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Figure 1: Progressive refinement of the Happy Buddha: on the upper left corner the size downloaded, on the upper right corner the number
of triangles in the refined model. The header and index amount to 8KB

Abstract

Efficient transmission of 3D data to Web clients and mobile
applications remains a challenge due to limited bandwidth. Most of
the research focus in the context of mesh compression has been on
improving compression ratio. However, in this context the use of
Javascript on the Web and low power CPUS in mobile applications
led to critical computational costs. Progressive decoding improves
the user experience by providing a simplified version of the model
that refines with time, and it’s able to mask latency. Current
approaches do so at very poor compression rates or at additional
computational cost. The need for better performing algorithms
is especially evident with this class of methods where Limper
[Limper et al. 2013b] demonstrated how decoding time becomes
a limiting factor even at moderately low bandwidths. In this
paper we present a novel multi-resolution WebGL based rendering
algorithm which combines progressive loading, view-dependent
resolution and mesh compression, providing high frame rates and
a decoding speed of million of triangles per second in Javascript.
This method is parallelizable, robust to non-manifold meshes, and
scalable to very large models.
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ometry and Object Modeling—Geometric algorithms, languages,
and systems I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms;
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1 Introduction

Limited bandwidth and increasing model sizes pose a challenge in
the transmission of 3D data to Web clients and mobile applications.
Mesh compression is a viable approach to minimize transmission
time, and most research focus in this field has been on optimizing
compression ratio.

Unfortunately, limited bandwidth often pairs with limited computa-
tional power, either because of Javascript environment or low CPU
power mobile devices, to the point that for most algorithms decod-
ing time becomes the bottleneck even at moderately low bandwidth.
Acceptable rates can be regained reducing compression ratio (for
example forfeiting connectivity compression) or using less sophis-
ticate entropy compression algorithms.

A different approach makes use of progressive reconstruction algo-
rithms, which improve the user experience by providing a simpli-
fied version of the model that refines while the remaining part of the
model is being downloaded. The model converges very quickly at
the beginning of the download, and only the details require the full
model. However this class of algorithms performs even worse in
terms of decoding time (as shown in Limper [Limper et al. 2013b])
or in terms of compression ratio.

Another desirable feature, especially for very large models, is view-
dependent resolution: this allows to prioritize the download, decode



a specific part of the model and vary resolution of the rendered ge-
ometry to maintain a constant screen resolution. This is obtained
by maximizing quality at a given frame rate.

In this paper we present a novel multi-resolution WebGL based
rendering algorithm which combines progressive loading, view-
dependent resolution and a mesh compression providing good
rates and a decoding speed of million of triangles per second in
Javascript. This method is can handle non-manifold meshes, and it
is also scalable to deal with very large models.

The method is based on a class of multiresolution structures
[Cignoni et al. 2004; Cignoni et al. 2005] where the “primitive”
of the multiresolution becamesis a patch made of thousands of tri-
angles. The processing required to traverse this structure becomes
a fraction of triangle based multiresolution algorithms, and allows
“batch” operation on the patches: moving data from disk or network
to GPU RAM, rendering, and decompression.

In section 3 we describe the improvement made on the multiresolu-
tion structure and the how the compression algorithm was designed
to optimize decoding time while maintaining a good compression
ratio. In section 4 we compare it with existing web solutions for
mesh compression and progressive visualization. It represents a
solid alternative to current methods, providing a practical mean to
handle 3D models on the web.

2 Related Work

This paper is related to several topics in the field of Computer
Graphics. Among them, the main are: web-based 3D rendering,
progressive and multiresolution rendering approaches, and fast
decompression methods for 3D models.
While a complete overview of all these subjects goes well beyond
the scope of the paper, in the next subsections we provide a short
description of the state of the art, trying to focus on the aspects
which are more related to the proposed approach.

2.1 Web-based 3D rendering

Three-dimensional content has always been considered as part of
the multimedia family. Nevertheless, especially when talking about
web visualization, its role with respect to images and videos has
always been a minor one. Visualization of 3D components was
initially devoted to external components, such as Java applets or
ActiveX controls [Mic 2013].

