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Abstract

A novel isolation device is introduced to seismically protect slender structures or historic assets within the 
philosophy of Damage Avoidance Design (DAD). This device is conceived to allow smooth, controlled and 
damped rocking thanks to spherical contact surfaces, elastic springs which ensure re-centering, frictional layers 
and viscous elastic dampers able to dissipate energy during motion. The conceptual framework of the device 
is analyzed, and corresponding equations of motions obtained for the equivalent two degrees-of-freedom 
system. The proposed Performance Based Approach allows identifying geometric and mechanical features of 
the system. Extensive dynamic analyses with spectra-compatible ground motions are performed and the 
primary contribution of friction, developed by the relative slip of the two spherical surfaces, is discussed. 
Finally, the dynamic response under selected earthquakes is evaluated by comparing the isolated and the 
corresponding not isolated response, to highlight the beneficial effects produced by the proposed isolation 
technique. 
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1. Introduction

A classical approach in earthquake engineering invokes the performance-based Capacity Design for which the 
formation of plastic hinges is necessary to dissipate energy provided by the ground motion. Despite human 
lives and goods are preserved with this approach, high and medium-high return period events cause damages 
not only on secondary components but also on primary structural members. Moreover, repair costs are usually 
as high as rebuilding costs and, in the immediate post-event time, the reconstruction can be unsafe and 
sometimes useless. Damage Avoidance Design (DAD) and other isolation techniques were therefore proposed 
as alternative design paradigms in earthquake engineering. DAD design philosophy was set out by Mander 
and Cheng [1] and later applied for practical cases of braced frame structures [2], among others. However, this 
concept was not completely new at that time, neither in the theoretical research nor into building practice. 
Following the early Housner’s work [3], related to a non-smooth contact problem, efforts were spent on 
studying the rocking motion of rigid blocks; Meek [4] introduced the coupled effect of flexibility of the bracing 
with rocking of foundation, and Aslam et al. [5] the effect of pre-stressing. As for the rocking of rigid bodies, 
a control of rocking motion was recently proposed through a tuned pendulum, with analytical approach based 
on Lagrange formulation and Galerkin approximation method [6]. On the other hand, frictional problems were 
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treated in rigid block limit analysis of masonry structures [7], [8], based on specific formulations of 3D yield 
conditions for contact interfaces [9]. Friction sliding connections and rocking resisting systems may be found 
in ancient Greek and Roman temples or in Japanese Pagodas [10], and this is probably why some of these 
buildings survived so long, not sensitively damaged by earthquakes. More recent examples of DAD structures 
are the 315 m span South Rangitikei Bridge [11] and the 35 m high tower of Christchurch [12]. Other examples 
are the Alan Macdiarmid Building at Victoria University in Wellington and Southern Cross Endoscopy 
Building in Christchurch [13], both located in New Zealand. DAD structures follow the principles of isolation, 
with absence of damage and energy dissipation, and give the possibility of controlling displacements, to respect 
specific limit states. These characteristics are based on the rocking behavior, whose analytical framework was 
extensively investigated in the past. When discussing about rocking, it is necessary to distinguish between 
rigid contact problems - where the base of the rocking element can be considered rigid - and elastic contact 
models - where the base exhibits elasticity. For the first typology, rocking is able to describe the seismic 
behavior of rigid structural elements such as, for instance, masonry walls in out-of-plane modes. Diverse 
contributions were provided for analyzing the rocking response of walls in free configuration [14], [15] or for 
horizontally [16]–[19] or vertically [20] restrained walls. For masonry structures the assumption of rigid blocks 
is generally acceptable, but for other materials, several authors included the elasticity of the superstructure in 
the formulation  [21]–[24]. In addition, the dynamics of an elastic structure coupled with a rocking wall was 
analyzed by [20]. In the context of elastic contact models, Psycharis and Jennings [25] firstly proposed the 
rocking rigid block on an elastic foundation realized through coupled springs and dampers. These models were 
recently used, properly updated, for new isolation techniques, for instance to protect marble structures [26], 
showing that these devices are highly performant to sustain seismic actions. However, still only few 
contributions are available to quantify the base isolation properties allowed by free rocking [27], [28], which 
is the core of the DAD philosophy. A novel semi-active on–off control strategy for the seismic protection of 
monolithic art objects is proposed in [29]. It consists in switching the stiffness of the anchorages located at the 
two base corners of the rocking block between two values. In this framework of elastic contact models, the 
present paper proposes an innovative device, conceived by M. Froli, able to protect from damages different 
types of superstructures by following the DAD principles. In general, the device allows a favorable dynamic 
behavior since:

(i) in case of low-intensity excitation, the superstructure remains undamaged, so that the post-
event serviceability is preserved;

(ii) in case of a strong excitation, the motion of the superstructure is mitigated by a frictional 
contact and the effect of dampers, enabling the structure to smoothly rock.

