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Interactive Rendering of Dynamic Geometry
Federico Ponchio and Kai Hormann

Abstract— Fluid simulations typically produce complex three-
dimensional iso-surfaces whose geometry and topology change
over time. The standard way of representing such “dynamic
geometry” is by a set of iso-surfaces that are extracted in-
dividually at certain time steps. An alternative strategy is to
represent the whole sequence as a four-dimensional tetrahedral
mesh. The iso-surface at a specific time step can then be
computed by intersecting the tetrahedral mesh with a three-
dimensional hyperplane. This not only allows to animate the
surface continuously over time without having to worry about
the topological changes, but also enables simplification algorithms
to exploit temporal coherence. We show how to interactively
render such four-dimensional tetrahedral meshes by improving
previous GPU-accelerated techniques and building an out-of-core
multi-resolution structure based on quadric-error simplification.
As a second application we apply our framework to time-
varying surfaces that result from morphing one triangle mesh
into another.

I. INTRODUCTION

Dynamic geometry occurs in many fields of computer graphics,
basically whenever three-dimensional objects are considered over
time or some other fourth parameter dimension. When performing
character animation, physically-based animation of deformable
or rigid objects, or mesh morphing, the topology of the objects
usually does not change and it is feasible to use explicit surface
representations such as triangle meshes. Often, further care is
taken to maintain a fixed mesh connectivity throughout the
animation so as to allow for a more efficient processing of the
sequence, e.g. texture mapping or compression.

Topological changes, however, are much easier dealt with by
using an implicit representation of the object to be animated.
Water and other fluids, for example, are usually simulated by
discretizing the appropriate differential equations and carrying
out the computations on a volumetric grid. For each time step,
the result of the simulation then is an iso-surface and in order
to get an explicit representation of the sequence, these iso-
surfaces are usually extracted one by one with any of the many
available algorithms. The whole animation is then given as a set of
individual triangle meshes with varying mesh connectivity which
complicates further processing of the sequence, in particular the
interpolation between successive frames.

Another approach is to interpret the whole animation sequence
as a data set in a four-dimensional space and represent dynamic
geometry as a general four-dimensional mesh. Such a hypermesh
is a collection of tetrahedra, but in contrast to volumetric tetrahe-
dral meshes, its vertices have four coordinates: three spatial and
one temporal.

Slicing such a 4D mesh with a three-dimensional hyperplane
that is perpendicular to the time axis gives a triangle mesh in
3D that represents the animation at a certain time frame (see
Section III).

The advantages of this approach to handling dynamic geometry
are twofold: firstly, it treats the time coordinate in the same way

Fig. 1. Snapshot from the interactive rendering of the “wave” data set.

as the spatial coordinates and thus it is possible to adapt existing
3D algorithms to this setting. In particular, this allows simplifi-
cation algorithms to exploit temporal coherence (see Section V).
Secondly, topological changes that may occur in the geometry as
it is animated over time do not need to be treated in a special
way, because they are naturally built-in features of hypermeshes.

Contributions: In this paper we show how to render such
dynamic geometry at interactive frame rates. In particular, we ex-
plain how to build a multi-resolution structure for 4D tetrahedral
meshes and how to preprocess the data such that the hyperplane-
intersection for a certain time value can be computed efficiently
on the GPU. The proposed method

• can render large data sets of time-varying surfaces (with
many million tetrahedra) in an interactive way,

• allows to continuously interpolate between successive time
frames, regardless of any topological and geometric changes
that may occur,

• is scalable in the sense that doubling the size of the input data
also doubles the pre-processing time and the storage space
on disk, but does not affect the frame rate and memory usage
for the rendering itself,

• requires only little CPU resources during the rendering ses-
sion, so that the latter is still available for other computations
at the same time.

Overview: Figure 2 illustrates our framework. In a first step,
we build a hypermesh that represents the given sequence of time-
varying surfaces (Section IV). We then simplify this hypermesh
by successive edge collapses using quadric-error (Section V)
and build a patch-based multi-resolution hierarchy (Section VI).
The hypermeshes from this hierarchy are then transformed into
dynamic triangles, a special “GPU-friendly” data structure that
allows to render the whole animation efficiently (Section VII).
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Fig. 2. Overview of the proposed framework. The preprocessing phase converts the input data into hypermeshes (1), builds a multiresolution model by
utilizing quadric-error simplification (2), and converts the hypermesh into a set of dynamic triangles (3). This data structure is optimized for interactive
rendering of the scene using the GPU (4).

II. RELATED WORK

Generating Hypermeshes. Extracting iso-surfaces from volumet-
ric data has a long history, starting with the famous marching
cubes (MC) algorithm [1]. Besides the various improvements
of this idea in the 3D setting, it has also been extended to
extract hypersurfaces from four-dimensional volumes with both
tetrahedral [2], [3] and hexahedral elements [4], [5]. Like the
original MC algorithm, these 4D variants compute a piecewise
linear approximation of the hypersurface, i.e. a tetrahedral mesh
with four-dimensional vertices, or simply a hypermesh.

