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1 Non-existence of quadrangulations
We show why the field examples of Section 3 are not topologi-
cally compatible with quadrangulations. The example with bound-
ary was considered in [Myles and Zorin 2013]. We consider the
two torus examples.
A quadrangulation Q of a surface naturally defines an associated
cross-field V (Q): assume that each quad is mapped to a unit square
in (u, v) domain, with consistency on shared edges of quads up to
a kπ/2 rotation in the (u, v) domain. Then a cross-field is defined
by the gradients of u and v.
A holonomy type of a vector field referes to the values of the turning
number of the field on all homotopy classes of loops on the surface;
that is, field singularity indices and turning numbers along a basis
of noncontractible loops.
The immediate consequence of this definition is that the input
cross-field and the one computed from the parametrization as
above should have identical singularity indices as well as equal
holonomies on topologically equivalent loops.
Torus with a single 3-5 pair. The nonexistence of a quadrangula-
tion with a single 3-5 pair for a torus has been proved in [Barnette
et al. 1971]. Remarkably, [Jucovič and Trenkler 1973] shows that
for any choice of non-regular vertex valences, constrained by the
formula for Euler’s characteristics, and any genus other than 1, a
quadrangulation with vertices with these valences exists (if vertices
of valence 4 can be added); and for tori, the 3-5 pair is the only
exception. We note that this does not guarantee that for any vector
field there is a quadrangulation consistent with it, as the topology
of the field also includes holonomies along non-contractible loops.
A torus with field rotation π/2 along a loop. If the field on a
torus has no singularities, but undergoes π/2 rotation around a non-
contractible loop, there is no quadrangulation with the same field
topology. [Kurth 1986] shows that any regular quadrangulation of
a torus is obtained from a fundamental parallelogram with vertices
at integer points in the plane, with opposite sides glued together.
We observe that u and v gradient fields as a result are globally de-
fined on the torus, and turning number of either field is zero along
any loop. We conclude that regular quadrangulations are not com-
patible with the field. As the field has no singularities, no other
quadrangulation can be compatible.
Finally, we note that although due to [Jucovič and Trenkler 1973], a
choice of singularity indices is rarely an obstacle to quadrangulation
existence, a combination of choices of turning numbers and indices
is much more likely not to correspond to a quadrangulation.

2 Partition construction
Basic form of the motorcycle graph algorithm. We generate
a motorcycle graph G consisting of a set {Ti} of traced curves,
where Ti is a sequence of points, with adjacent points lying on a
common triangle. We represent each point pi on the surface in
barycentric coordinates within a mesh triangle, and consider differ-
ent representations of the same point (on edges shared by triangles)
to be equivalent. At every step, we maintain a set of active (trace
curve, direction) pairs (Ti,di) where di denotes one of the four
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cross-field directions at the last point pi in Ti. We assume that the
operation (p̃i, d̃i, stop)← tracefield(pi,di, G), traces the field,
advancing through the next triangle, or to the nearest intersection
with already traced lines in G if the triangle contains them. The
function returns a new (point, direction) pair, as well as an indica-
tor if the resulting point is an intersection with another line. The
basic form of the algorithm is given by the following pseudocode.

1: Motorcycle graph tracing
2: Initialize the active set A with active traces Ti emanating from

all singular points and feature line endpoints paired with all
non-feature field directions at these points.

3: Initialize the motorcycle graph G with all traces in A and inac-
tive traces corresponding to feature lines.

4: while A is not empty do
5: for all traces and directions (Ti,di) in A do
6: (p̃i, d̃i, stop) ← tracefield(pi,di, G) where (pi,di)

is the last point in Ti.
7: Append (p̃i, d̃i) to Ti.
8: if stop then
9: Remove Ti from A.

10: end if
11: end for
12: end while

Extension of the motorcycle graph algorithm with termination
guarantees.
Recall that on a disk topology domain with no singularities, any
integral line starts and ends on the boundary.
We construct a cut of the mesh passing through all field singularities
and cutting the surface to a disk. On a cut mesh with disk topology,
we can separate the cross-field globally into four fields, labeled u,
v, −u, and −v.
The key observation is that we can trace parallel lines in u and v
directions on the cut mesh, to form a sufficiently fine grid, and we
can extend the lines of the grid across the cut until they reach other
lines forming the grid; in this way, we can obtain a fine partition.
A subset of edges of this partition can be added to the motorcy-
cle graph constructed as described above to ensure that every line
terminates.
We assign an orientation to the boundary of the cut mesh. The cut is
partitioned into monotone segments; a segment is monotone if for
all points of the segment, the projection of its direction on u and v
has a constant sign.
Next, we determine all points on the cut for which at least the pro-
jection on u is zero, and we trace integral lines through these points
till they intersect with an already traced line or the cut. As a result,
any segment of a cut which is a part of a face boundary is monotone
in u, and the cut mesh is split into slabs along the u direction. A
slab has either two monotone boundary segments on the cut, or one
boundary segment that can be split into two.
Similarly, we build slabs in v direction. The intersection of two
slabs is either a quad bounded by integral lines, or has a single
boundary segment monotonic both in v and u. We refer to these
parts as cells forming a cell partition (Figure 1). It is easy to see
that the cell partition can be extended to a proper partition: each
integral line terminating at the cut is extended to the cell C on the
other side; as the field is regular on C, the integral line has to reach
the boundary again.