 
The use of this device aims at limiting the damage of slender structures and valuable objects under seismic 
actions and vibrations. The acronym of this device has been inspired by its mechanics: TROCKSISD 
(Tribological ROCKing Seismic ISolation Device). 
The art objects seismic risk mitigation is a systemic problem, in which it is crucial to understand in a first step 
the interdisciplinary and interrelated aspects of conservation, safety and exhibition requirements (especially 
geometric and aesthetic settings) [30], [31], [32]. Such devices can be effectively integrated as anti-seismic 
basement of highly vulnerable statues [33], [34]. Moreover, it is necessary to estimate the seismic behavior of 
the building where the object is located, and the effect of mechanical coupling in order to estimate the real 
seismic demand on the object to protect. Since the present study is focused on the dynamics of the 
TROCKSISD, for the sake of simplicity the ground seismic action is considered as input.
The concept and the equations of motion are obtained for the corresponding two degrees of freedom (2DOF) 
system (Section 2), whereas the main design steps are discussed in Section 3 to geometrically and mechanically 
design the device in a performance-based perspective. Afterwards, a quantitative estimation of the response of 
the system is obtained by performing nonlinear dynamic analyses (Section 4), and finally a parametric analysis 
is carried out to estimate the influence of friction on the global behavior of the dynamic system (Section 5). 

2. Tribological ROCKing Seismic ISolation Device - TROCKSISD

https://www.sciencedirect.com/topics/engineering/control-strategy


2.1 Concept

The TROCKSISD consists of an articulated jointed connection to be installed between the foundation and the 
structure, which needs to be protected from earthquakes and vibrations, herein defined as superstructure. The 
latter is allowed to smoothly oscillate by rotation around the center of a spherical cup, which is allocated under 
its base plate. Such movement occurs on a concentric concave saddle-shaped spherical cup, where the surfaces 
are frictionally connected. Polar-symmetric viscous elastic dampers provide additional damping and stiffness 
to ensure re-centering capability. Two main phases can be identified in the response of the device: (i) a stick 
phase, where only the elasticity of the superstructure reacts to the external excitation, and smooth rocking is 
not activated, and (ii) a slip phase, where rocking is triggered and occurs over a frictional surface. A physical 
scaled mock-up of the device is shown in Figure 1: it is possible to observe the undeformed setting (Figure 
1a), typical of the stick phase, and the deformed shape, representative of the slip phase (Figure 1b). In the 
mock-up, the viscous elastic dampers are realized as springs, to ease the re-centering effect. 

The conception of the device is based on the necessity of enabling the jointed mechanism and controlling 
displacement demands, especially those generated by ground motion or vibrations of different nature. The 
friction is considered to prevent rocking of the superstructure at the SLS (Serviceability Limit State), as the 
jointed connection is behaving stiffly. On the other hand, at the ULS (Ultimate Limit State), the smooth rocking 
of the superstructure is admitted. This fixes an upper limit of the maximum rotation not to cause any damage 
of the components, i.e. due to accidental contact. The energy provided by the ground motion, due to 
earthquakes or other sources of vibration, has to be dissipated by TROCKSISD. This energy is dissipated by 
two systems working in parallel:  one is friction at the interface level of substructure and superstructure, later 
illustrated in detail,  and the other one consists of  dampers located around the device edges (Figure 1). The 
amount of energy dissipated by the two systems depends on the values of frictional coefficient and on viscous 
damping coefficient. Moreover, this amount distributed into the two systems may be influenced by the motion 
type. As it will be explained in Section 5, it is necessary to control the two amounts of energy dissipated by 
dampers and frictional layer, as relevantly different behaviors occur at the variation of their characteristic 
parameters. The re-centering effect is not directly correlated to the frictional system, but only to the dampers, 
that are in parallel coupled with springs that recall the superstructure in an equilibrium position. The springs 
are in principle not pre-compressed, but a pre-compression would prevent, in case of vertical seismic shocks, 
detachment of the two spherical improving the seismic behavior. 