We implemented a 4D MC algorithm using the table given by
Bhaniramka et al. [5] to extract hypermeshes for dynamic geome-
try that is given as a sequence of volumetric grids (Section IV-A).
Such data is produced, e.g. when liquid simulations are computed
with the level set method [6], [7] and the latest techniques [8], [9]
can compute such detailed simulations that the raw data size easily
reaches several GB. Moreover, we developed a simple algorithm
to also build hypermeshes from compatibly meshed sequences of
triangle meshes (Section IV-B), which can result either from mesh
morphing [10] or be generated from general mesh sequences, e.g.
by remeshing [11].
Simplification. Hypermeshes are often over-sampled and too
large to fit into the memory of the graphics card or even the main
memory. As for triangle meshes, both issues can be addressed by
simplifying them. For simplifying dynamic geometry we imple-
mented an algorithm that is based on the quadric-error metric [12]
with multiple-choice randomized collapses (Section V). Although
it has already been discussed by Garland and Zou [13] how to use
quadric-error in any dimension, the application to hypermeshes
seems new to the best of our knowledge. Note that this is different
from working with volumetric tetrahedral meshes [14], [15], [16]
in the same way that simplifying triangle meshes in 3D is different
from the simplification of planar triangulations.
Multi-resolution. For real-time visualization of large hyperme-
shes a multi-resolution structure is needed.

Solutions for the special case of deforming meshes with
constant connectivity can be found in Kircher and Garland [17]
and in Shamir et al. [18]. The second technique is based on an
adaptation of the Multi-Triangulation technique [19], [20] and
allows changes in the topology and connectivity of the sequence
of meshes, but it is unable to exploit temporal coherence of the
surfaces when no unique correspondence between the vertices of
the meshes in the sequence is given.

Multi-Tessellation [21], [22] is a dimension-independent gen-
eralization of Multi-Triangulation and can be used for multi-
resolution visualization of hypermeshes.

Two multi-resolution data structure for tetrahedral meshes,
based on edge collapse and vertex decimation simplification
algorithms, are described in [22], focusing on storage cost and
accuracy of the representation: number of tetrahedra given an
approximation error.

When considering rendering efficiency, i.e framerate given an
approximation error, Multi-Triangulation and Multi-Tessellation
are constrained by the high CPU load required to traverse huge
DAGs and by the fact that is not possible to fully exploit the GPU
processing power.

A recent tutorial [23] discusses simplification, multi-resolution,
compression, visualization of tetrahedral meshes, which are rele-
vant also in the case of hypermeshes.

We decided to rather adapt the ideas of Cignoni et al. [24],
[25] and to construct a patch-based multi-resolution structure for
hypermeshes (Section VI). In particular, this allows to extract
and render consistent meshes with view-dependent resolution at
interactive rates in combination with out-of-core techniques to
handle large meshes. A similar approach has recently been used
for tetrahedral 3D meshes by Sonderhaus et al. [26].

For hypermeshes, special attention has to be paid to the scaling
of the temporal dimension in order to get uniformly sized patches
even if the simplified hypermesh contains tetrahedra that are long
and thin in time. We therefore adapt the distance metric locally
to the shape of the tetrahedra.
GPU-assisted Rendering. Intersecting a hypermesh with a three-
dimensional hyperplane gives a triangle mesh in 3D and by
using standard features of modern graphics cards it is possible
to compute this intersection directly on the GPU (Section VII).
Very similar techniques have been proposed for GPU-accelerated
iso-surface extraction from tetrahedral 3D meshes [27], [28], [29],
[30]. In fact, any such unstructured grid can be turned into a
hypermesh by interpreting the scalar values given at the vertices
as a fourth time coordinate. Extracting the iso-surface is then
equivalent to computing the hyperplane intersection.

Our algorithm is similar to the idea of Kipfer et al. [29], but
instead of using SuperBuffers (which are not a standard extension)
to avoid redundant intersection computations, we pre-order the
primitives so as to make optimal use of the GPU vertex cache.

A novel feature of our approach is that we completely discard
the tetrahedral structure of the hypermesh and convert it into
the special data structure of dynamic triangles (Section VII-A)
instead. In short, each tetrahedron is replaced by four triangles
and for each triangle we precompute the time interval for which
it is part of the intersecting hyperplane. In this way, about 40%

less faces need to be rendered.
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Volume Visualization. A completely different approach to ren-
dering iso-surfaces from four-dimensional volumes is by direct
volume visualization. In order to handle large data sets, the latest
of these techniques preprocess the data by a clever use of TSP
tree data structures [31] and wavelet transforms [32], [33], but
for the data size that we consider, they cannot achieve interactive
frame rates on a single PC, at least not yet [34], [35].

III. HYPERMESHES IN 4D

The concept of embedding an animated sequence of objects
in a space with one more dimension is certainly not new, but
nevertheless let us quickly review and formalize the basics.

Assume that we are given for any parameter t ∈ R a curve
C(t) ⊂ R2 in the plane. Then by adding t as a third coordinate,
we can represent the union of all C(t) as a 3D object,

C = {(C(t), t) : t ∈ R} ⊂ R3.

More precisely, C is a two-dimensional surface in 3D. Slicing
this surface with the plane P (t) = {(x, y, t) : (x, y) ∈ R2} that
is orthogonal to the t-axis just gives back the curve at parameter
value t,

C ∩ P (t) = C(t).

Figure 3 (left) illustrates this concept.
Likewise we can embed a sequence of surfaces S(t) ⊂ R3 into

R4 to give the hypersurface

S = {(S(t), t) : t ∈ R} ⊂ R4.

Again, intersecting S with a t-orthogonal hyperplane gives back
the surface S(t); see Figure 3 (right) for an example.

In the same way that it is common to use triangle meshes
to describe surfaces in 3D, it is also natural to represent a
hypersurface in 4D as a tetrahedral hypermesh H . In contrast
to volumetric tetrahedral meshes, the vertices vi = (xi, yi, zi, ti)

of a hypermesh are four-dimensional, but each tetrahedron still
is the convex hull of four vertices, T = [v1, v2, v3, v4], with six
edges e1, . . . , e6 (see Figure 4). Without loss of generality we
assume the vertices to be ordered according to their t-values, i.e.,
t1 ≤ t2 ≤ t3 ≤ t4.