Finally, for any traced integral line stopped at the cut, we continue
it through the cut into the cell on the other side until it terminates
on the cell boundary. We also add the cell boundary to the partition
and extend it until it stops at a partition line or on the cut. In the
latter case, we add it to the set of unterminated lines.

monotone
 cell

Figure 1: Cell partition

Proof of Proposition 1. First we prove a Lemma.
Lemma 1. A connected component of a boundary of any face of a
motorcycle graph is either a closed integral line, or is a sequence
of integral line segments forming convex angles.

Proof. If a boundary curve has no corners, it has to be on a single
closed integral line. Suppose it has corners. Each corner can be of
one of two types, either a starting point, in which case all integral
lines from this point were traced, and cannot be in a face interior; or
it is a T-joint, with one line stopped by the other; in this case, both
corners formed by these lines are convex.

Now we proceed with the proof of Proposition 1.

Proof. By the version of the Poincare-Hopf theorem for N -
symmetry fields, the total turning number on all boundary segments
should be equal to the Euler characteristic of the face. Because the
boundary consists of integral lines, the turning numbers are equal to
the sums of the angles of the boundary divided by 2π. As all angles
are π/2, the total turning number of the boundary is equal to n/4
and is non-negative, and Euler characteristic is 2 − 2g − b, where
g is the genus and b is the number of boundary components. If the
genus is greater than 1, then the Euler characteristic is negative, so
this situation is not possible. So the genus is either 0 or 1. If the
genus is 1, then the Euler characteristic is non-positive, and is only
zero if b = 0, and the face has no boundary. This is the case of the
torus, with no traced lines (not possible by assumption). Finally, if
g = 0, then b = 1 or b = 2. If b = 1, then the turning number of
the boundary component has to be one, i.e., it has four corners and
the face is a quad. If b = 2, then the turning number of the bound-
ary is zero, and we have two boundary curves with no corners, i.e.
a cylinder.
We note that generically the latter case (cylinder) is only possible
in the presence of closed feature curves, as all other curves in the
motorcycle graph start at a singularity or an endpoint of a feature
curve, and form convex corners with all other integral lines passing
through these points.

3 Field tracing
Nonuniform field definition. While uniform-rotation fields de-
fined in the paper are adequate for many cases, nonuniform rota-
tion may be need, e.g., with multiple feature lines at a singular-
ity. Suppose in the chart domain at a vertex, we choose m direc-
tions βi, with assigned field angles ψi,

∑
i βi = 2π, and define

∆ψi = ψi+1 − ψi, ∆ψi = βi+1 − βi.
Then we define, for an angle φ in the chart, the

v(φ) = ψj + ∆ψj
φ− βj
∆βj

if φ is between βi+1 and βi.

The map z → z
Θ
2π , maps this angle function to the function on the

isometric unfolding of the 1-neighborhood of the vertex given by

v′(φ) = v(φ) + φ

(
Θ

2π
− 1

)
.

