
Volume xx(200y), Number z, pp. 1–8

eNVyMyCar: a multi-player car racing game for teaching
Computer Graphics

F. Ganovelli and M. Corsini

Visual Computing Laboratory, ISTI-CNR, Italy†

Abstract

The development of a computer game is widely used as a way of conveying concepts regarding Computer Science.
There are several reasons for this: it stimulates creativity, it provides an immediate sense of achievement (when
the code works), it typically covers all the aspects of an introductory course, and it is easy to find ideas just by
looking around and finding stimulation from one’s environment and from fellow students. In this paper we present
eNVy My Car (NVMC), a framework for the collaborative/competitive development of a computer game, and
report the experience of its use in two Computer Graphics courses held in 2007 . We developed a multi-player car
racing game where the student’s task is just to implement therendering of the scene, while all the other aspects,
communication and synchronization are implemented in the framework and are transparent to the developer. The
innovative feature of our framework is that all on-line users can see the views produced by their fellow students.
This motivates students to improve their work by comparing it with other students and picking up ideas from them.
It also gives students an opportunity to show off to their classmates.

Categories and Subject Descriptors(according to ACM CCS): K.3.2 [Computer and Information Science Education]:
Computer Science Education

1. Introduction

Introductory Computer Graphics courses form part of many
Engineering and Computer Science course programs. Com-
puter Graphics, in its broader sense, includes a large number
of sub-fields such as geometric modeling, rendering tech-
niques, design, computer animation and computational pho-
tography, just to cite a few. Normally these are covered as
part of specialized courses (for example Stanford Univer-
sity offers 13 different courses closely related to CG, ranging
from Mathematical Methods for Graphicsto Advanced Ge-
ometric Algorithms). In this paper we will particularly focus
on introductory Computer Graphics courses.

Normally, an introductory Computer Graphics course
gives an overview of the field and then focuses on the
rasterization-based rendering pipeline of modern graphics
hardware. At the end of this type of course the students

† name.surname@isti.cnr.it

should be able to develop an interactive 3D application in-
volving geometrical manipulation and providing a more or
less sophisticated rendering, possibly including non-local
lighting effects such as shadows, ambient occlusion, reflec-
tion of the environment on the objects’ surface and so on.
CG concepts translate quite naturally to practical exercises
that can be carried out with a computer, especially when an
API such as OpenGL of DirectX takes care of the underlying
details. It is a common practice to organize all the exercises
in a single effort to implement some kind of graphical appli-
cation. For this purpose, we proposeeNVyMyCar, a multi-
player car racing game framework specifically designed for
learning Computer Graphics concepts.

The choice of using a software framework for teaching
Computer Graphics is based on several recent teaching ex-
periences in the field of Computer Sciences. For example,
computer games have been used to teach object-oriented
programming [CC07,CC05] and pattern design [Ges07] and
Computer Graphics itself [HS05]. The Cannibal Experience
[BDHB08] game engine was specifically designed at the

submitted to COMPUTER GRAPHICSForum(9/2009).



2 F. Ganovelli & M. Corsini / eNVyMyCar

Delft University to be used by students to learn many aspects
of game development. ETH setup a game programming lab-
oratory [STG08] with the specific aim of providing to the
students in-depth understanding of Visual Computing con-
cepts and teamworking skills. Many other studies shown the
beneficial effects of teaching computing in context such as
Xu et al. [XBK08] where robots and games are used to drive
motivation and retention.

The eNVyMyCar framework is a car racing game imple-
mented with a client-server architecture, where the student’s
task is simply to implement the rendering part alone. The
framework is designed so that the student does not need
to take care of the networking issues or of the physics (al-
though such aspects might be included in a more specialized
course). They are only required to understand a few very
simple C++ classes describing the scene and render it inter-
actively. The description of the scene is minimal and con-
cerns only the parts that can physically influence the race,
i.e. the streets, the buildings, and the trees (others can be
easily added). They don’t look to concern themselves with
how things look. This then gives total freedom on how to
represent their car, the terrain, the sky etc.