When a tetrahedron T is intersected with a t-orthogonal hyper-
plane P (t), we need to distinguish three cases (see Figure 4). If
t < t1 or t > t4, then the intersection is empty. For t ∈ [t1, t2]

and t ∈ [t3, t4], it is a triangle whose corners are the intersections
of P with the edges e1, e2, e3 or e3, e5, e6, respectively, and if
t ∈ [t2, t3], then we get a quadrilateral that we split into the
two triangles whose corners are the intersections of P (t) with
e2, e3, e4 and e3, e4, e5. The union of the triangles that we get
by intersecting all tetrahedra of a hypermesh H in this way is a
triangle mesh M(t) = H ∩ P (t) with vertices in R3 in the same
way that the intersection of a triangle mesh with a plane gives a
planar polygon.

Without loss of generality, we assume the tetrahedra to be non-
degenerated in the sense that not all four corners have the same
t-coordinate. The intersection with P (t) would be a volume in
this case, but as long as the sequence S(t) is continuous in t,
such kind of degeneracy does not occur.

Computing the intersection M(t) is very similar to the extrac-
tion of an iso-surface from a 3D tetrahedral mesh with scalar
values assigned to its vertices. In fact, if the scalar values are
interpreted as the time coordinate, then both operations are exactly

the same and the analysis of the different intersection cases can
also be found, e.g. in [27], [29].

We shall notice, however, that scalar-valued 3D tetrahedral
meshes are special cases of hypermeshes and not vice versa. The
triangle meshes M(t) can intersect in 3D for different values of
t and therefore it is not possible to simply interpret the time
coordinate of the hypermesh vertices as a scalar attribute and
convert H into a 3D tetrahedral mesh.

IV. GENERATING HYPERMESHES

Hypermeshes offer a convenient way for representing dynamic
geometry and are useful in several applications. For testing
and evaluating our multi-resolution rendering framework, we
considered time-varying surfaces from fluid simulations as well as
animation sequences that morph one triangle mesh into another.
For both kind of input data, hypermeshes can be constructed as
follows.

A. Iso-surfaces from 4D Grids

Given an n-dimensional scalar function f : Rn → R, one is
often interested in the iso-surface

If (c) = {x ∈ Rn : f(x) = c}

for some iso-value c. In many cases, f is unknown and only the
function values at the vertices of a grid are given.

For example, when the level set method is used for liquid
simulations, then f is the level set function φ(~x, t) [6] and
the surface of the simulated liquid is the iso-surface Iφ(0). For
practical reasons, the simulation is usually computed on a regular
3D grid and by collecting these grids for all time steps, the whole
simulation sequence becomes a regular scalar-valued 4D grid.

For n = 3, the MC algorithm and its variants are common tools
to compute a triangle mesh that approximates the iso-surface I(c).
Adapting the idea of MC, it is possible to extract the iso-surface
from a 4D grid as a hypermesh in a similar way, although the
number of local configurations that can occur in each cell is much
higher. See [4] and [36] for details.

B. Compatibly Meshed Sequences

In many cases, dynamic geometry is represented as a sequence
of meshes where the connectivity is fixed while the positions
of the vertices change over time. Morphing algorithms, cloth
simulations and other non-skeletal animations produce surfaces
that undergo big non-rigid deformations. In order to accurately
approximate the surface in all frames, the resulting meshes are
usually very dense because once a detail requires a fine resolution
in some frame, this structure is also present at all other time steps.
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Fig. 4. Notation for a tetrahedron (left) and possible cases that occur when
it is intersected with a plane (right).
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t = 0.2 t = 0.6 t = 1.6

t = 4.0 t = 3.9 t = 3.0

t = 0.2 t = 0.6 t = 1.6

t = 2.0 t = 2.1 t = 3.0

Fig. 3. In the same way that an animated curve in 2D can be represented as a surface in 3D (left), an animated surface in 3D can be represented as a
hypersurface in 4D (right).

A clever approach to thin such meshes and build an adaptive
hierarchy has been proposed by Kircher [17].

However, we can also use our machinery to handle this kind
of data because a compatibly meshed sequence can easily be
converted into a hypermesh. As a triangle moves from one time
frame to the next, it creates a prism in R4, so that the whole
sequence can be seen as a collection of such prisms. Splitting
each prism into three tetrahedra as shown in Figure 5 finally
yields a hypermesh. We must only take care that the splitting of
the prisms is compatible in the sense that the diagonal splits of the
quadrilateral faces must match. Or, seen the other way round, we
need to choose one diagonal for all faces between neighbouring
prisms such that all prisms end up with one of the six possible
splits. Note that this needs to be done only for one layer of prisms
as the connectivity is the same in all other layers.

The same splitting problem has been discussed by Porumbescu
et al. [37] and to find a solution, we could use their algorithm,
which works well in practice but is not proven to converge.
However, there is a much simpler strategy: if v1, . . . , vn are the
vertices of the mesh, then by always taking the diagonals that
have the vertex with the smaller index at the bottom, it is easy to
see that the forbidden “cyclic” splits are avoided for all prisms
[38].

Fig. 5. Six different ways to split a prism into tetrahedra.

V. SIMPLIFICATION

All of the methods above produce highly over-sampled hy-
permeshes and it is very desirable to reduce redundancy by
simplifying them. We found that the extension [13] of the original
QSlim algorithm [12] works very well in our situation. In the
adapted version, this simplification algorithm performs successive
collapse operations that each remove one edge and all incident
tetrahedra. The selection of which edge to collapse is guided
by the quadric error metric which in our case measures the
approximation error in space and time simultaneously.

In the implementation that we used for this article, we followed
the approach described by Vo et al. [15] which suggests to
use a multiple choice randomized edge-collapse: i.e., the best
collapse from a pool of candidates is chosen instead of having all
candidates sorted in a priority queue. Wu [39] showed this gives
a mesh quality that is comparable to that of the standard greedy
approach.