(a) (b)
Figure 1 TROCKSISD mock-up: (a) rocking prevented in stick phase, (b) rocking admitted in sliding 

phase.

Referring to Figure 2, the main components of the device and their functions are summarized in the following.



 The top plate (A in Figure 2) is a ribbed plate whose upper flat face allows the connection with the 
superstructure; 

 The convex shaped spherical cup (B in Figure 2) plays multiple function of transmitting vertical and 
horizontal loading to the foundation, allowing the rotation of the jointed mechanism. Through its 
surface it allows energy dissipation by friction on the underlying concave saddle-shaped spherical 
plate. The spherical cup is centered in O and has radius of curvature R. The angle  represents the 𝜑
latitude from the equator of the plane that cuts off the ideal sphere from which the surface is derived.

 The concave saddle-shaped spherical plate (C in Figure 2) is made of a curved steel plate installed on 
a ribbed plate, which is connected to the ground. This component is geometrically described by the 
angle φ0 (complementary to the zenith angle), which identifies the latitude of the cut-off plane.

 Viscous-elastic dampers are conceived to link the perimeter of the upper plate and the concave shaped 
spherical plate, and to provide stiffness ( ), damping ( ), and re-centering capacity to the system. k c
Dampers that result polar-arrayed are in even are installed in pairs, so that the elements of a group are 
positioned as opposing V bracing to help the system to self-center and to oppose torsional effects.

An axonometric view of TROCKSISD is shown in Figure 3a and an exploded three-dimensional view is in 
Figure 3b.

 
Figure 2 TROCKSISD: geometric and mechanical features in a schematic section view.

             
(a)                                   (b)

Figure 3 TROCKSISD: (a) axonometric view; (b) exploded view.



2.2 Analytical model

This paragraph describes the mechanics of TROCKSISD, in particular the estimation of the tribological 
moment developed between the convex spherical cup and the concave plate associated to the Coulomb friction 
model [35], and the equations of motion of the corresponding 2 DOFs system.

2.2.1 Modeling of friction forces

Coulomb friction model and evaluation of surface pressure

The Coulomb model [35] is adopted for the evaluation of friction: the problem is inherently nonlinear since 
the cases of static friction, where the reactive force prevents any movement, and dynamic friction, where the 
stick force is overcome and the body starts to slide, should be distinguished.

The contact pressures at the interface of the two sliding surfaces (B and C of Figure 2) can be approximately 
evaluated as follows. Let  be the radius of the surface, and φ0 the complementary to the zenith angle; the 𝑅
concentric spherical cups are supposed rigid and mutually connected by radial compression-only uniformly-
distributed springs of stiffness , which are representative of the surface pressure. Two load cases of vertical 𝑘𝑝
( ) and horizontal ( ) loading are evaluated separately, and, because of the linearity of the problem, their 𝑃 𝐻
effects in terms of spring compression or de-compression are then be superimposed. A polar coordinate system 
(R, θ, φ) is adopted, where  and  have the meaning of radial and zenithal components, while  stands for R φ θ
the azimuthal angle (Figure 2).

         
Figure 4 Scheme adopted for the evaluation of contact pressures.

Under vertical loading , the problem is polar symmetric with respect to the z axis (Figure 5). The radial stress 𝑃
for simple monodimensional spring elements can be expressed with the Hooke’s law, where the term  in Eq. 𝑘𝑝
(1) refers to the stiffness of the compression-only uniformly-distributed springs (Figure 2):

σ𝑟(φ) = 𝑘𝑝𝑣𝑧 𝑠𝑖𝑛(φ) (1)

 displayed in Figure 5a is the infinitesimal pressure in radial direction, equal to: 𝑑𝑝𝑟

𝑑𝑝𝑟 = σ𝑟𝑑𝐴 = σ𝑟(φ) 𝑅2𝑐𝑜𝑠(𝜑) 𝑑φ 𝑑𝜃 (2)

However, due to the geometry of load it is convenient to extrapolate from the previous equation the  vertical 𝑑𝑝𝑟
component :𝑑𝑝𝑧