The expression in terms of the angle φ′ on the surface is obtained
by substitution φ = 2πφ′/Θ.
(Almost) uniqueness analysis. Consider a partition of the triangle
into curved strips, obtained by tracing the field from each tangency
point to intersection with the boundary both ways (we assume that
the field is generic and no field line is tangent to the border twice).
This partition has the same properties as the linear partition we have
constructed. Note that strips are attached to each other against an
aligned division, with each strip attached to either 1 or two other
strips. This means they form a sequence, and the first and second
strip in a sequence form a pair, corresponding to the T − eA−T −
eA−T−oA sequence we have described. After the removal of this
pair, the same observation applies iteratively, which means that any
field on a triangle allows for a decomposition of partition generated
by the algorithm. If at each step, the choice of subsequence T −
eA−T−eA−T−oA is unique, then the algorithm will necessarily
generate the same subsequence as the curved partition of the field.
It remains to show that the choice of the split sequence is unique.
First, we observe that all aligned divisions on a triangle edge are
either interior or exterior at the same time, because the field rotates
in the same direction along the edge. If only one edge has interior
divisions, the initial sequence of divisions has only one continuous
subsequence of interior divisions, and one of exterior divisions, be-
cause each triangle vertex can be only an exterior division. The
uniqueness of the sequence of strips generated immediately fol-
lows: there is only one way to define a strip near the points where
two subsequences meet, and splitting off this strip results in a se-
quence of divisions with the same property.
Suppose now there are two interior-division edges, and one exterior;
if the vertex between two interior-division edges is not a division,
then the situation is the same in the case 1.
If this vertex is a division, then there are two separate sequences
of exterior aligned divisions: one of length 1, eAv , consisting
of the vertex, and one of arbitrary length on the opposite edge,
(eA1, . . . eAk). Suppose the edge exterior division sequence is
of length k, two interior sequences on edges are of length ni1 and
ni2, such that k − 1 = ni1 + ni2. We observe that chopping off
strips at each end of the edge sequence, by eliminating an exterior
and interior strip at a time, generates two uniquely defined collec-
tions of strips on two sides, until the remaining active face has two
sequences of interior divisions of length 1. In addition, there is
a single-vertex exterior sequence, and a second exterior sequence
consisting of three exterior divisions. At this point, there are two
possible ways to partition the remaining domain into strips, and the
choice of partition cannot be determined by the boundary informa-
tion only.

Proof of Proposition 2.

Proof. Consider the sequence of changes from exterior to interior
aligned divisions. One can observe the following about the field
rotation on the transversal division between two aligned divisions:
if there is no change of type (both adjacent aligned divisions are
exterior or interior) the rotation on the transversal division is π, or
respectively −π; if there is a change, it is zero. Suppose we have a
sequence of ne1 exterior divisions followed by ni1 interior, followed
by ne2 exterior and so on, up to nik interior aligned divisions. Sup-
pose the total numbers of interior and exterior divisions are ne and
ni. Then we have a total turning number of the field along the bor-
der of the triangle equal to (π

∑k
j=1(nej − 1)− π

∑k
j=1(nij − 1)),

which is equal to π(ne−ni); as the field has no singularities in the



triangle, we conclude that it should be 2π, i.e. ne − ni = 2, which
proves (a).
It immediately follows that at least two exterior aligned divisions
are sequential, and we can pick them next to an interior division, if
there is one. If there are no interior divisions, there is a total of two
aligned divisions, both exterior, and respectively two transversal
divisions, i.e. they form a strip.

Conversion of field representations.
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Figure 2: Cross-field representations and conversions. (a) The
cross-field representation of [Ray et al. 2008; Bommes et al. 2009].
The primary direction of each cross (red) is represented by its angle
θi from the reference vector ri. (b) The traceable representation
using two angles per vertex within a facet, with angles across edges
related by (1). (c) Labeling of angles for conversion.

Figure 2 compares facet-based cross-field representation of [Ray
et al. 2008; Bommes et al. 2009] with the traceable representation
described in Section 5. In both cases, cross-field values are repre-
sented in each triangle i as angles with respect to a reference vector
ri, with κij = −κji ∈ (−π, π] denoting the angle of rotation be-
tween adjacent reference vectors ri and rj . An integer matching
variable mij = −mji accounts for the π/2 ambiguity between ad-
jacent triangles so that θi +κij + π

2
mij is the representation of the

cross-field from facet i parallel-transported to the representation in
triangle j. Thus, in the traceable representation,

αj = βi + κij +mij
π

2
(1)

since the representation is continuous along edges. Recall that our
traceable field representation rotates at a constant rate around the
vertex, so that with angles around an interior vertex labeled as in
Figure 2c,

βi − αi =
2πI −Θ

2π −Θ
Θi, (2)

where I is the index of the field at the vertex, Θi is the vertex angle
in triangle i, and Θ is the total angle at the vertex. These constraints
leave only one degree of freedom around the vertex, which can be
computed from the angles θi of an existing facet-based field by lo-
cally minimizing the quadratic energy

∑n
i=1( 1

2
(αi + βi)− θi)2.

For vertices along features curves (including border vertices), the
field is computed per sector delineated by adjacent feature curves
around the vertex. Here, Θ in (2) denotes the total angle of the
sector and ΘI is the total angle of rotation of the field around the
sector. No minimization is required since one of the angles is fixed
to be aligned to the feature curve.
For the converted field to meet the requirements for motorcycle
graph tracing, the facet-based field must meet the following con-
ditions.