The quadric error of x with respect to the tangent space at a
vertex v is given by

Qv(x) = (x− v)TA(x− v)

where A is the sum of outer products of normals,

A =
X
i

n(Ti)n(Ti)
T

and the summation index i ranges over the set of all tetrahedra
Ti incident to v. The normal n(T ) of a 4D tetrahedron T is well-
defined because T is “flat” in the sense that it is contained in a
hyperplane of codimension one. The normal can be computed by
taking the 4D cross product of three edge vectors of T .

Note that the quadric error associated to the edge collapses is
linear invariant: if we apply a linear transformation M to the data,
run the algorithm and transform the result back with M−1, then
we get the same as using the algorithm with the untransformed
data. Indeed, if we apply M to the data and accordingly M−T

to the normals, we have

QMv(Mx) = (x− v)TMT ˆM−TAM−1˜M(x− v) = Qv(x).

In particular, this means that Q is scale invariant in the time
direction and thus we are free to choose the time scale.

VI. MULTI-RESOLUTION

A. Background: Multi-Tessellation

A Multi-Tessellation (MT) is very general framework for
multiresolution structures for meshes in arbitrary dimension, we
will give a brief summary in the following. Detailed discussion of
the structure and efficient implementations can be found in [21],
[22], [20].

An MT it is composed by a coarse mesh and a set of local
updates which refine the base mesh replacing a set of cells
(triangles, tetrahedra etc) with a set of new cells. Any iterative
simplification algorithm applied to a reference mesh defines an
MT: the result of the simplification is the base mesh and the set
of updates consist of the inverted sequence of operations.

An update u2 is said to depend on another update u1 if and
only if u2 removes some cell introduced by u1. This dependency
relations induces a partial order among the set of updates. The
key observation is that we can apply the updates to the base mesh
in any order which preserve the partial order.

A MT is represented by a Direct Acyclic Graph (DAG) [19]
where each update is a node and if u2 depends on u1 we add
an arc from u1 to u2, and we call u1 a parent of u2. Associated
with this arc is the set of cell which are both created by u1 and
removed by u2. A subset S of the nodes in the DAG is consistent
if for each node u in S all its parents are in S.

The updates in a consistent subset S can be applied to the base
mesh in any total order extending the partial order to create a
mesh MS at an intermediate resolution.
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The collection of arcs CS from nodes in S to nodes not in S

is called a cut of the DAG, and MS is exactly the collection of
cells associated with all the arcs in CS .

We can associate with every update, and so to every node in the
DAG, an approximation error. The rendering algorithm perform
a traversal of the DAG to select a cut which minimizes the error
given a maximum number of resulting cells. Different metrics can
be implemented to calculate the error and additional constrains
can be imposed on the traversal.

B. Patch-based Multi-Tessellation

Usually the update operation in an MT correspond to the atomic
operation of an edge-collapse or vertex-removal operation. This
ensure maximum granularity and smooth transaction between
different resolutions, but result in very large DAGs which require
CPU intensive computations in the rendering phase.

Due to the fact that GPU speed is increasing at a much faster
rate than CPU speed, an established trend in multi-resolution
algorithms for meshes [40] is to increase the number of triangles
affected by an update operation, moving the refine-coarsen deci-
sions from the level of a single triangle to blocks of triangles. This
has the advantage of removing the CPU bottleneck and maximally
utilizing the processing power of the GPU. This approach can
further be supported by preprocessing the data such that it is
handled most efficiently by the GPU. The loss in granularity is
compensated by a much higher triangle per second rendering rate.

Cignoni et al. [25] presented a multi-resolution framework
which combines this concept with the ideas of multi-triangulations
[20] and we extended it so that it can be used for hypermeshes. In
the following we give only a brief description of the approach and
in particular the requirements for adapting it to hypermeshes. For
more details on this subject we refer to [25] and the references
cited therein.

C. Building the Multi-resolution Model

We start by building the V -partition, i.e. a sequence of coarser
and coarser partitions H0, H1, . . . , Hn of R4 using Voronoi
clustering. In our implementation we randomly distribute seeds
over the hypermesh and apply a few steps of Lloyd’s Voronoi
relaxation [41]. This technique works as nicely in 4D as it does
in 3D.

In the next step we create the partition L0 = H0 ∩ H1 by
intersecting the two finest partitions and split the hypermesh into
patches, one for each cell of L0 (see Figure 6). Then we collect
for each cell of H1 all patches in L0 that it contains, merge them
into one hypermesh, simplify it preserving the boundary, and split
it by intersecting it with H2. Overall, this creates a set of coarser
patches that correspond to the cells of L1 = H1∩H2. We continue
this coarsening algorithm for all levels of the V -partition. This
phase of the construction, which is the most CPU intensive due
to the simplification step, can be easily parallelized: each cell of
H1 can be processed independently.

The history of the coarsening algorithm is then encoded as
a DAG: for each cell of the space partitions Hi for i > 0 we
create a node in the graph. A special node, the sink, is instead
associated with all the cells of H0 (see Figure 7). Whenever
two cells that belong to neighbouring levels Hi, Hi+1 intersect,
we create an arc in the graph, directed towards the node in Hi.
Each arc corresponds to one of the patches of the multi-resolution
model that we created in the previous step.

merge

simplify

split

H0

H1

H2

L0

L1

Fig. 6. Hierarchy of the V -partition (left) and the three steps of the coarsening
algorithm (right).

The collection of patches associated with the arcs in a cut
join together seamlessly and form a complete multi-resolution
representation of the hypermesh.