In this sense it is quite straightforward to see that a rac-
ing game is a perfect scenario for progressively mapping CG
concepts to code, for example the geometric transformations
(the front wheels that rotate and steer), the use of impostors
(the billboards for the trees), and the environment mapping
(the dynamic reflection on the car). However, freeing the stu-
dents of non CG problems was not the only reason for eN-
VyMyCar. We also wanted them to be able to share knowl-
edge and discuss problems in the same platform, and possi-
bly to write modular code that it could be moved from one
client to another (instead of the thousands-lines longmain
bodies).

Section2 will give a detailed description of the eNVyMy-
Car framework. In Section3 we show how several Computer
Graphics techniques can be fitted into the project to prove
how this approach can be a very useful means for teaching
both basic and advanced Computer Graphics topics. The re-
sults of the use of eNVyMyCar as educational tool are re-
ported in Section4 and the conclusions are outlined in Sec-
tion 6.

2. eNVyMyCar: the framework

NVMC is a car racing multiplayer game realized with a sin-
gle server-multiple client architecture.

The world represented by NVMC is made of a static part
and a dynamic part. The static part consists of the circuit, the
trees, the buildings and it is entirely stored by both the server
and the clients. The dynamic part consists of thestateof the
cars (their position, orientation and speed) and the position
of the sun, hereafter thestate of the race.

The simulation of the race is run on the server, which up-
dates the state of the race and broadcasts it to all the con-
nected clients.

A client corresponds to a player of the race. It re-
ceives the state of the race from the server, renders the
scene and control the player’s car by sending messages to
the server (such as. INCREASE_SPEED, STEER_LEFT,
BRAKE etc.) which are processed and accounted for in the
simulation. The communication is asynchronous, meaning
that messages are sent independently from each client and
from the server.

This may simply sound like a classic client-server scheme
for a multiplayer game, with commands sent from the clients
to the server and state of the system broadcasted from the
server to all the clients. The novelty of NVMC is that there
is another kind of data that the client may send, which is a
snapshot of the view provided to the player. The snapshots
follow the same path as the commands, except that they do
not influence the simulation of the race but are simply re-
bounced to all the other clients.

In this manner, while the client is running the developer
may see also snapshots from the other connected clients. So
this is where the “the envy factor” comes into play. If a stu-
dent see snapshots of other clients they feel envious and are
stimulated to improve their own work. Of course it is not
really envy but the curiosity and desire to obtain a visually
pleasant result that motivated students to implement new fea-
tures influenced by each other ideas. This is very different
from comparing the students’ work at the exam or at fixed
milestones. It is more like forming a team where each stu-
dent can develop their own version.

Often course projects are assigned to small groups of peo-
ple but then often the individual contribution of students
of the same group to the project must be figured out with
an oral examination, while little feedback is given during
the development of the project. Furthermore, students of the
same group are typically in charge of different aspects of the
project so they may specialize too much in one topic and lack
insight into others (for example one student may learn every-
thing about normal mapping but never attempt to instance a
Vertex Buffer Object and so on). With NVMC every single
student is in charge of the whole project. They can exchange
ideas, tricks and code snippets, (as long as each student is
able to explain clearly every line that appears in their code)
and eventually everyone will have tackled all the difficulties
of the development.

The instructor may be connected to the server with their
own client and see how the projects are going. Note that the
upload of a snapshot is done upon client request and not au-
tomatically. The developer may decide to code the uploading
of a snapshot at fixed intervals of time or, as all the students
did, associate the event with a key. This mechanism may also
be used by the teacher to provide suggestions to the class,

submitted to COMPUTER GRAPHICSForum(9/2009).



F. Ganovelli & M. Corsini / eNVyMyCar 3

Figure 1: Software architecture of the NVMC framework.

by implementing their own client (supposedly better than all
those of the students) and uploading snapshots.

