampler, params.shTC);
mr2 = tex2D(mr2Sampler, params.shTC);

lDirection.x = dot(mr0, camPos);
lDirection.y = dot(mr1, camPos);
lDirection.z = dot(mr2, camPos);

[…]

dirPowers[0] = normalize(lDirection);

for(int i = 1 ; i < 2 ; i++)
dirPowers[i] = dirPowers[i - 1] * dirPowers[0];

accum = (float)0;

shc = tex2D(shTc0, params.shTC);
shc = shc * scale0 + bias0;
bVal = 0;
bVal += 0.282095;
accum += shc * bVal;

shc = tex2D(shTc1, params.shTC);
shc = shc * scale1 + bias1;
bVal = 0;
bVal += 0.488602 * dirPowers[0].y;
accum += shc * bVal;

[…]

shc = tex2D(shTc6, params.shTC);
shc = shc * scale6 + bias6;
bVal = 0;
bVal += 0.630783 * dirPowers[1].z;
bVal += -0.315392 * dirPowers[1].x;
bVal += -0.315392 * dirPowers[1].y;
accum += shc * bVal;

shc = tex2D(shTc7, params.shTC);
shc = shc * scale7 + bias7;
bVal = 0;
bVal += 1.092548 * dirPowers[0].x * dirPowers[0].z;
accum += shc * bVal;

shc = tex2D(shTc8, params.shTC);
shc = shc * scale8 + bias8;
bVal = 0;
bVal += 0.546274 * dirPowers[1].x;
bVal += -0.546274 * dirPowers[1].y;
accum += shc * bVal;

float3 dirPart = float3(accum.x, accum.y, accum.z);

dirPart = 0.5f * normalize(dirPart) + 0.5f;

float attPart = clamp(exp2(- accum.w * scaledOpticalDepth.w), 0.0f, 1.0f);

return float4(dirPart.x, dirPart.y, dirPart.z, attPart);

}

35

Tech 5
Influence of sampling density

8 x 16 = 128

128 x 256 = 32768 64 x 128 = 8192

32 x 64 = 204816 x 32 = 512

36

Tech 6

� Bunny
� 35k surface samples
� 2048 directions

� 71.5M rays
� 26 minutes
� ~ 1.1GB data

37

Examples 1
IOR & optical depth variation

38

Examples 2
Multiple media

39

Examples 3
SH order variation

40

Examples 4
Rendering strategies