Each patch is stored as an independent hypermesh, using local
indexing and replication of the patch boundary vertices. We take
care that each patch contains less than 64 K vertices so that local
vertex indices with 2 Bytes can be used instead of the 4 Bytes
that are usually needed for global indices. The storage cost for
a patch with m tetrahedra and n vertices is then 16n + 8m

Bytes. Even though this requires more vertices to be replicated
at the boundary of the patches, it reduces the overall memory
requirement by about 40%, because the number of replicated
vertices is comparatively small.

On the other hand, this replication strategy requires a careful
boundary management: the attributes of the vertices must have the
same values on all replicated boundary vertices to avoid visible
artifacts in the rendering. We keep track of boundary vertices that
are replicated between patches: for each patch p we mantain the
list L of all vertices that have external dependencies as triplets
(vp, q, vq), denoting, for each vertex vp in p, the patch q that
refers to it an its position vq inside q.

We exploit these lists to efficiently unify indexes and to
mark read-only vertices in the simplification step and to ensure

Hn

Hn–1

…

H1

H0sink

cut

Fig. 7. A cut in the DAG.
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consistency of vertex attributes.
For example, to compute the 4D normals, we start at the finest

level and propagate the ones at the boundary vertices to the next
coarser level and then repeat the process up to the coarsest level.
This data is not needed for rendering and can be discarded at the
end of the preprocessing.

The set of patches is easily managed out-of-core: each patch,
along with its boundary information, is stored sequentially on disk
and memory mapped individually when needed. This approach
is somewhat independent from how patches are actually stored
and allow to use the same structure for rendering. In this case
each patch is further preprocessed for GPU-assisted rendering as
described in Section VII-A.

Finally, we store the DAG and an array of entries that contains
for each patch in the data set the number of faces and vertices, the
offset and size on the disk, the bounding sphere, and the estimated
geometric error.

The are several different structures to encode the DAG [19],
[20] with various tradeoff between space and speed, but given the
limited size of the DAG due to the cluster structure, this is not a
critical part of the rendering algorithm. This information is small
enough to be kept in RAM even for very large models.

The overall storage cost of this structure is around 120n Bytes
where n is the number of vertices in the reference mesh, while the
overhead of the DAG storage and vertex replication is neglicible.
By comparison the explicit data structure for tetrahedral MT
described in [22] requires from 450n to 880n Bytes. This is due
to the reduced granularity and expressive power.

The Edge-Base MT also described in [22] requires 36n Bytes.
It is however a compressed format which requires a substantially
higher computational cost respect to the explicit structure. Com-
pression of topological information in tetrahedral meshes [42]
achieves approximatively 3 Bytes per tetrahedra (or 0.6 Bytes per
vertex) on small meshes. If we were to compress each patch the
overall cost would be 34n Bytes, with the advantage that it would
be trivial to parallelize the compression/decompression threads.

Notice how the structure of the DAG is effectively decoupled
from the choice of the simplification algorithm and the mesh rep-
resentation. As long as the boundary of a patch is preserved any
algorithm (edge-collapse, vertex removal, remeshing, clustering
etc.) could be applied.

D. Differences between 3D and 4D

In general, the ratio between the size of the boundary and the
interior of an n-dimensional object grows with n. Therefore, the
patches of a hypermesh have on average much more boundary
vertices than those of a triangle mesh. Thus, it is crucial to keep
the patches well-shaped, because otherwise it may quickly happen
during the construction of the hierarchy that the patches consist
of mostly boundary vertices and cannot be simplified any further.

For dynamic geometry, one important factor that has a big
influence on the shape of the patches is how the time unit is
related to the three spatial units, because we measure distances
with the standard Euclidean norm in 4D. Decreasing the time
scale makes the patches longer and thinner in time and vice versa,
and we would like to find the “correct” scale that gives patches
as uniformly sized as possible. Note that choosing the time scale
does not affect the simplification process (see Section V).

For data from the 4D MC algorithm, the obvious choice is to set
the time between two frames equal to the size of the marching

cube. However, during the simplification process, tetrahedra in
surface regions that move little, become elongated in the time
direction. During the Lloyd relaxation we therefore use for every
Voronoi cell an individual distance norm that weights the time
direction such that the average shape of the tetrahedra in that cell
is uniform in all directions with respect to this norm. Of course,
the same idea could also be used in the 3D setting, but for surfaces
it is much less crucial to have well-shaped patches.

E. Rendering the Multi-resolution Model

The goal of the rendering algorithm is to select a cut in the
DAG to adapt the resolution in different parts of the model such
that the error in screen-space is as uniform and low as possible
and to maintain the visualization interactive, while constrained by
the resources that are available: disk-speed, RAM, video-RAM,
CPU budget and GPU budget.

The screen-space error for a patch is computed as follows:
if the bounding sphere is outside of the 4D viewing frustum, the
error is set to zero, if the viewpoint is inside the bounding sphere,
the error is infinite, otherwise we divide the geometric error by
the distance from the viewpoint to the bounding sphere. As a
result, regions that are further away from the viewer require a
lower resolution than those that are close to the camera. Note
that the word “distance” refers to the 4D distance and includes
the temporal dimension. The error associated with a cut in the
DAG is the maximum error of the collection of patches selected
by the cut.

For each frame, the algorithm updates the cut in the DAG
by performing refining or coarsening operations that correspond
to moving the cut up or down in the tree. We associate with
each refining or coarsening operation an error: the maximum
error among the new selected patches. Each refinement operation
consumes resources such as disk, RAM, video-RAM and GPU
budget, while coarsening operations release them.