𝑑𝑝𝑧 = 𝑑𝑝𝑟𝑠𝑖𝑛(𝜑) =  𝑘𝑝𝑣𝑧𝑅2𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛2(𝜑)  𝑑φ 𝑑𝜃 (3)

The vertical displacement  is obtained by equilibrium.  vz

𝑃 = 𝑘𝑝𝑣𝑧𝑅2∫2𝜋

0
∫𝜋/2

𝜑0

𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛2(𝜑)𝑑φ𝑑𝜃

𝑣𝑧 =
3𝑃

2𝜋𝑘𝑝𝑅2[1 ‒ 𝑠𝑖𝑛3(𝜑0)]
(4)

Substituting Eq. (4) in Eq. (1) yields the pressure  due to vertical load. 𝜎𝑃
𝑟(𝜑)

𝜎𝑃
𝑟(𝜑) =

3 𝑃
2𝜋𝑅2 

𝑠𝑖𝑛(𝜑)
1 ‒ 𝑠𝑖𝑛3(𝜑0)

(5)

Because of the symmetry of the problem,   is independent from the coordinate θ. A qualitative profile 𝜎𝑃
𝑟(𝜑)

of the compressive pressure is shown in Figure 5b.

 
(a) (b)

Figure 5 Evaluation of surface pressure due to vertical loading P: displacement parameters (a) and 
schematic contact pressures (Eq. Error! Reference source not found.) (b).

The base shear force of the superstructure  acting on the curvature center  (Figure 6) is transferred as H O
horizontal loading on the device. The pressure is dependent on both the angular components, and its qualitative 
plot is antisymmetric with respect to the plane . Adopting the previous methodology based on  an equilibrium yz
condition, the horizontal displacement  is equal to (Figure 6a):vx

𝑣𝑥 =
12 𝐻

𝜋𝑘𝑅2[8 ‒ 9𝑠𝑖𝑛(𝜑0) ‒ 𝑠𝑖𝑛(3𝜑0)]
(6)

whereas the pressure  (positive or negative depending on the sign of H has this form (Figure 6b):𝜎𝐻
𝑟(𝜑,𝜃)

𝜎𝐻
𝑟(𝜑,𝜃) =

12 𝐻
𝜋𝑅2[8 ‒ 9𝑠𝑖𝑛(𝜑0) ‒ 𝑠𝑖𝑛(3𝜑0)]cos (𝜃)cos (𝜑)

(7)



(a) (b)
Figure 6 Evaluation of surface pressure due to horizontal loading H: displacement parameters (a) and 

schematic contact pressures (b).

Since the elastic radial springs are supposed monolateral, the negative pressure in Figure 6b should be regarded 
as a de-compressive action with respect to the compressive values obtained from the vertical loading P. The 
superposition of the effects (Figure 7a) yields:

𝜎𝑟(𝜑,𝜃) =  𝜎𝑃
𝑟(𝜑) + 𝜎𝐻

𝑟(𝜑,𝜃) (8)

(a) (b)

Figure 7 Superposition of the surface pressures deriving from vertical loading (blue) and horizontal 
loading (red) (a); critical base shear to vertical load ratio depending on the geometry parameter (b).

Once the surface pressure is known, it is possible to use the obtained stress value for a preliminary verification 
of strength. The de-compressing condition is defined when the total pressure (Eq. (8)) is locally null. This at 
least occurs at  and :φ = φ0 θ = π

𝜎𝑃
𝑟(𝜑0) + 𝜎𝐻

𝑟(𝜑0,𝜋) = 0 (9)

That is, substituting in Eq. (9) Eqs. (5)Error! Reference source not found. and (7):

3 𝑃
2𝜋𝑅2

𝑠𝑖𝑛(𝜑0)
1 ‒ 𝑠𝑖𝑛3(𝜑0) ‒

12 𝐻
𝜋𝑅2[8 ‒ 9𝑠𝑖𝑛(𝜑0) ‒ 𝑠𝑖𝑛(3𝜑0)]cos (𝜑0) = 0

(10)

This equations gives, properly modified, the critical ratio of horizontal and vertical forces: (𝐻
𝑃)

𝑐𝑟



(𝐻
𝑃)

