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Goal

� Interactive 
refraction
� Hardware 

accelerated

� “Complex”
geometry
� Multiple bounces
� Multiple media
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Summary

� Previous work
� Method
� Results, Limitations
� Conclusion
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� Raytracing
� [Whitted, 1980]

Previous work
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� Feed forward pipeline
� Rough approximation

� [Kay & Greenberg, 
1979]

� Scene dedicated 
techniques 
� [Ts’o & Barsky, 1987]

� [Guy & Soler, 2004] 

� Double sided refraction
� [Wyman, 2005]

Previous work
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� Hybrid [Hakura & Snyder, 2001]

� Offline distortion 
evaluation
� Stored using lightfield

parameterization
[Heidrich et al., 1999]

Previous work
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Summary

� Previous work
� Method
� Results
� Conclusion
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� Refraction
� Fresnel equations
� Snell’s law

� Binary tree of rays
� Cannot be handled 

interactively

Method
Optics reminder
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Method
Refraction model

� Model approximation
� Pruned ray tree [Hakura & Snyder, 2001]

� Surface x S2 � (Surface, S2)

� Further approximation
� Without parallax effects
� Output position drop
� Surface x S2 � S2

� Refraction reduced to a view dependant information over the 
object surface

� For each point on surface and each viewing direction, a single 
‘refracted direction’ is defined: distortion field
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Method
Technique outline

� Offline: Distortion field sampling
� Static geometry
� Evaluated using ray tracing
� Compressed

� Online: Rendering
� Uncompress wrt. current 

viewpoint
� Index environment map

� HW friendly storage
� Stored on surface
� Directional information

� Spherical harmonics
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Method
Precomputation

� Sampling
� Whole surface
� Incident directions 

hemisphere
� Above each sample

� Large data

� Example: bunny
� 35k surface samples
� 2048 directions
� ~ 1.1GB data

� Compression scheme: 
Spherical Harmonics
� Convenient for directional 

variations
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Method
Stored data

� At each surface sample
� Output direction [x, y, z](ωin)

� 3 view dependant functions

� 3 SH coefficients vectors

� Hardware storage
� One texture per SH basis 

function

� XYZ � RGB channels
� 8 bits / channel quantization

� No visual loss
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Method
Decompression

� Data to be used directly
� No PRT-like convolution [Sloan et al. 2002]

� Requires actual decompression

� Decompression: series expansion
� SH polynomials evaluated wrt. current 

viewpoint
� Basis functions Cartesian definition

� Multiple rendering passes
� Offscreen: data space
� Count related to basis functions #

� SH order 8: 7 passes (DirectX PS 2.0b)
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Method
Rendering – Straightforward technique

� Samples distribution given 
by mesh unfolding

� Output directions correctly 
located for hardware 
bilinear filtering

� Discontinuity artifacts
� Chart borders
� Gutters

� No perfect continuity
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Method
Rendering – Revised technique

� Full mesh split
� Automatic
� Increased memory 

consumption

� Adequate correction 
procedure
� Details in paper

� Perfect continuity
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Method
Visual improvements – Smoothing

� Frequency domain 
[Westin, 92]
� Directly on SH coefficients
� Free of charge

� Spatial domain
Raw Frequency

Spatial (3 pts) 
+ Frequency
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Method
Rendering summary
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Summary

� Previous work
� Method
� Results
� Conclusion
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Results
Visual Comparison
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Results
Complex media

Multiple media: Air, Glass & Water Interactive
view-dependant

attenuation



21

Results
SH order influence

l=1: 4 functions l=4: 25 functions l=8: 81 functions
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Results
Rendering speed
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Results
Limitations

� Noise prone
� Fixed sampling set 

on surface
� Mip-mapping 

unavailable

� Point sampling of 
environment
� High curvature area

Worst case
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Results
Limitations

� Low frequency 
variations capture

� Example
� Increasing distance 

between star and 
glass pane

� Details lost when 
frequency increase
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Summary

� Previous work
� Method
� Results
� Conclusion
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Conclusion
Pros & Cons

� Cons
� Quality issues

� Sparkling

� SH: low frequency
� Blurry
� Precision requires too 

many resources

� Static geometry
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Conclusion
Pros & Cons

� Pros
� Pleasing refraction approximation

� Reasonable cost on many objects
� Multiple media

� At interactive framerate
� Continuous behavior

� Believable even if not well captures
� Major bounces captured

� Progressive decompression
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Conclusion
Future work

� Single rendering pass
� Much simpler
� Certainly faster
� Partially alleviate sampling problems

� Continuity handling
� Extension to straightforward approach

� Compression scheme
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Thanks for your attention

Questions?
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Tech 1
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Tech 2

Memory Usage
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Tech 3
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Tech 4
[…]

sampler2D shTc0 : register(s0);
uniform float4 scale0 : register(c0);
uniform float4 bias0 : register(c1);

[…]

uniform float4 bias8 : register(c17);
uniform float4 camPos : register(c31);
uniform float4 scaledOpticalDepth : register(c30);

float4 main(VS_OUTPUT params) : COLOR0
{
[…]

mr0 = tex2D(mr0Sampler, params.shTC);
mr1 = tex2D(mr1Sampler, params.shTC);
mr2 = tex2D(mr2Sampler, params.shTC);

lDirection.x = dot(mr0, camPos);
lDirection.y = dot(mr1, camPos);
lDirection.z = dot(mr2, camPos);

[…]

dirPowers[0] = normalize(lDirection);

for(int i = 1 ; i < 2 ; i++)
dirPowers[i] = dirPowers[i - 1] * dirPowers[0];

accum = (float)0;

shc = tex2D(shTc0, params.shTC);
shc = shc * scale0 + bias0;
bVal = 0;
bVal += 0.282095;
accum += shc * bVal;

shc = tex2D(shTc1, params.shTC);
shc = shc * scale1 + bias1;
bVal = 0;
bVal += 0.488602 * dirPowers[0].y;
accum += shc * bVal;

[…]

shc = tex2D(shTc6, params.shTC);
shc = shc * scale6 + bias6;
bVal = 0;
bVal += 0.630783 * dirPowers[1].z;
bVal += -0.315392 * dirPowers[1].x;
bVal += -0.315392 * dirPowers[1].y;
accum += shc * bVal;

shc = tex2D(shTc7, params.shTC);
shc = shc * scale7 + bias7;
bVal = 0;
bVal += 1.092548 * dirPowers[0].x * dirPowers[0].z;
accum += shc * bVal;

shc = tex2D(shTc8, params.shTC);
shc = shc * scale8 + bias8;
bVal = 0;
bVal += 0.546274 * dirPowers[1].x;
bVal += -0.546274 * dirPowers[1].y;
accum += shc * bVal;

float3 dirPart = float3(accum.x, accum.y, accum.z);

dirPart = 0.5f * normalize(dirPart) + 0.5f;

float attPart = clamp(exp2(- accum.w * scaledOpticalDepth.w), 0.0f, 1.0f);

return float4(dirPart.x, dirPart.y, dirPart.z, attPart);

}
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Tech 5
Influence of sampling density

8 x 16 = 128

128 x 256 = 32768 64 x 128 = 8192

32 x 64 = 204816 x 32 = 512
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Tech 6

� Bunny
� 35k surface samples
� 2048 directions

� 71.5M rays
� 26 minutes
� ~ 1.1GB data
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Examples 1
IOR & optical depth variation
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Examples 2
Multiple media
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Examples 3
SH order variation
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Examples 4
Rendering strategies