The algorithm maintains a list of possible refinement and
coarsening operations sorted by the error associated with them.
Refinement operations, starting from the greatest error, are carried
out as long as free resources exists and coarsening operations,
starting from the lowest error are performed to free resources. The
procedure terminates when the budget is used up and the smallest
error in the coarsening list is bigger than the biggest error in the
refining list, i.e., we would need to increase the overall error to
free resources.

A detailed description of the algorithm can be found in [24,
Section 4.3], the structure of the DAG being identical. The
implementation is described in detail in [25, Section 5]: in
particular disk, RAM and video-RAM are treated like a multi-
level cache accessed by a prefetching routine, executed in parallel
with the rendering routine.

VII. GPU-ASSISTED RENDERING

The basic algorithm for rendering a hypermesh at a certain
time-coordinate t is to slice all tetrahedra with the hyperplane
that intersects the time axis at t and is perpendicular to it (see
Section III). But doing this in the CPU and sending the resulting
triangles to the graphics card is inefficient because the CPU is
much slower in processing geometry than the GPU. There exist
a few techniques to perform these computations on the GPU and
each one could be used to render the patches of the multiresolution
structure, while offering different space-speed tradeoffs.
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Fig. 8. Data structures used for GPU rendering.

The technique of Pascucci [27] basically processes a quad for
each tetrahedron by storing the coordinates of the four vertices
in the vertex attributes of each vertex of the tetrahedron and
performing a marching tetrahedra on-the-fly. It is very fast but the
multiple replication of the vertex coordinates makes it impractical
for big datasets, due to the memory overhead. Buatois et al. [30]
avoid this replication by storing the tetrahedral indexed structure
in textures and using the texture access capability of the vertex
shader. Unfortunately, the access to the vertex texture is quite
slow in current graphics cards and this technique requires 20
accesses per tetrahedron. Kipfer et al. [29] developed an edge-
based approach, whose main strength is that it avoids redundant
computations of edge-surface intersections. This technique, how-
ever, takes advantage of a specific feature of a single graphics
card vendor: the SuperBuffer extension of ATI cards.

We developed yet another strategy which is tailored to our
specific needs, in particular it is faster than [30] while requiring
more space. In Section VIII we compare the performances of the
two techniques.

A. Dynamic Triangles

As described in Section III, three cases need to be distinguished
when the hyperplane P (t) intersects a tetrahedron T , and four
different kind of triangles can occur. We store all of these four
triangles as dynamic triangles in the sense that each triangle is
associated with a “lifespan” and the three edges on which its
vertices lie. In the notation of Figure 4, the first triangle “lives”
during the time interval I1 = [t1, t2] with vertices on the edges
e1, e2, e3 and likewise for the other three triangles, so that we
store

41 := {I1, (e1, e2, e3)}, 42 := {I2, (e2, e3, e4)},
43 := {I2, (e3, e4, e5)}, 44 := {I3, (e3, e5, e6)}

for each tetrahedron of the hypermesh H .
Like [29] we further build an edge table for the edges of

all tetrahedra. In this table, each edge e = [vi, vj ] is stored as
a pair of indices (i, j) to the vertices that this edge connects.
We can now discard the hypermesh data structure because the
dynamic triangles, the edge table, and the vertex list contain all
the necessary information needed for computing the triangle mesh
M(t) = H ∩ P (t) for any given time parameter t on the GPU.

Suppose that t ∈ I for some triangle 4 = {I, (e1, e2, e3)}
from the tetrahedron T . For each corner we then use the edge
table to look up the indices of the two endpoints v1 and v2 and
read their coordinates from the vertex list. We finally interpolate
the (x, y, z)-coordinates of v1 and v2 linearly with the weight
λ = (t − t1)/(t2 − t1) to get the 3D position of the triangle
T ∩ P (t) ∈M(t).

In order to implement this strategy in OpenGL we
store the 4D coordinates of the vertices in an RGBA
texture and use vertex buffers to store the triangle ta-
ble (ELEMENT ARRAY BUFFER ARB) and the edge table
(ARRAY BUFFER ARB). The function call “glDrawElements”
takes triples of indices from the triangle table and feeds the
corresponding values from the edge table to the vertex program,
which in turn uses these values to look up the coordinates of
the edge endpoints in the texture. It then interpolates them to
get the actual 3D coordinates of the corner (see Figure 8). Note
that any vertex attribute can be treated in the same way as the
vertices themselves by storing them in additional textures. In our
implementation we did this for normals to enable Phong shading
and refraction.

We can detect in the vertex program if the lifespan I of a
triangle does not contains the current t: the parameter λ for the
linear interpolation is negative or bigger than 1 for one of its
corners. We can easily cull the triangle by moving the vertex
position to the viewpoint so that the whole triangle becomes
invisible.

Usually a large fraction of the triangles have a lifespan I that
does not contains the current t and we would like to process in
the GPU only the active ones.

Computing the active triangles requires a lot of CPU compu-
tations and sending the primitives to the graphics card for each
frame requires a lot of bandwidth.

It is more efficient to sort the triangles according to the centre
of their lifespan, store them on the graphics card as element
array buffers and only process the interval that contains the active
triangles. In this way we process a certain number of non-active
triangles, but each primitive is transferred to the graphics card
only once.

A simple solution is to subdivide the global lifespan of the
patch into n regular intervals and store for each interval the
indices of the first and last triangle that intersect the interval. The
number of intervals compromises between accuracy and space.

The problem with this solution is that the dynamic triangles
in the patch have lifespans that vary considerably in length.
Regardless of the sorting order, the interval that contains the
active triangles will usually contain many non-active triangles,
which results in a quite inefficient culling.

To prevent this, we group intervals of approximate equal length
together in a few “bands” and apply the simple solution above
for each band (see Figure 10). This results in more calls of
“glDrawRangeElements” (one per band) but greatly improves the
culling efficiency. The most appropriate number of bands depends
on the relative cost of calling “glDrawRangeElements” versus that
of rendering a tetrahedron.