𝑐𝑟
=

8 ‒ 9 𝑠𝑖𝑛(𝜑0) ‒ 𝑠𝑖𝑛(3𝜑0)
8[1 ‒ 𝑠𝑖𝑛3(𝜑0)] 𝑡𝑎

(11)

which is function of the only geometrical design parameter . The selection of  may reasonably lead to a φ0 φ0
value within the boundary drawn by the  curve of Figure 7b in order to maximize the frictional (H/P)cr
dissipative contribution and avoid decompression. The maximum of the curve is around  with the φ0 = 30°
ratio  .H/P = 0.2

Tribological moment

The desired rocking of the superstructure essentially causes frictional sliding. Being friction a reactive force, 
its contribution may be expressed in the analytical formulation of the problem by means of the tribological 
moment . It is possible to assume as simplifying hypotheses that:Mμ

i. if we consider a small rocking rotation around a generic axis t-t, the trajectory of a generic point A on 
the spherical surface is an arc of circle, obtainable by intersection of the spherical cup surface with a 
plane through the point A whose normal is parallel to the t-t axis (Figure 8);

ii. the radial pressure (Eq. (8)) is constant during motion;
iii. the effect of horizontal force acting on the device is antisymmetric, so its contribution is globally null 

if the decompression condition is not overcome. Thus, only pressure generated by vertical loading is 
considered;

iv. the tangential friction component is locally orthogonal to the radial pressure, and oriented in the 
direction of the tangent to the circular trajectory found as per the first point. 

Condition (ii) is assumed valid as the extension of the contact surfaces are constant over motion. This is 
guaranteed by a proper design of the spherical cup, where the angular sliding stroke  is greater than a fixed ∆𝜑
limit (Figure 2). The response of the device takes into account this design parameter (for more details the 
reader is referred to Section 4). 

The tangential fiction component may be expressed as:

𝜏 = 𝜇𝜎𝑟 (12)

In infinitesimal terms, it holds:

𝑑𝜏 = 𝜇 𝑑𝑝𝑟 (13)

where  is the infinitesimal radial pressure (Figure 8b), namely the radial pressure due to  𝑑𝑝𝑟 =  𝜎𝑃
𝑟(𝜑) 𝑑𝐴

vertical loading  over the infinitesimal area . In a generic point of the surface, the 𝜎𝑃
𝑟(𝜑) 𝑑𝐴 = 𝑅2cos 𝜑𝑑𝜑𝑑𝜃

contribution of friction can be expressed as the infinitesimal tribological moment  (Eq.(14)), multiplying 𝑑𝑀𝜇
the tangential resistance  to the lever arm :𝑑𝜏 b(R,θ,φ)

𝑑𝑀𝜇 = 𝑏(𝑅,θ,φ) 𝑑𝜏 (14)

where:

𝑏(𝑅,θ,φ) = 𝑅 𝑠𝑖𝑛2(𝜑) + 𝑐𝑜𝑠2(𝜑)𝑠𝑖𝑛2(𝜃) (15)

Substituting Eqs. Error! Reference source not found., (12) and (15) into Eq. (14) and integrating, the 
tribological moment  assumes the form:𝑀𝜇



Mμ =
3μPR

2π(1  ‒ sin3(φ0)) ∫2𝜋

0
∫

𝜋
2

φ0

𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛2(𝜑) + 𝑐𝑜𝑠2(𝜑)𝑠𝑖𝑛2(𝜃) 𝑑𝜑 𝑑𝜃
(16)

The expression clearly identifies a dependency on two geometric parameters,  and , which can be isolated φ R
in a more compact equation:

Mμ = μPRΦ(φ0) (17)

where  is a function of the only polar coordinate :Φ(φ0) φ0

Φ(φ0) =
3

2π(1  ‒ sin3(φ0)) ∫2𝜋

0
∫

𝜋
2

φ0

𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛2(𝜑) + 𝑐𝑜𝑠2(𝜑)𝑠𝑖𝑛2(𝜃)𝑑𝜑𝑑𝜃
(18)

that has values between  and  , and whose trend curve is represented in Figure 9.Φ(0°) = 1.273 Φ(90°) = 1

                       (a)                                                                                     (b)
Figure 8 Scheme of the geometrical parameters involved in the tribological moment formulation: 3D (a) 

and in-plane view (b).