2.1. Implementation

Figure1 shows the structure of NVMC. The boxes with re-
turning arrows represent process threads, the boxes named
in bold are queues and the arrows are directed as the infor-
mation flow.

Cli::Main_Cycle_Th is the main thread of the
client and it is responsible for rendering the scene,
for writing commands to be sent to the server in the
Cli::Commands queue and for saving a copy of the
current view in theCli::Snapshot memory area. The
threadCli::Msg_snd_Th reads the commands from the
queueCli::Commands and transmits them to the server.
If the commands is SEND_SNAPSHOT then the snap-
shot is read and sent to the server. On the server side,
the threadSrv::Msg_rcv_Th receives all the commu-
nication from the clients and stores commands in the local
Commands queue, where each entry is a couple(player,
command)and snapshots in theSrv::Snapshots area
where the most recent snapshot received from each client
is stored. The Srv::Main_Cycle_Th is responsible
for running the simulation of the race, which consists of
updating the position of each car, and saving the state
of the race inSrv::State. In addition, it updates the
Srv::Snapshots area with the snapshot received in
Srv::Snapshots_upd. Srv::Msg_snd_Th continu-
ously broadcasts the state of the raceSrv::State and the
updating of the snapshot (when necessary) to all the clients.

Back in the client side, the threadCli::Msg_rcv_th re-
ceives the messages from the server and copy them to the
Cli::Snapshots andCli::State areas, where they
will be read fromCli::Main_Cycle_Th. The NVMC
framework also provides a standalone mode in which the
server threads are launched within the same process (the
client). This is handy when the student works at home and
does not want to launch a separate process.

2.2. Interfaces towards the developer

The students’ goal was to implement their own rendering en-
gine for the game without necessarily knowing the underly-
ing architecture, so NVMC provides a very simple software
interface. Basically the developer only needs to know the
definition of a few classes:Circuit, Car, Building etc., to be
able to draw them, and three functions:

• Command(command_name) to issue a command to the
server

• UpdateScene(), which is called prior the rendering cycle
and updates all the dynamic data structures

• DrawScreenshots(), which is called at the end of the ren-
dering cycle and draws the other clients’ screenshot (if
there is one).

All the code is written in ANSI C++ using QT [qtl]
for the multithreading and networking aspects and the
VCGLib [vcg] (a header only library) for loading and ren-
dering geometric models and performing simple matrix
computations.

submitted to COMPUTER GRAPHICSForum(9/2009).



4 F. Ganovelli & M. Corsini / eNVyMyCar

Figure 2: A simple example of circuit encoded in a bitmap
image.

Along with the framework we provided two “hello world”
clients for which we used SDL [sdl] and glut [glu] respec-
tively, to handle user commands through mouse/keyboard
and windowing. However these libraries do not have to do
with the NVMC framework itself and other libraries could
equally well be used.

2.3. Creating a circuit

Along with the framework for playing the game, we also
provided the students with a simple program to create new
circuits. Instead of using general tools for modelling, such
as Blender or Google SketchUp and then convert them to
our data structure, we decided to use RGB images to code a
scene and therefore to write a simple converter from a RGB
image to NVC format. Although obvious limitations arise
using this encoding, it was more than enough for our needs
and a simple image editor (i.e. Microsoft PaintBrush) was
sufficient to create a new circuit. Figure2 shows an example
of an image coding a scenario.

3. How Exercises fit into the project: from a black
screen to a working client.

It does not take long to describe the NVMC framework to
students, since it is a matter of showing a few simple c++
classes. Depending on the students’ background additional
work may be needed. For example, it may be that most stu-
dent have an object-oriented programming background but
little or no knowledge of C++. In fact, in most OOP courses
Java, rather than C++, is used to illustrate computer sci-
ence principles. Hence, sometimes two or three lectures are
needed to fill in any specific gaps.