1. All boundary curves must be feature curves.
2. The cross within a facet must be aligned to all adjacent feature

edges adjacent to the facet.
3. All singularities must have field index I < 1.

4. The field’s angle of rotation within a sector must be a multiple
of π/2 with I < 1.

Conditions (3) and (4) ensure that no elliptic or parabolic neighbor-
hoods are forced around a singularity or within a sector.
Techniques such as [Bommes et al. 2009] fix the field adjacent to
feature curves and minimize a quadratic energy with integer vari-
ables to generate a smooth field. Such algorithms can be adapted
to satisfy condition (2) by first splitting triangles adjacent to two
non-orthogonal feature curves, and to satisfy condition (4) by con-
straining the field and matchings around sector corners formed by
close-to-parallel feature curves to have a turning angle of π/2.

4 Partition simplification

4.1 Parametric edge lengths for T-mesh quads

Section 7 requires the computation of parametric edge lengths that
satisfy consistency conditions of the form (3) from the paper for
each pair of opposite edges of a quad. Denoting parametric length
of all mesh edges bk, k = 1 . . . n, we write (3) from the paper in
the form Sb = 0, where matrix S has entries ±1.
We target parametric lengths proportional to surface edge lengths
`k by minimizing the quadratic energy Elen =

∑n
k=1(bk − s`k)2,

where s > 0 allows for uniform scaling, and bk ≥ 0. As bk = 0
satisfies the constraints, this quadratic program always has a solu-
tion, but to generate a bijective parametrization, we require bk ≥ 1
except where the constraints force zero length.

Given a vector bmin of minimum lengths and w ∈ {0, 1}n, the
procedure b ← qpSolve(w, `,bmin, S) computes a minimizer
argminb

∑n
k=1 wk(bk − s`k)2 under the constraints s > 0, b ≥

bmin (element-wise), and Sb = 0, or fails if there is no solution.
Parametric lengths b are computed from given ` and an m × n
constraint matrix S using the following function.

1: function b← computeParamLengthCompatible(`, S)
2: b← qpSolve(1, `,1, S)
3: if qpSolve failed then
4: z← whichForcedToZero(S)
5: bmin ← n-vector with bmin

i∈z = 0 and bmin
i/∈z = 1

6: b← qpSolve(1, `,bmin, S)
7: end if

{Non-zero lengths are iteratively removed from the energy to
force all lengths not strictly forced to zero to become positive.}

8: function z← whichForcedToZero(S)
9: `← 1, bmin ← 0, blast ← 0 (all n-vectors)

10: b← qpSolve(`, `,bmin, S)
11: while b has more non-zero entries than blast do
12: for all non-zero entries i of b do
13: `i ← 0 and bmin

i ← 1
14: end for
15: blast ← b
16: b← qpSolve(`, `,bmin, S)
17: end while
18: z← indices of zero entries in b

Proofs of Proposition 3 and 4. We start with several basic proper-
ties of zero chains.
Property 1. Side quads Sj , i = 0, 1 of a maximal zero chain have a
T-joint at one of the endpoints of e0 or en. If this were not true, the
chain could be extended across the side quad, which should have a
zero edge opposite e0 or en and would not be maximal.
Property 2. e0, en of a zero chain cannot have common edges.
Suppose these edges share a common edge of length x and the sum
of other edge lengths in e0 and en is x0 and xn respectively. Then
the only constraint on x is x + 0 + x = xn + x, which allows x



to have any value, i.e. the chain is not forced by constraints to be a
zero chain.
Property 3. A chain is admissible if its set of quads does not contain
a zero loop and there are no valence 1 vertices. Indeed, if Qi is the
same as Qi+1, unless it is a circular loop (which cannot be a zero
chain), two adjacent edges of Qi has to be identified, i.e. there
should be a valence 1 vertex.

Proof of Proposition 3.

Proof. Suppose there is a zero chain; then it contains a side edge
with T-joints; w.l.o.g. denote it by en. If there is a single T-joint,
one of the subedges is an isolated zero edge. If there is more than
one T-joint, there is a zero chain with e0 with no T-joints, that starts
on en: just pick the edge between two adjacent T-joints. Similarly,
at the end of that chain, if there are T-joints, we can find another
zero chain with e0 with no T-joints. Continuing this process, by
the finiteness of the number of edges, we either find a simple zero
chain, or reach e0. Let xi denote the parametric lengths of the
shared zero edges between chains. Then the constraint equations
for each chain have the form xi + yi = xi+1 + zi where i + 1
is modulo the number of chains. Then clearly if we add the same
positive constant to all xi, the equations are still satisfied, so the
chain is not forced to be a zero chain.