Figure 9 Variable function  affecting the tribological moment (Eq. (18)).Φ(φ0)

2.2.2 Proposed 2DOF model

The dynamics TROCKSISD is here analytically formulated. For the polar-symmetry of the system, the 
response is assumed to be independent from the direction of the seismic excitation; therefore, a schematic plan 
representation of the problem as in Figure 10a is assumed to be representative. Hence, the superstructure that 



is rigidly connected to the top plate of the jointed device is regarded as a SDOF oscillator. The dynamic 
behavior is described through the 2DOF model illustrated in Figure 10b. The dynamic parameters are all 
considered lumped. 

The first DOF is representative of the superstructure and is described by the translational Lagrangian parameter 
. The superstructure lumped mass  has distance h from the pivot point O, which is the center of the curvature x 𝑚

of the jointed device. The superstructure has stiffness  and damping . k c

The second DOF is described by the rotational Lagrangian parameter . The mass of TROCKSISD  is α mb
located at the scheme point , center of mass of the device, distant  from the pivot O. Being related with a Gb hb
rotational DOF, the characteristics of the dampers are expressed in terms of rotational stiffness and damping, 

 and  respectively. P-Delta effects should be also in principle considered in case of flexible springs. kφ cφ
However, the following analysis holds for springs stiff enough to make the P-Delta effects negligible.

  

Figure 10 Representations of the system analyzed: (a) schematic view; (b) 2DOF model.

Referring to the free body diagram of forces of Figure 11, the equation of motion can be written as:

mx + c(x ‒ hα) + k(x ‒ hα) =‒ mxg

or:

(19)

mbhb(xb + xg) + cφα + kφα + Mμ =‒ kh(x ‒ hα) ‒ ch(x ‒ hα) (20)

where Eq. (19) concerns the first translational parameter x (top of Figure 11), whereas Eq. (20) is the rotational 
dynamic equilibrium around the pivot O (bottom of Figure 11). It can be noted that:

𝑥𝑏 = αℎ𝑏 (21)

where  is the horizontal displacement of , approximately expressed in terms of the Larangian parameter xb Gb
. Consequently, deriving two times:α



𝑥𝑏 = 𝛼 ℎ𝑏 (22)

If eq.(22) is included in eq. (20), the following Eq. (23) can be obtained.

mbh2
b 𝛼 + (cφ + cℎ2)α + (kφ + kℎ2)α ‒ chx ‒ 𝑘ℎ𝑥 + Mμ = ‒ 𝑚𝑏ℎ𝑏𝑥𝑔 (23)

From which it is possible to recognize the moment of inertia  with respect to the pivot O. If the Ib = mbh2
b

dynamic loadings are written as Eq. (24), the equation of motion can be rewritten as Eq. (25).

{ 𝐹 = ‒ m𝑥𝑔
𝑀 = ‒ 𝑚𝑏ℎ𝑏𝑥𝑔

(24)

and therefore:

{ mx + cx ‒ chα + kx ‒ khα = 𝐹
𝐼b𝛼 + (cφ + cℎ2)α + (kφ + kℎ2)α ‒ chx ‒ 𝑘ℎ𝑥 + Mμ = 𝑀

(25)

Figure 11 Free body diagram of forces for the 2DOFs.

The dynamic motion obtainable from this formulation, as any problem dealing with friction contact, may show 
the following three phases.

 In the static phase, at a given time the velocity equals zero, i.e. angular acceleration , so there α =  0
is absence of motion. The causes could be either the absence of excitation or a break of the mass. In 
the latter, even in a deformed position of the mass, the block continues to be stuck unless the elastic 
force or the dynamic loading is greater than the static friction force.

 The incipient motion phase is the condition in which the velocity is still zero, but the static friction 
force is overcome. Thereafter, accelerations and inertial forces develop because of the variation of 
velocity.

 The dynamic phase is characterized by a non-zero velocity; the dynamic friction force has the sign of 
the velocity to describe the opposition to the direction of motion.