Another solution is to use an interval tree to compute the active
triangles and compact the list into a few intervals such that no
interval contains a long sequence of non-active triangles. This is
more robust with respect to irregular distributions of lifespans and
more accurate, but it also requires more space (O(n)) and it is
computationally more expensive: O(logN +m), where m is the
number of active triangles.

In our examples, we experienced that about 10% of all triangles
are active for each frame on average. The single-band approach
typically requires to process approximately 5 times as many
triangles as needed, but only 1 out of 5 triangles are actually
rendered by the vertex shader. Instead, when using 4 to 6 bands
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Fig. 9. An edge collapse in the triangle mesh M(t) (green) is equivalent to joining two faces of the hypermesh (light green).

and a number of regular intervals equal to a quarter of the number
of tetrahedra, this rate improved to 3 out of 4 triangles on average
in all our examples. The space overhead for this banded structure
is 4 bytes per tetrahedron.

B. Optimizing Dynamic Triangles

Overall, the space needed to store the dynamic triangles ex-
ceeds that of the indexed hypermesh by about 65%, but we can
use two approaches to reduce this number.

Whenever two or more vertices of a tetrahedron T have
the same time coordinate, some of the intervals I1, I2, I3 are
empty and the corresponding dynamic triangles and edges can
be removed from the lists. Thus, upon simplification of the mesh
(see Section V) we try to align as many vertices as possible in
time. This typically removes about 20% of all dynamic triangles.

Another idea to reduce the number of dynamic triangles is
based on the observation that the triangle mesh M(t) contains
many thin triangles which contribute little to the geometric shape.
Thus, if we were to apply a quadric-error simplification algorithm
on M(t), we would reduce the number of triangles considerably
without significantly increasing the error.

As shown in Figure 9, collapsing an edge of M(t) is equivalent
to removing an edge from the hypermesh H and combining two
faces to form a quadrilateral. In this example, collapsing the vertex
p into q removes two faces from M(t), the edge e0 from H and
forms the quadrilateral with edges e1, . . . , e4. At the same time,
the tetrahedra adjacent to edge e0 are combined to a volumetric
element that is not a tetrahedron (see Figure 11).

begin

end

t

Fig. 10. Span space for the lifespans of the dynamic triangles: Each point
represents an interval with the abscissa and ordinate referring to the start and
end time. The three diagonal bands contain intervals with approximately the
same length, with the short-living intervals close to the diagonal. The intervals
in the second band that intersect with the current time t are shown in green.

tim
e

Fig. 11. Joining faces of the hypermesh as in Figure 9 generates non-
tetrahedral elements.

The structure that results from such an operation is of course
not a hypermesh anymore, still its intersection with any time plane
is again a valid triangle mesh without gaps, because it is the result
of an edge-collapse over a valid triangle mesh.

The quadric error associated with this edge collapse varies with
t ∈ [t1, t4] and we can easily determine the maximum: Regarding
the surface M , the quadric error associated with the collapse of p
into q is (p−q)TA(p−q), where A is the quadric form associated
with the point p. This form is computed using the normals of all
the surface triangles incident to it, which in turn correspond to the
intersections of the hyperplane P (t) with the tetrahedra adjacent
to e0. The 3D normals of these triangles are the projections of
the 4D normals from the corresponding tetrahedra onto P (t).
Therefore, they do not change with t as the point p “slides” over
the edge e0 and A is constant. Similarly, the vector p − q only
changes in length but not in direction. So the maximum error is
taken at t = t1 where the vector is longest.

With this strategy, we can reduce the number of dynamic
triangles by another 30% with only a small additional error.

It should be noted that these optimizations cannot be applied
to general 4D applications, relying on the fact that the slicing
hyperplane is always at constant time.

VIII. EXAMPLES

We have applied the methods explained in the previous sections
to three data sets: three liquid simulations (dams, drops, and
wave) and two morphing sequences (horse-to-man and cloth);
see Figures 12, 13, 14, and 15, respectively. The timings for the
different steps of our processing pipeline and the sizes of the
different data structures are summarized in Table I. Because the
full wave data set (200 frames) gives almost the same numbers
as the drops sequence, we show the timings and size that result
from the first 50 frames only to underline that the numbers are
basically linear in the size of the data set.

The three liquid simulations were extracted from regular grids
with the 4D MC algorithm as described in Section IV-A and
most of the time is spent in the big lookup table for the
different configurations that can occur in the marching hypercube
(64 K cases). This step requires almost 10 days of running time
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Fig. 12. Snapshots from the “dam” sequence.

data set dams drops wave (partial) horse-to-man cloth

resolution of input data
600 frames at
374× 374×

374

380 frames at
142× 60× 86

50 frames at
50× 50× 90

200 frames
with 36 K
triangles

400 frames
with 39.4 K

triangles

construction 14163 min. 177 min. 26 min. 1 min. 3 min.
hypermesh tetrahedra 1172 M 27 M 6 M 22 M 48 M

size on disk 22.95 GB 551 MB 131 MB 448 MB 980 MB
construction 5203 min. 157 min. 32 min. 112 min. 216 min.

multi-resolution model tetrahedra 1121 M 19 M 5.6 M 0.8 M 3.1 M
size on disk 15.2 GB 350 MB 92 MB 16 MB 63 MB
(in M triangles) 2268 55 11.3 1.8 7.1

dynamic triangles size on disk 23.5 GB 631 MB 137 MB 26 MB 101 MB
render performance 20 M triangles/sec.