After some initial efforts for standardization [Raggett 1995;
Don Brutzmann 2007], the proposal of WebGL standard [Khronos
Group 2009b], which is a mapping of OpenGL|ES 2.0 [Khronos
Group 2009a] specifications in JavaScript, brought a major change.
Several actions related to the use of advanced 3D graphics has been
proposed since then. For a general survey, please refer to the survey
by Evans [Evans et al. 2014b]. Since the use of OpenGL commands
needs advanced programming skills, there have been several actions
to provide an ”interface” between them and the creation of web
pages. We could subdivide the proposed systems between declara-
tive approaches [Jankowski et al. 2013], like X3DOM [Behr et al.
2009] or XML3D [Sons et al. 2010], and imperative approaches,
like Three.js [Dirksen 2013], SpiderGL [Di Benedetto et al. 2010]
and WebGLU [DeLillo 2009]. The main difference between the
groups is that the first ones rely on the concept of scenegraph, hence
a scene has to be defined in all its elements, while the second ones
provide a more direct interface with the basic commands. Other
systems provide a sort of hybrid approach, where a very simplified

scene has to be defined.
Evans [Evans et al. 2014b] points out in his survey that declarative
approaches had a major impact in the research community, while
imperative approaches were mainly used in the programming com-
munity.
More in general, given the fact that the amount of data that needs
to be sent to the webpage can be quite big, several efforts about
a better organization of generic streamable formats [Limper et al.
2014a; Sutter et al. 2014] has been proposed. Nevertheless, when
complex 3D data have to be streamed, these structures are not flex-
ible enough to handle them.
In order to face this problem, in the last three years some progres-
sive compression methods ad hoc for 3D streaming have been de-
veloped. Gobbetti et al. [Gobbetti et al. 2012] proposed a quad-
based multi-resolution format. Behr et al. [Limper et al. 2013a]
transmit different quantization levels of the geometry using a set
of nested GPU-friendly buffers. Lavouè et al. [Lavoué et al. 2013]
proposed an adaptation for the Web (reduced decompression time
at the cost of a low compression ratio) of a previous progressive al-
gorithm [Lee et al. 2012]. Other research has been also conducted
to handle other types of data, like point clouds [Evans et al. 2014a],
which may present different types of issues to face with. Please
refer to next subsections for a more in-depth analysis.

2.2 Progressive and Multi-resolution methods

An important feature for user experience when rendering over slow
connections or compressed models is progressiveness: the possi-
bility to temporarily display an approximated version of the model
and to refine it while downloading or processing the rest of the data.

The simplest (and widely used) strategy is to use a a discrete set
of increasing resolution models (usually known as Level Of Detail,
LOD). The main drawback with this approach is the abrupt change
in detail each time a model is replaced.

A change of paradigm was brought by progressive meshes, intro-
duced by Hoppe [Hoppe 1996]. These meshes encode the sequence
of operations of a edge collapse simplification algorithm. This se-
quence is traversed in reverse, so that each collapse becomes a split,
and the mesh is refined until the original resolution. An advantage
of progressive techniques is the much more smooth transition reso-
lution changes, and the possibility to combine it with selective re-
fining or view-dependent multiresolution, but this high granularity
was achieved at the cost of low compression rates: about 37 bpv
with 10 bit vertex quantization.

A large number of progressive techniques were later developed, but
as noted in [Limper et al. 2013b], Table 1, the research focus, how-
ever, was on rate-distortion performances and speed was mostly ne-
glected. Latest algorithms still run below 200KTs in CPU.

Mobile and web application would be really too slow using these
methods. As a compromise, pop buffers [Limper et al. 2013a] pro-
pose a method to progressively transmit geometry and connectivity,
while completely avoiding compression.