As a consequence, a pure stick behavior is obtained if there is static phase over the monitoring time. A pure 
slip motion expresses vice versa the conditions for the dynamic phase. A mixed slip-stick motion manifests 
both phases with incipient motions included. To embrace all the phases of motion in a single mathematical 



formulation, the system is solved via numerical integration with the Euler-Gauss method [36] into time domain 
of the equations reorganized as:

{ x =
𝐹
𝑚 +

𝑐
𝑚x ‒

ch
𝑚α +

k
𝑚x ‒

kh
𝑚 α

𝛼 =
1
𝐼b

 [𝑀 ‒ (cφ + cℎ2)α ‒ (kφ + kℎ2)α + chx + 𝑘ℎ𝑥 ‒ Mμ]

(26)

The initial conditions expressing the system stillness are imposed to be:

{𝑥1 = 𝑥(0) = 0
𝑥1 = 𝑥(0) = 0
α1 = α(0) = 0
α1 = α(0) = 0

(27)

A tolerance is added to define a stick region in the neighborhood of null velocity .α = 0

2.3 Materials

The characteristics of materials employable in the TROCKSISD are fundamental not only to define the strength 
and stiffness of the components, but also to determine the friction coefficient between the sliding surfaces. 
Common steel can be used for all the components, while for the sliding surfaces also stainless steel and 
anodized aluminum may be used. To achieve a lower friction coefficient, the concave spherical cup may be 
covered with PTFE. In the analytical model the friction coefficient is assumed to be constant.

3. Design criteria

The design of TROCKSISD requires the selection of both geometrical and mechanical parameters on the basis 
of the desired performances. The proposed approach for sizing the components aims at achieving target 
rotations corresponding to certain level of actions, defined in the Eurocodes as Limit States. It seemed 
reasonable set zero value rotations at the SLS and to design the jointed mechanism to stick. Hence, the level 
of seismic forces is tolerable, and superstructure is designed to react elastically, therefore, there is no need for 
isolation. Imposing the static phase, residual rotations that the presence of friction as a nonlinear action may 
cause are avoided.

Smooth rocking of the superstructure and energy dissipation occur at ULS during the slip motion of the device. 
However, at this level neither the dampers stroke shall attain the maximum extension limit nor any other part 
of the device shall fail because of accidental crashes due to mutual contact. The superstructure results isolated 
and can still elastically behave without damaging.

3.1 Geometry design

In stick motion the system behaves as a SDOF oscillator; such a behavior is foreseen at the Serviceability Limit 
State. The unique inertial force is applied at the superstructure mass m. Its maximum value occurs for the 
maximum acceleration , when contemporarily the displacement is maximum  and the velocity is null 𝑥max xmax

 (Figure 12). Moreover, the mass  motion is integral with the ground motion, so the PGA value can 𝑥 = 0 mb
be assumed as acceleration. The inequality is imposed as a design condition.

𝑀𝐸𝑑 ≤ 𝑀μ,𝑠 (28)

The two terms in Eq. (28) represent respectively the SLS design moment  (Eq.(29)) and the tribological MEd
static moment  (Eq.(30)) descending from Eq. (17).𝑀μ,𝑠



𝑀𝐸𝑑 = 𝑚ℎ𝑥𝑚𝑎𝑥 ‒ 𝑚𝑏ℎ𝑏𝑃𝐺𝐴 (29)

Mμ,s = μ𝑠PRΦ(φ0) (30) 

Which substituting in Eq. (28) yield:

𝑚 ℎ 𝑎𝑔,𝑚𝑎𝑥 ‒ 𝑚𝑏ℎ𝑏𝑃𝐺𝐴 ≤ μ𝑠PRΦ(φ0) (31)

By algebraically modifying the inequality, Eq. (32) yields the condition for the minimum radius compatible 
with the desired SLS behavior, once a value of  is selected preliminarily. φ

𝑅𝑚𝑖𝑛 ≥
𝑚𝑎𝑔,𝑚𝑎𝑥[𝐻 + ∆ℎ] ‒ 𝑚𝑏𝑃𝐺𝐴[𝑦𝐺 ‒ ∆ℎ]

μ𝑠PΦ(φ0) + 𝑠𝑖𝑛(φ)[𝑚𝑎𝑔,𝑚𝑎𝑥 + 𝑚𝑏𝑃𝐺𝐴]
(32)

The radius can be found iteratively, updating the  value at each step. The value of , height of the mb Δh
superstructure base plane from the cut plane of the cup, is to be selected based on the available amount of 
space at the base of the structure and feasibility requirements.  is an angular sliding stroke that guarantees Δφ
continuous friction development over a constant area during the motion (Figure 13).