We stress that the development of the project may start at
the same time as the theory since, as shown below, the basic
concepts and related exercises naturally map onto the task
for implementing a working client.

3.1. Basic CG exercises

The minimal expected result from an introductory course on
Computer Graphics is that the students become familiar with
the theory and implementation of geometric transformations,
lighting and texturing. Below we show how these concepts
can be deployed to client functionalities.

Geometrical transformations: One of the first problems
that a student encounters is how to handle basic geometric
transformations correctly. Such transformations are nec-
essary to visualize the car during its movement, to place
the elements of the scene, and to manage camera move-
ments. Obviously, all the students have to deal with this
step. In addition, students can use car models composed
by several parts and moving such parts in order to produce
a more realistic animation of the cars, meaning, for exam-
ple, that they need to compose roto-translation matrices to
make the wheels roll and steer.

Lighting: Firstly, the basic Phong illumination model that
OpenGL provides is used to implement very basic light-
ing: typically and ambient light plus a directional light
corresponding to the sun (which is part of the state). It
is common to try to do something more, for example to
put lamps along the street implemented with a positional
light and an emissive material, or use the spotlight to im-
plement headlamps (which also involves some more lin-
ear transformation). This example is particularly useful to
understand how much phong lighting is dependent on tri-
angulation (the terrain is flat and typically tessellated with
few polygons, therefore students are not happy about how
the headlamps light the street).

Texturing: The first approach consists in applying textures
to the buildings, the terrain, the road and the car to ensure
a minimal visual richness. Typically the student (wisely)
decides to use one tileable texture for the terrain and an-
other one for the street. The faćades of the buildings need
to be textured with special care to keep the appearance
consistent with the scale of the scene (100 meter large
windows are not acceptable).

3.2. Advanced CG exercises

To be able to implement the basic functionalities of the client
is the minimum required to reach a sufficient score in the
assessment. At this point the students are encouraged to im-
prove their clients by adding new functionalities or enhanc-
ing the existent ones. Thus, a (not obligatory) list of choices
is given to the students, each with a brief explanation and
some references to further documentation.

Some students opt for simple techniques concentrating
their effort in creativity while others try to implement more
complex techniques. Below we report their preferences:

Billboarding: Billboarding is one of the image-based ren-
dering technique shown to the students during the course.
One of the typical uses of billboarding is of course for

submitted to COMPUTER GRAPHICSForum(9/2009).



F. Ganovelli & M. Corsini / eNVyMyCar 5

trees. Most students replicate such example to show the
trees in theirs scenarios or to implement lens flares. Some
students use billboarding in other way such as to add
streetlamp or to render the interior of the vehicle with
screen-aligned billboarding (see Figure4 top-left)

Projective texture mapping As previously stated, students
are generally not happy with headlamps implemented
with per-vertex lighting, whereas with projective texture
mapping they obtain a much more satisfactory effect.
They also need to use multitexturing and blending, i.e. to
become more confident with texture mapping, to achieve
a satisfying result. (see Figure4 top-right)

Skybox Generally students are not satisfied with the look
of the scenery until they see a sky over the car and a land-
scape around the main road. Most students exploit cube
mapping to render a skybox and its reflection on the car.

Dynamic cube mapping Reflection of the whole environ-
ment on the car is accomplished by Dynamic Cube Map-
ping (see Figure4 top-left).

Lighting Models: Students who want to make practice with
vertex or pixel shaders are advised to implement one
of the lighting models (e.g. Cook-Torrance, Oren-Nayar,
Minnaert) they have seen in class.

Shadow mapping: Shadows add realism to the rendering
and provide a professional look to the final rendered
scenery. Our course did not deal with other shadowing
techniques than shadow mapping such as volume shad-
ows or soft shadows.

Accumulation buffer: Students use accumulation buffer to
implement some interesting effects such as motion blur or
depth of field. The use of accumulation buffer to imple-
ment such effects is advised during the course as a simple
alternative to the implementation with shaders.

