Interactive Refraction on Complex Static Geometry using Spherical Harmonics

> Olivier Génevaux Frédéric Larue Jean-Michel Dischler

LSIIT Strasbourg I University, France UMR CNRS-ULP 7005

Goal

- Interactive refraction
 - Hardware accelerated
- "Complex" geometry
 - Multiple bounces
 - o Multiple media

Summary

- Previous work
- Method
- Results, Limitations
- Conclusion

Previous work

Raytracing

o [Whitted, 1980]

Previous work

- Feed forward pipeline
 - Rough approximation
 - [Kay & Greenberg, 1979]
 - Scene dedicated techniques
 - **[**Ts'o & Barsky, 1987]
 - [Guy & Soler, 2004]
 - o Double sided refraction
 - [Wyman, 2005]

Previous work

Hybrid [Hakura & Snyder, 2001]

- Offline distortion evaluation
 - Stored using lightfield parameterization

[Heidrich et al., 1999]

Summary

Previous work

- Method
- Results
- Conclusion

Method Optics reminder

Refraction

 \bigcirc

- Fresnel equations
- o Snell's law

Binary tree of rays

interactively

Cannot be handled

Method Refraction model

- Model approximation
 - Pruned ray tree [Hakura & Snyder, 2001]
 - Surface $x S^2 \rightarrow$ (Surface, S²)
- Further approximation
 - Without parallax effects
 - o Output position drop
 - Surface $x S^2 \rightarrow S^2$

- Refraction reduced to a view dependant information over the object surface
- For each point on surface and each viewing direction, a single 'refracted direction' is defined: distortion field

Method Technique outline

- Offline: Distortion field sampling
 - Static geometry
 - Evaluated using ray tracing
 - o Compressed
- Online: Rendering
 - Uncompress wrt. current viewpoint
 - o Index environment map
- HW friendly storage
 - Stored on surface
 - o Directional information
 - Spherical harmonics

Method Precomputation

- Sampling
 - Whole surface
 - Incident directions hemisphere
 - Above each sample
 - Large data
- Example: bunny
 - 35k surface samples
 - o 2048 directions
 - ~ 1.1GB data
- Compression scheme: Spherical Harmonics
 - Convenient for directional variations

Method Stored data

- At each surface sample
 - Output direction [x, y, z](ω_{in})
 - 3 view dependant functions
 - > 3 SH coefficients vectors
 - Hardware storage
 - One texture per SH basis function
 - XYZ \rightarrow RGB channels
 - 8 bits / channel quantization
 - No visual loss

Method Decompression

- Data to be used directly
 - No PRT-like convolution [Sloan et al. 2002]
 - Requires actual decompression
- Decompression: series expansion
 - SH polynomials evaluated wrt. current viewpoint
 - Basis functions Cartesian definition
 - Multiple rendering passes
 - Offscreen: data space
 - Count related to basis functions #
 - SH order 8: 7 passes (DirectX PS 2.0b)

$$Y_l^m(x, y, z) = K_l^m \sum_{p,q,s} \frac{1}{p!q!s!} \left(-\frac{x+iy}{2}\right)^p \left(\frac{x-iy}{2}\right)^q z^s$$

$$(x, y, z) = \omega_{in}$$

Method

Rendering – Straightforward technique

- Samples distribution given by mesh unfolding
- Output directions correctly located for hardware bilinear filtering

- Discontinuity artifacts
 - Chart borders
 - Gutters
- No perfect continuity

Method

Rendering – Revised technique

- Full mesh split
 - o Automatic
 - Increased memory consumption
- Adequate correction procedure
 - Details in paper

Perfect continuity

Method

Visual improvements – Smoothing

Frequency domain [Westin, 92]