Conditions required for an edge collapse to be possible. The
edge collapse involving a triangle as one of the faces can be repre-
sented as a composition of a face(facet) join ofQi andQ′i across gi
with a vertex-join, using CGAL terminology. For the face join to be
possible, Q′i and Qi should be distinct (true by assumption on the
chain), and the valence of the endpoints of gi (vi−1 and wi) should
be no less than 3. For the vertex-join to be possible, its endpoints
vi, wi should be distinct, and faces on two sides (join ofQ′i andQi,
and Qi+1) should have at least 3 vertices.

Proof of Proposition 4.

Proof. Suppose (inductive assumption) before the face-join/vertex-
join pair is applied, all T-joints have extended valence 3 or higher,
and any vertex on the extent side of the chain has actual valence 3 or
higher (because the actual valence of a vertex on the side had to be
at least two, and one extension was added). Any cone on the quad
chain has valence 3 or higher by assumption; finally, we assume that
vi−1 has extended valence 4 or higher. At the beginning of a col-
lapse step,Qi is a triangle. Q′i andQi have to be distinct, otherwise
there is a zero loop contained in the zero chain. By assumption on
valences of vertices vi−1 and wi, the face join is possible. Because
Qi is a triangle and Q′i is a quad, the merged face Q′i has at least
five edges andQi+1 has four, so the edge between them can be col-
lapsed, unless vi, wi coincide. If these vertices coincide, then there
was a (possibly zero) sequence of quad collapses that brought them
together; then the edge ei and a part of this sequence form a zero
loop in the zero chain. The complete operation affects valences of
two vertices, vi−1 and vi. The valence of vi−1 is decreased by 1,
so as we assumed that its extended valence is 4, after the operation
it is at least 3. Suppose wi and vi both have valence 3, before the
complete operation. Both cannot be cones, as otherwise there is
a zero path connecting them. If both of these are regular T-joints,
then their extended valence is 4, and the edge collapse results in
valence 3 (extended valence 4) vertex. If one of them is a valence
3 cone, and the other is a regular T-joint, its extended valence is 4;
and after collapse, the resulting valence is still 3 (extended valence
4). If at least one vertex has valence greater than 3, the merged ver-
tex is guaranteed to have valence 3 or higher. We conclude that the
invariant of the inductive assumption is preserved.
It remains to handle the start and the end of the iteration. In the
beginning, a single side edge collapse is used, collapsing v0 and w0

and converting Q0 to a triangle. As one of these vertices is a T-
joint, with stem along the extent direction, the resulting vertex has

valence at least 4. At termination, we reach a state with no Qi+1,
and similarly the collapse of en yields a vertex of valence at least 4.
As the face-join and vertex-join preserve mesh validity, it remains
to verify that each face has four corners. This follows from the fact
that the number of corners of quads outside the chain never changes
by construction, and quads in the chain are completely eliminated
at the end.

Cone insertion algorithm
The presence of zero parametric lengths in b triggers the T-mesh
simplification procedure described in Section 7. If zero lengths re-
main at the end of the procedure, the following function is used to
compute strictly-positive parametric lengths, allowing for incom-
patible length assignments only where necessary. Section 7 then
proceeds by inserting 2-6 cone pairs to resolve the incompatible
quads. We used MATLAB notation S(r, :) for a submatrix consist-
ing of a subset of rows of a matrix S.

1: function b← computeParamLengthIncompatible(`, S)
2: b← qpSolve(1, `,1, S)
3: if qpSolve failed then
4: z← whichForcedToZero(S)
5: r← maximalAllowableRows(S, z)

6: S̃ ← S(r, :) (sub-rows corresponding to indices r)
7: b← qpSolve(1, `,1, S̃)
8: end if

{For each length forced to zero, one or both of the constraints
involving it are removed to allow a positive length.}

9: function r← maximalAllowableRows(S, z)
10: r← {1, . . . ,m}
11: zleft ← z
12: while zleft is not empty do
13: k ← an index (of a zero-valued length) from zleft
14: `← n-vector with `k = 1 and `i6=k = 0
15: rk ← {rows of S with non-zero entry in k}
16: for all rremove ⊂ rk, in increasing order of cardinality do
17: S̃ ← S(r \ rremove, :) (sub-rows r \ rremove)
18: b← qpSolve(1, `,0, S̃)
19: if bk > 0 then
20: r← r \ rremove
21: zleft ← zleft \ {all non-zero indices in b}
22: Break out of for loop
23: end if
24: end for
25: end while
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