Particle Systems: Particle systems can be used in several
ways in a car race simulation. The particles could sim-
ulate dust when the car accelerate or fire when the cars
crash with something (since the collision detection is not
implemented in the framework this effect is usually en-
abled/disabled by the users). Another effect that students
can add to their client with a particle system is an at-
mospheric effect such as rain or snow. Particle systems
was not among the recommended choices, simply because
they are not part of the course. Nonetheless, its dynamic
nature attracted at least one student in two out of the three
courses where NVMC was used.

4. Results

So far the NVMC framework has been used in three Courses:
the Computer Graphics Course of the University of Siena
held in 2008 (6 students) and in 2007 (10 students) and
the University of Ferrara’s Advanced Computer Graphics
Course of the (14 students) held in 2007. It is important to
underline that the choice of NVMC is not mandatory, i.e.
students could choose to develop an NVMC client, to do an-
other project chosen from a list, or not to a project at all (in

this case a penalty to the final evaluation is applied). Never-
theless, 28 out of 30 students choose to use eNVyMyCar for
their project.

In order to evaluate the effectiveness of the eNVyMy-
Car framework as a tool to learn Computer Graphics after
the examination the students have been interviewed infor-
mally and almost all of them enjoyed the project and found
the framework a useful learning tool. Apart from the pos-
itive interviews another factor that demonstrated the effec-
tiveness of the framework was the good results obtained
by several students. Here, we show some screenshots of
the developed clients. About 60% of students implemented
more than the basic features necessary to reach a sufficient
score (good camera handling/standard lighting/texture map-
ping/skybox). For example some use shaders to implement
complex lighting models. Others inserted particle systemsto
produce dust, fire, or other similar effects. Others improved
the look of theirs car with dynamic reflections. A few used
procedural techniques for some of the elements in the scene.
Most used billboarding to render trees and projective tex-
turing to draw headlights. In terms of the artistic aspects
only very few students contributed with their own graph-
ics (e.g. creating original textures) or developed interesting
ideas from a visual point of view. This is probably related
to the fact that the majority of the students had a technical
rather than artistic background.

On the downside, although the framework has been de-
signed to be very easy to use and the student has provided
with an “hello world” fully working client, it would have
helped them to have a detailed technical manual about the
framework and a FAQ. This would have speeded up client
development and help to avoid some troubleshooting, partic-
ularly for those students who tried to modify the framework
a bit in order to fit their needs. Despite this, as just stated,
all the students are able to finished theirs project within 2-3
weeks with good results.

We found one shortage in the students’ background which
usually is not optimal. In fact, even if the pre-requisite isthe
OOP programming, Java programmers could report some
initial difficulty with the use of STL libraries and other mi-
nor aspects of the framework.

5. Discussion

eNVyMyCar is not a complete game: collision detection
among cars and scene elements, scores and power-ups, and
other typical features of game engines are not considered
in the current version. The main reason for this is that they
were not necessary for our purposes. Furthermore, we did
not want to include difficultiesunrelatedto CG. Collision
detection for example, could be integrated in NVMC in a
course specializing in game physics. Similarly, Level of De-
tail representations, procedural modeling or real time global
illumination techniques could be integrated in a more ad-

submitted to COMPUTER GRAPHICSForum(9/2009).



6 F. Ganovelli & M. Corsini / eNVyMyCar

Figure 3: Some clients developed by the students. (Top-Left) Dynamicreflections on the car. (Top-Right) Projective textures
for headlights and tunnel lamps faked with textures. (Bottom-Left) Motion blur and lens flare. (Bottom-Right) Billboarding for
showing trees.

submitted to COMPUTER GRAPHICSForum(9/2009).



F. Ganovelli & M. Corsini / eNVyMyCar 7

Figure 4: More clients: (Left) Screen aligned billboarding for the view from the interior of the car (Right) The mountains are
procedurally generated as a heightfield and rendered with a displacement map assigning a height-dependent texture (grass,
mountain, snow).