Another desirable feature, especially for large models, is view-
dependent loading and visualization. Most multiresolution algo-
rithms were made obsolete by the increased relative performances
of GPU over CPU around the first years of 2000. It simply became
inefficient to operate on the mesh at the level of the single trian-
gle. Several works [Yoon et al. 2004; Sander and Mitchell 2005;
Cignoni et al. 2004; Cignoni et al. 2003] achieved much better per-
formances by increasing the granularity of the multiresolution to a
few thousand triangles.

The main problem when increasing the granularity is ensuring
boundary consistency between patches at different resolution: Yoon



[Yoon et al. 2004] and Sander [Sander and Mitchell 2005] both em-
ploy a hierarchical spatial subdivision, but while the first simply
disallow simplification of most boundary edges, which results in
scalability problems, the second relies relies on global, spatial GPU
geomorphing to ensure that progressive meshes patch simplifica-
tion is consistent between adjacent blocks. The works by Cignoni
[Cignoni et al. 2003; Cignoni et al. 2004] rely instead on a non hi-
erarchical volumetric subdivision and a boundary preserving patch
simplification strategy that guarantees coherence between different
resolutions while at the same time ensures no boundary persists for
more than one level. While not progressive in a strict sense, given
current rendering speed, the density of triangles on screen is so high
that popping effects are not noticeable.

Compression comes as a natural extension to this family of mul-
tiresolution algorithms: each patch can be compressed indepen-
dently from the others as long as the boundary still matches with
neighboring patches. a wavelet based compression was developed
in [Gobbetti et al. 2006] for terrains, a 1D Haar wavelet version in
[Rodrı́guez et al. 2013] for generic meshes on a mobile application.
A comprehensive account of compression algorithms and the con-
vergence with view-dependent rendering of large datasets can be
found on a recent survey from Maglo et al.[Maglo et al. 2015].

2.3 Fast Decompression of 3D models

Given that decompression speed is a key factor in order to be able to
use compressed mesh, there’s been some effort by the community
to provide solutions.
Gumhold and Straßer [Gumhold and Straßer 1998] developed a
connectivity only compression algorithm that was able to decom-
press at 800KTs in 1998. Pajarola and Rossignac in [Pajarola and
Rossignac 2000], in 2000, reported 26KTs for a progressive com-
pression algorithm, and developed a high-performance Huffman
decoding identifying entropy compression as a possible bottleneck.
Finally, Isenburg and Gumhold in 2003 developed a streaming ap-
proach to compression of gigantic meshes reaching an impressive
decompression speed of 2MTs.

3 Method

Our multiresolution algorithm builds upon the methods described
on [Cignoni et al. 2004; Cignoni et al. 2005], which is recapped in
section 3.1 for completeness. In our solution we adopt a improved
partition strategy (see section 3.2), and, more importantly, a novel
compression scheme (section 3.3) tailored around the need for de-
compression speed.

3.1 Batched Multiresolution

The model is split into a set of small meshes at different resolutions
that can be assembled to create a seamless mesh simply traversing
a tree which encodes the dependencies between each patch, using
the estimated screen error to select the resolution needed in each
part of the model. To build this collection of patches we need a
sequence of non-hierarchical volume partitions (V-partition) of the
the model; non hierarchical means essentially that no boundary is
preserved between partitions at different levels of the hierarchy.

The data structure is composed of a fixed size header describing
the attributes of the models, an small index which contains the
tree structure of the patches and the position of each patch in the
file, and the patches themselves. We use HTTP Range requests to
download header and index, ArrayBuffers to parse this structures
into Javascript; the patches are then download prioritizing highest

Figure 2: First column: before refinement. Second column: af-
ter refinement. From top to bottom: a visual representation of the
geometric patches representing the model, the model with pure ge-
ometry, the model with color information.

screen error. Figure 2 shows an example of a model before and after
view-dependent refinement.

The rendering requires the traversal of the patch tree, which is usu-
ally quite small since each patch is in the range of 16-32K vertices,
computing the approximated screen space error in pixel from the
bounding sphere and the quadric error (or any other error metric)
during simplification. The traversal is stopped whenever our trian-
gle budget is reached, the error target is met or the required patches
are still not available.