TABLE I
SIZE, TIMINGS, AND MEMORY REQUIREMENTS FOR THE TESTED DATA SETS. THE FULL “WAVE” DATA SET CONSISTS OF 200 FRAMES.

Fig. 13. Snapshots from the “drop” sequence with increasing error tolerance (left) and the camera located at the black arrow (right), showing how the size
of the patches selected from the multi-resolution hierarchy depends on the error and the viewpoint.

Fig. 14. Snapshots from the “wave” sequence for increasing time values with the camera frozen at the time frame in the middle, showing that the size of
the patches from the multi-resolution hierarchy depends on temporal distance to the viewpoint.

for the large dam model, we didn’t investigated more efficient
implementation of the 4D MC algorithm.

Instead, the hypermesh of the morphing sequence was con-
structed from a set of compatibly meshed surfaces as explained
in Section IV-B.

The main cost in the construction of the multi-resolution model
is the simplification algorithm, which has not been optimized for
speed. Note that it would be possible to speed up this algorithm by
distributing the simplification steps over multiple computers [25].
After pruning the zero-error leaves from the full multi-resolution
model, it becomes even smaller than the initial hypermesh. The
multi-resolution model of the horse-to-man sequence is much
smaller than the others as it can be simplified much better. One
reason is that the sequence contains many parts that move linearly
over time, another is that it is oversampled in the spatial directions
due to the fixed connectivity that contains the details of both the
man and the horse.

Finally, converting the data into dynamic triangles triples the
size, but the optimization described in Section VII-B reduces the

total size by about 40% and we end up with a data set which
is comparable to the initial hypermesh in size, but contains all
the levels of detail and is optimized for being rendered efficiently
with the GPU.

On average, we experienced a render performance of 20 million
triangles per second (actual triangles rendered). Thus, at a desired
frame rate of 40 frames per second, the rendering algorithm can
choose half a million triangles from the multi-resolution model
to display the model with the lowest possible error. Since only
about 10% of the triangles in a patch are active at a certain time,
this amount at a total of 5 millions dynamic triangles, or 190Mb
of video RAM. Each patch is used for a few seconds of running
animation so that at any given frame only a few patches need to
be updated.

Disk access however becomes the bottleneck of the system, and
while sufficient for normal playback and interactive visualization,
the algorithm cannot quickly adapt the resolution of the model
to abrupt changes in view-position or time. The implementation
of a compression algorithm would greatly improve this limitation,
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unfortunatly, there aren’t still compression algorithms for dynamic
triangles.

For a comparison, we implemented the technique of Buatois et
al. [30] on the multiresolution tetrahedral structure, and the render
performance was only about 10 million triangles per second. This
is mainly due to the higher number of vertex texture accesses (20
against an average of 7). However, the lower memory footprint
made it faster in adapting the resolution to the view change.

All computations and interactive renderings of the models were
performed on a PC with a Xeon 2.8 GHz processor, 1 GB of
RAM, and an NVidia GeForce 7900 XT graphics card. The CPU
usage peaked at about 30% during the rendering.

The average size of a patch in the multi-resolution model is
3000 tetrahedra. We found this number to be the best compromise
between a good granularity of the multi-resolution structure
that favours small patches, and the rendering performance that
increases with bigger patches.

The first four images in Figure 13 show how the size of
the patches increases while the camera zooms out of the scene.
Since each patch consists of approximately the same number of
triangles, the resolution of the triangulation decreases and the
model is rendered with an increasing error tolerance.

The rightmost image of Figure 13 shows that the size of the
patches increases with the distance from the camera (black arrow
on the right). As a result, all triangles of the model have approx-
imately the same size on screen. Analogously, Figure 15 shows
a snapshot from the horse-to-man multi-resolution hypermesh
where the resolution decreases with increasing distance to the
camera (placed at the feet).

Figure 14 further shows that the resolution of the model also
changes with the distance from the camera in time. In this
example, the camera was frozen at the time of the frame in the
centre and the resolution decrease as we go back or forth in time
without adapting the cut of the DAG.

IX. CONCLUSIONS

In this paper we have shown how to render large data sets
of dynamic geometry at interactive frame rates. Most of our
processing pipeline builds on the representation of dynamic ge-
ometry as a hypermesh and we show how to convert two different
kinds of input data to this structure. One of the advantages
of hypermeshes is that they allow for a rather straightforward
adaptation of an quadric-error simplification algorithm, which
in turn is the key ingredient to the construction of our multi-
resolution model. The latter enables us to adapt the detail of
the rendered scene not only to the distance from the viewpoint
but also to the resource limits (GPU speed, RAM, disk speed).
We further improve the performance of our rendering system
by converting the multi-resolution model into a set of dynamic
triangles, a data structure that is optimized for GPU rendering and

Fig. 15. The model resolution is decreasing smoothly with increasing distance
from the camera (placed near the feet).

preprocessed such that it maximimally exploits the GPU vertex
cache. While the preprocessing of the data scales linearly with
the size, the rendering frame rate is approximately constant.

A. Future Work

We believe that apart from simplification and building multi-
resolution structures, many other standard geometry processing
tools can be carried over to the 4D setting and be adapted to work
with hypermeshes. In particular, we will try to further improve
the compression rates for hypermesh representations of dynamic
geometry.

For liquid simulations, it would be interesting to combine the
simulation itself with our preprocessing pipeline so as to gener-
ate the dynamic triangle structure directly from the simulation,
preferably with a streaming algorithm. Moreover, the dynamic
triangle structure itself may be improved, depending on the new
features that the next generation of graphics cards may offer.

We would finally like to apply our method to data sets from
other kinds of scientific simulations. For example, stream surfaces
in time-varying vector fields could be inspected interactively and
texture mapping be used to further highlight important features
like velocity or curl.
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