- o Directly on SH coefficients
- Free of charge

Spatial domain

Raw

Frequency

Spatial (3 pts) + Frequency

16

Method Rendering summary

Summary

Previous work

- Method
- Results
- Conclusion

Results Visual Comparison

Results Complex media

Multiple media: Air, Glass & Water

Interactive view-dependant attenuation

Results SH order influence

I=1: 4 functions

I=4: 25 functions

I=8: 81 functions

Results Memory consumption

7k samples 3.5k triangles

35k samples 70k triangles

120k samples 239k triangles

Revised technique: geometry duplication

5 points spatial smoothing

Results Rendering speed

GeForce 6800GT

~ 1350 x 1100

Results Limitations

Noise prone

- Fixed sampling set on surface
 - Mip-mapping unavailable
- Point sampling of environment
 - High curvature area

Worst case

Results Limitations

 Low frequency variations capture

- Example
 - Increasing distance between star and glass pane
 - Details lost when frequency increase

Summary

Previous work

- Method
- Results
- Conclusion

Conclusion Pros & Cons

- Cons
 - Quality issues
 - Sparkling
 - SH: low frequency
 - Blurry
 - Precision requires too many resources
 - Static geometry

Conclusion Pros & Cons

Pros

- Pleasing refraction approximation
 - Reasonable cost on many objects
 - Multiple media
 - At interactive framerate
 - Continuous behavior
 - Believable even if not well captures
 - Major bounces captured
- Progressive decompression

Conclusion

Single rendering pass

- Much simpler Ο
- Certainly faster
- Partially alleviate sampling problems Ο
- Continuity handling
 - Extension to straightforward approach Ο
- **Compression scheme**

Questions?

[...]

sampler2D shTc0 : register(s0); uniform float4 scale0 : register(c0); uniform float4 bias0 : register(c1);

[...]

uniform float4 bias8 : register(c17); uniform float4 camPos : register(c31); uniform float4 scaledOpticalDepth : register(c30);

float4 main(VS_OUTPUT params) : COLOR0

[...]

mr0 = tex2D(mr0Sampler, params.shTC); mr1 = tex2D(mr1Sampler, params.shTC); mr2 = tex2D(mr2Sampler, params.shTC);

IDirection.x = dot(mr0, camPos); IDirection.y = dot(mr1, camPos); IDirection.z = dot(mr2, camPos);

[...]

dirPowers[0] = normalize(IDirection);

for(int i = 1 ; i < 2 ; i++) dirPowers[i] = dirPowers[i - 1] * dirPowers[0];

accum = (float)0;

shc = tex2D(shTc0, params.shTC); shc = shc * scale0 + bias0; bVal = 0; bVal += 0.282095; accum += shc * bVal;

shc = tex2D(shTc1, params.shTC); shc = shc * scale1 + bias1; bVal = 0; bVal += 0.488602 * dirPowers[0].y; accum += shc * bVal; shc = tex2D(shTc6, params.shTC); shc = shc * scale6 + bias6; bVal = 0; bVal += 0.630783 * dirPowers[1].z; bVal += -0.315392 * dirPowers[1].x; bVal += -0.315392 * dirPowers[1].y; accum += shc * bVal;

shc = tex2D(shTc7, params.shTC); shc = shc * scale7 + bias7; bVal = 0; bVal += 1.092548 * dirPowers[0].x * dirPowers[0].z; accum += shc * bVal;

shc = tex2D(shTc8, params.shTC); shc = shc * scale8 + bias8; bVal = 0; bVal += 0.546274 * dirPowers[1].x; bVal += -0.546274 * dirPowers[1].y; accum += shc * bVal;

float3 dirPart = float3(accum.x, accum.y, accum.z);

dirPart = 0.5f * normalize(dirPart) + 0.5f;

float attPart = clamp(exp2(- accum.w * scaledOpticalDepth.w), 0.0f, 1.0f);

return float4(dirPart.x, dirPart.y, dirPart.z, attPart);

}

Tech 5 Influence of sampling density

8 x 16 = 128

16 x 32 = 512

32 x 64 = 2048

64 x 128 = 8192

128 x 256 = 32768

Bunny

- 35k surface samples
- o 2048 directions
- > 71.5M rays
- > 26 minutes
- > ~ 1.1GB data

Examples 1 IOR & optical depth variation

Examples 2 Multiple media

Examples 3 SH order variation

Order = 4

39

Examples 4 Rendering strategies