Since the rendering can start when the first patch is downloaded and
the model is refined as soon as some patch is available, this is ef-
fectively a progressive visualization albeit with higher granularity.
On the other hand, this structure is view dependent and thus able to
cope with very large models, on the order of hundreds of millions
of triangles.

3.2 Partition

Cignoni et al [Cignoni et al. 2005] showed that any non-hierarchical
sequence of volume partitions can be the base of a patch based mul-
tiresolution structure. Good partition strategy minimize boundaries
thus generating compact cells. In addition, it allows streaming con-
struction and generates well balanced trees even when the distribu-
tion of the model triangles is very irregular. The Voronoi structure,



while optimal for boundary minimization and balance, is not suit-
able for streaming leading to long processing times. On the other
hand the regular spatial subdivision used in [Cignoni et al. 2004]
might generate unbalanced trees for very irregular models. This
may impact on adaptivity.

In our solution each volume partition is defined by the leaves of a
KD-tree built on the triangles of the model; to ensure the non hier-
archical condition, the split ratio in the KD-tree alternates between
0.4 and 0.6 instead of the usual 0.5. This choice allows for stream-
ing processing of the model and good adaptivity. As a bonus, the
very regular shape of the patches (see figure 2) may be useful when
adding texture support.

3.3 Mesh Compression

Our multiresolution algorithm imposes a set of constrains to mesh
compression:

• each patch needs to be encoded independently from the other,
so the method must be efficient and fast even on small meshes

• boundary vertices, replicated on neighboring patches, need to
remain consistent through compression

• non manifold models must be supported

It would be possible to exploit the redundancy of the data due to the
fact that the same surface is present in patches at different levels of
resolution. We choose not to do so in order to keep the compres-
sion stage independent of the simplification algorithm used and to
simplify parallel decompression of the patches (we would have to
keep track of and enforce dependencies otherwise).

3.3.1 Connectivity compression

We modified the algorithm presented in [Floriani et al. 1998], to
support non manifold meshes and surfaces with handles or holes.

We need face-face topology for compression and this is computed
as follows: we create an array containing three edges for each tri-
angle, and sort it so that edges sharing the same vertices will be
consecutive (independently of the order of the edges). The edges
are then paired taking orientation into account, and all non paired
edges are marked as boundary. Non manifold meshes will simply
force the creation of some artificial boundaries.

The encoding process starts with a triangle and expands iteratively
adding triangles. The processed region is always homeomorphic
to a disk and if the region meets already considered triangles, we
consider the common vertices as duplicated. The boundary of the
already processed (encoded or decoded) region is stored as a dou-
bly linked list of oriented edges (active edges), The list is actually
implemented as an array for performances reasons. A queue keeps
track and prioritize the active edges.

The first triangle adds three active edges to the list; iteratively an
edge is extracted from the queue and, if not marked as processed,
the following codes are emitted (see Figure 3):

SKIP if the edge is a boundary edge, or the adjacent triangle has
already been encoded; the edge is marked as processed.

LEFT or RIGHT if the adjacent triangle shares two edges with
the boundary; The two edges are marked as processed, a new edge
added to the queue and its boundary adjacencies adjusted.

VERTEX if the adjacent triangle shares only one edge with the
boundary, in this case the edges is marked as processed and two new
edges added to the queue. If vertex of the new triangle opposing the
edge was never encountered before its position is estimated using

parallelogram prediction and the difference encoded, otherwise its
index is encoded (in literature this case is often referred as a “split”).
This is a key difference with [Floriani et al. 1998], where in the
second case a SKIP code would be emitted, to keep the encoded
region simple.

If the mesh is composed of several connected components, the pro-
cess is restarted for each component.

The order in which the active edges are processed is important as
we would like to minimize the number of VERTEX split operations,
and generate a vertex-cache-friendly triangle order. To do so, we
simply prioritize the right edges in the VERTEX operation, so that
the encoding proceeds in ’spirals’. If the mesh is not homeomorphic
to a disk, some split operations are required. This strategy reduces
the number of splits to less than 1% in our examples, incurring in
an average of 0.2 bpv cost.