Figure 5: Two players connected during the race. Note that each clientprovides its own view of the scenario, including the
appearance of the cars.

submitted to COMPUTER GRAPHICSForum(9/2009).



8 F. Ganovelli & M. Corsini / eNVyMyCar

vanced course where these techniques would be explained
in detail.

Finally, our framework can be tailored for use as an educa-
tional tool in other courses. For example, the framework can
be easily reused for an Artificial Intelligence course, simply
binding the commands to control the cars to an AI engine
instead of the keyboard.

6. Conclusions

In this paper we have presented eNVyMyCar which is a
framework to support the teaching of Computer Graphics at
basic and advanced level. The use of the eNVyMyCar frame-
work provides substantial advantages to the students: strong
motivation given by the “computer games effect”, personal-
ized learning and retention.

At the time of this writing, eNVyMyCar has so far been
used as part of four CG courses. Although a rigorous study
about the effectiveness of the framework has not been con-
ducted yet, student feedback was very encouraging. In addi-
tion, the framework can be easily modified for use in other
Computer Science courses such as Artificial Intelligence,
Games Physics and Advanced Geometric Modeling.

The future of this project is essentially to extend the use of
eNVyMyCar to further CG classes, to gain more experience
and finally to write a concise textbook.

The eNVyMyCar project is hosted by Source Forge and
can be found at the URL: http://envymycar.sourceforge.net.

Acknowledgment

We wish to thank all the students of our courses for their
feedback and their enthusiasm. Like many other researchers
in Italy, we teach University courses as freelancers, so we
also thank our affiliating institution, the National Research
Council, for allowing us to take some time off our regular
activities.

References

[BDHB08] BOERSJ., DOBBE J., HUIJSERR., BIDARRA

R.: From a Light CG Framework to a strong Cannibal
Experience. Cunningham S., Kjelldahl L., (Eds.), Euro-
graphics Association, pp. 15–19.

[CC05] CLAYPOOL K., CLAYPOOL M.: Teaching soft-
ware engineering through game design. InITiCSE ’05:
Procs. of the 10th annual SIGCSE conf. on Innovation and
technology in comp. sc.education(New York, NY, USA,
2005), ACM Press, pp. 123–127.

[CC07] CHEN W. K., CHENG Y. C.: Teaching object-
oriented programming laboratory with computer game
programming. IEEE Transactions on Education 50, 3
(August 2007), 197–203.

[Ges07] GESTWICKI P. V.: Computer games as motiva-
tion for design patterns. InSIGCSE ’07: Proceedings of
the 38th SIGCSE technical symposium on Computer sci-
ence education(2007), ACM Press, pp. 233–237.

[glu] Glut - the opengl utility toolkit. More info on:
http://www.opengl.org/resources/libraries/glut/.

[HS05] HOETZLEIN R. C., SCHWARTZ D. I.: Gamex: a
platform for incremental instruction in computer graphics
and game design. InSIGGRAPH ’05: ACM SIGGRAPH
2005 Educators program(2005), ACM Press, p. 36.

[qtl] Qt http://www.qtsoftware.com/.

[sdl] Simple direct media library.
http://www.libsdl.org/.

[STG08] SUMNER R. W., THUEREY N., GROSSM.: The
eth game programming laboratory: a capstone for com-
puter science and visual computing. InGDCSE ’08: Pro-
ceedings of the 3rd international conference on Game de-
velopment in computer science education(New York, NY,
USA, 2008), ACM, pp. 46–50.

[vcg] Visualization and computer graphics library.
http://vcg.sourceforge.net/.

[XBK08] X U D., BLANK D., KUMAR D.: Games, robots,
and robot games: complementary contexts for introduc-
tory computing education. InGDCSE ’08: Proceedings of
the 3rd international conference on Game development in
computer science education(New York, NY, USA, 2008),
ACM, pp. 66–70.

submitted to COMPUTER GRAPHICSForum(9/2009).