This algorithm is certainly not optimal in term of bitrate, but it is
extremely simple, linear in the number of triangles and robust to
non-manifold meshes; as we will see in the results, speed is more
important than bitrate.

3.3.2 Geometry and vertex attribute compression

To ensure consistency between boundary vertices of adjacent
patches, we adopt a global quantization grid for coordinates, nor-
mals and colors. The global grid step for vertex position quantiza-
tion is chosen automatically based on the quadric errors during the
simplification step in construction.

Geometry and vertex attributes are encoded as differences to a pre-
dicted value. The distribution of these values exhibit a bias which
we can exploit to minimize the number of bits necessary to encode
them. Our strategy is based on the assumption that most of the bias
is concentrated on the position of highest bit (the log2 of the value)
of these value while the subsequent bits are mostly random. We
simply store in an array, which is later entropy coded, the number
of bits necessary to encode the value; the subsequent bits are stored
in an uncompressed bitstream. In this way we need to decode a
single symbol, from a limited alphabet, and read a few bits from a
bitstream to decode a difference.

Each new vertex position, result of a VERTEX code, is estimated
using a simple parallelogram predictor, and the differences with the
actual position encoded as above. Color information is first con-
verted into YCbCr color space and quantized, we encode the dif-
ference with one of the corner of the edge processed when emitting
the VERTEX code. Normals vector are estimated using the decode
mesh position and connectivity, and differences encoded as usual.

3.4 Entropy coding

We have shown how to convert connectivity, geometry and at-
tributes into a stream of symbols and bits. It is worth compressing
the symbol stream due to the biased probability distribution of the
symbols.

Entropy decoding is the speed bottleneck in many mesh decom-
pression methods, often due to the main goal of minimizing bit per
vertex. Pajarola and Rossignac [Pajarola and Rossignac 2000] de-
veloped a high-performance Huffman decoding algorithm in order
to overcome this problem. The main advantage of this method is
that it reduces the decoding phase to a couple of table lookups.
Arithmetic coding, for example, outperforms Huffman in term of
compression rate, but exhibits lower speed. A problem with this
approach is the initialization time required to create the, possibly
very large, decoding tables. It is then not suitable for decoding



Figure 3: The four decompression codes: black arrows represent the front, the red arrow the current edge, in green the new edges added to
the front.

small meshes where the construction time would dominate over the
decoding time.

Unlike Huffman and other variable-length codes, Tunstall code
[Tunstall 1967] maps a variable number of source symbols to a
fixed number of bits. Since in decompression the input blocks con-
sists of a fixed number of bits and the output is a variable number of
symbols, Tunstall is slightly less efficient than Huffman, especially
where the bit size of the input block is small. The decoding step
is very similar to the high-performance Huffman algorithm, as it
consists in a lookup table and a sequence of symbols for each entry,
but the table size is only determined by the word size, and a fast
method to generate it described in [Baer 2009].

Given an entropic source of M symbols, to generate an optimal en-
coding table for a word size of N bits, we need to generate 2N sym-
bol sequences that have a frequency as close as possible to 2−N ,
allows to encode every possible input (it is complete) and no se-
quence is a prefix of any other sequence (it is proper).

Tunstall optimal strategy starts with the M symbols as initial se-
quences, removes the most frequent sequence A and replaces it with
M sequences concatenating A with every symbol until we reach 2N

sequences. The algorithm most time consuming step is to find the
most probable sequence.

If we use a matrix where the first column contains the sorted symbol
in order of probability, and at each step we replace the sequence
with highest probability with M sequences adding a new column,
we can observe that this table is sorted both in columns and rows
(see Figure 4). This allows to select the next sequence by keeping
each row in a queue and using a priority queue to keep track of
which queue has the highest front element.

Figure 4: First four steps in construction of a Tunstall code with
four symbols, the sequences A, B, AA, BA are replaced with a new
column, beside each sequence, its probability is shown. In green
the candidates for the next expansion.

To initialize the decoding table the symbol frequencies needs to be
transmitted in advance.

Finally, an important advantage of variable-to-fixed coding is that
the compressed stream is random accessible: decoding can start
at any block. This makes it especially suited for parallel decom-
pression in particular GPU decompression. Unfortunately, current

limitations in the capabilities of WebGL do not allow for such an
implementation.

4 Results

The C++ and Javascript implementation is freely available at
http://vcg.isti.cnr.it/nexus under GPL licence.

Our implementation has been successfully tested on major browsers
on a variety of platform, from desktop machines to low end
cell phones. The results we report here were measured on an
iCore5 3.1Gh, using Chrome 41. Timings taken other browsers
(e.g.Firefox) where comparable.

The multiresolution model construction is a preprocessing opera-
tion, and the bottleneck is the quadric simplification algorithm that
runs at about 60K triangles per second per core. Compression time
is negligible at about 1M triangles per second.

4.1 Entropy Compression: Comparison

We tested, both in C++ and Javascript, compression rates and de-
compression speed of:

• our implementation of Tunstall coding (T)

• Huffman coding (H), in the high-performance version of Pa-
jarola [Pajarola and Rossignac 2000] (our implementation,
C++ only)

• available implementations of LZMA
in C++: http://www.7-zip.org/sdk.html
and Javascript: https://code.google.com/p/js-lzma/

• lz-string, a LZW based Javascript implementation
http://pieroxy.net/blog/pages/lz-string/index.html

C++ Javascript
symbols T H LZMA T LZMA LZW

4 1058 520 1066 201 19 55
9 369 212 170 145 10 23

13 423 168 95 150 6 20
17 359 136 77 163 6 19
22 332 98 67 180 6 17

Table 1: Decompression speed in million of output symbols per
second for Poisson distribution of 32K sequences

The results are presented in Table 1, the lenght of 32K has been
chosen since it is typical in our application.

Huffman and Tunstall are very similar in term of decompression
speed, the difference is mainly in the time required to generate
the decoding tables which are much larger for Huffman, especially
when increasing the number of symbols. We tested also other prob-
ability distributions and found little difference in terms of speed.



LZMA and LZW avoid this startup cost, however their more com-
plex and adaptive dictionary management allows them to outper-
form Huffman and Tunstall in term of decompression speed only
for very small runs (and very small dictionaries). In terms of com-
pression ratio, Huffman and LZMA performed quite close to the
theoretical minimum, while Tunstall was about 10% worse.

We did not implement Huffman in Javascript, as we are confident
the result would be very similar. On the other hand the numbers for
LZMA change dramatically. Lz-string serves as a comparison, as
a better library, optimized for Javascript. The poor LZMA perfor-
mances in Javascript help explain the relatively slow performances
of CTM in Limper [Limper et al. 2013b].

4.2 Mesh Compression: Comparison

We used the Happy Budda model (in Figure 1), to compare com-
pression ratio and decompression speed with OpenCTM (CTM)
[Geelnard ] Pop buffers (POP)[Limper et al. 2013b], P3DW
[Lavoué et al. 2013], WebGL-loader (CHUN) [Chun 2012]. We
compare our multiresolution (OUR) and, to test single resolu-
tion performances of our compression approach, a version (FLAT)
which loads only the highest resolution level of the model. In each
case the model has been quantized at 11 bit for coordinates and 8
bit for normals, and includes colors.

FLAT OUR CTM CHUN POP P3DW
MB 1.9 3.9 3.5 2.8 15 4.5
bpv 28 57 51 41 220 66
full 0.4 0.9 5.3 0.06 0.5 10

Table 2: Statistics for the Happy Buddha: model size in megabytes,
bit per vertex and time in seconds required to fully decompress the
model.

Our decompression Javascript implementation can decode about 1-
3 million triangles per second with normals and colors in a sin-
gle thread, on a desktop machine and 0.5 MT/s on a iPhone Five.
Performances are somewhat degraded when the code is run during
streaming visualization.

An important comparison is with [Rodrı́guez et al. 2013], which
employs the same multiresolution batched strategy. For their mo-
bile multiresolution application they reports compression rates of
45-50 bpv on large colored meshes (which should be compared to
our 28bpv). The difference is probably mostly due to the different
connectivity encoding which, in their case, requires 20bpv against
our 4 or 5bpv. It is difficult to compare the speed of the two decom-
pression approaches since they run natively in C# on an iPhone4
while we run in Javascript on the same platform. Our implementa-
tion speed is still, if a bit faster than their 50KTS 1, at about 60KTs.
The difference is probably due their more sophisticate (and slow)
arithmetic encoding.

C++ decompression speed is of course faster, reaching 9MTs, in-
cluding colors and normals, and 16MTs for just position and con-
nectivity. The speed reported in [Floriani et al. 1998] of 35KTs for
just the connectivity, as they mention, is due to the dynamic mem-
ory allocation in their implementation.

4.3 Streaming and Rendering

Loading the geometry through the Range HTTP request requires
an increased number of HTTP calls: one for each patch, or 30-

1The number is extrapolated from the decoding time of a large mesh
given in their paper

60 calls every million of triangles. This does not really impact over
performances: the overhead is quite small (about 400 bytes per call)
and pipelining (the process of enqueueing requests and responses
between browser and server) ensures full utilization of the available
bandwidth. Random access is really necessary only to fully exploit
the view-dependent characteristics of the multiresolution structure:
the code could be easily modified to load the model with a single
call if a higher number of HTTP calls was problematic on certain
web hosting architectures.

In the demo page (http://web3d.duckdns.org) it is possible to com-
pare the performances of our method w.r.t. existing solutions in the
case of a slow connection. Moreover, very complex geometries are
also available for further testing. As an example, in Figure 5 we
show our system rendering the Portalada, a 180M triangles model
at 30fps. The triangle budget has been fixed at 1M triangles and the
streaming requires 2-3 seconds to reach full resolution on a good
connection. The original model is 3.6GB, while the compressed
multiresolution model is 838MB.

Figure 6 shows two examples where the method deals with non-
optimal geometries. On the left side, a model exhibiting strong
topological artifacts. On the right side, a model with very unbal-
anced data density. In both cases, the method is able to deal with
the issues and provide an accurate and reliable rendering.

5 Conclusion

The method proposed in this paper provides good compression ra-
tio, progressive visualization, fast decoding and view dependent
rendering. It proves effective in a wide range of bandwidth avail-
ability, computing power and rendering capabilities. Moreover, it is
able to handle models of arbitrary size. This means that also very
complex geometries can be now explored in real time with average
connections speeds.

Many mesh compression algorithms for mobile and web applica-
tion do not employ topological connectivity compression often be-
cause it is believed to be excessively complex or slow and limited to
manifold meshes. We prove that, if implemented correctly, this is
not the case, and the choice of the entropy compression algorithm
can play a much more important role.

5.1 Future improvements

An important limitation of the current implementation is the lack
of texture support. Adding UV coordinates to the multiresolution
structure and supporting them in compression is a trivial task, but
dealing with simplification and providing multiresolution textures
is much more difficult. We plan to tackle this problem in the near
future, with an approach similar to Texture Mapping Progressive
Meshes [Sander et al. 2001].

Point clouds are currently supported, with a z-index vertex com-
pression strategy, we are working on improving the presentation.
While the multiresolution structure is not really needed, using it
has the advantage of working on an single framework.
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Figure 5: Portalada rendered in a browser: top left: the full model, top right: a detail of the figure above the arch, middle right: the resolution
of the model as seen from the middle left view point (without frustum culling)

Figure 6: Left: a model with severe topological issues. Right: a model with very imbalanced vertex distribution
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LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. SRC - a streamable format for generalized web-based
3d data transmission. In The 19th International Conference on
Web3D Technology, Web3D ’14, Vancouver, BC, Canada, August
8-10, 2014, 35–43.
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