𝑅𝑚𝑖𝑛 ≥
𝑚𝑎𝑔,𝑚𝑎𝑥[𝐻 + ∆ℎ] ‒ 𝑚𝑏𝑃𝐺𝐴[𝑦𝐺 ‒ ∆ℎ]

μ𝑠PΦ(φ0) + 𝑠𝑖𝑛(φ)[𝑚𝑎𝑔,𝑚𝑎𝑥 + 𝑚𝑏𝑃𝐺𝐴]
(33)

An idea of the maximum size the device occupies can be given by the parameter  (Figure 13) in the horizontal 𝐷
direction, which can be also be expressed in terms  as in Eq. (34). Moreover, while in the design phase, 𝑅𝑚𝑖𝑛
the mass  should be updated iteratively.mb = mb1 + mb2 + mb3

𝐷𝑚𝑖𝑛 ≥ 2𝑅𝑚𝑖𝑛𝑐𝑜𝑠(𝜑) (34)

Figure 12 Design condition at SLS.



Figure 13 Geometric parameters to be defined in the design of TROCKSISD.

3.2 Calibration procedure for the identification of stiffness and damping parameters

At the ULS the design limitation can be expressed in terms of maximum rotation . However, the rotations are α
influenced by friction developed at the sliding interface and viscous-elasticity of dampers. While the friction 
reaction is a constant and known value because the device has been geometrically defined at the SLS, the only 
variables to be determined at the ULS are the mechanical parameters  and . Because the superstructure kφ cφ
will result isolated at the ULS, it is suggested firstly to define a desired response in terms of vibration period, 
and then, to investigate a range of values of  and , which combined permit to reach the rotation limitations. kφ cφ
Therefore, a modal analysis of the system is required as first step. Then, once defined a design dynamic action, 
the characteristics of the dampers can be selected. If needed, the design procedure could be reiterated from the 
considerations at SLS.

3.2.1 Modal analysis 

The equations of motion of the 2DOF system in case of free vibrations can be written as Eq.(35), or in matrix 
form as Eq. (36) (compact form Eq.(37)), not considering neither external dynamic loadings nor friction.

{ mx + cx ‒ chα + kx ‒ khα = 0
𝐼b𝛼 + (cφ + cℎ2)α + (kφ + kℎ2)α ‒ chx ‒ 𝑘ℎ𝑥 = 0

(35)

[𝑚 0
0 𝐼b]{x

𝛼} + [ 𝑐 ‒ 𝑐ℎ
‒ 𝑐ℎ cφ + cℎ2]{x

α} + [ 𝑘 ‒ 𝑘ℎ
‒ 𝑘ℎ kφ + kℎ2]{𝑥

α} = {0
0} (36)

[𝑀] 𝐴 + [𝐶]𝐴 + [𝐾]𝐴 = 0 (37)

A simple modal analysis for an equivalent 2DOF system can be performed to dynamically characterize it, 
obtaining natural frequencies, modal shapes and associated masses [36]. 

4. Dynamic analysis, design application and comparison of the response with SDOF oscillator

An ideal case study is selected and analyzed to obtain quantitative information on the dynamic of the system. 
Seismic loading is expressed by means of response spectrum compatible accelerograms obtained from the site 
specifications. Consequently, the device is sized with the proposed performance-based approach. The results 
of the analysis are here presented and discussed in general terms.



4.1 Definition of the design case and seismic inputs

The dynamic loading, as defined in the analytical 2DOF model, is applied through a story of base ground 
accelerations . Natural response spectrum compatible accelerograms (Table 1) are generated by the software 𝑥𝑔
REXEL v3.5 [37] on the basis of two target spectra, one for the SLS and one for the ULS. Seven accelerograms 
that provide a mean spectrum close to the code design response spectrum (within the upper limit of +30% and 
lower limit of -10%) are selected for both cases. As design case, the superstructure is supposed to have the 
features included in Table 1.

Table 1 Characteristics of the superstructure.
Parameter Symbol (unit) Value/Type
Mass  (kg)m 1500
Height of center of mass  (m)h 3.50
Fundamental vibration frequency  (Hz)fref 2.804
Fundamental vibration period  (s)Tref 0.357
Stiffness  (kN/m)k 466
Damping ratio ξ 0.01
Design working life category 4
Location Castelnuovo di Garfagnana, Italy 
Coordinates 44°07′19″N 10°24′20″E
Site class B 
Max pseudo-acceleration  (m/s2)ag,max 2.27
Peak Ground Acceleration  (m/s2)PGA 0.93

Accelerograms of Table 2 are selected and scaled according to site and superstructure specification. Each of 
them is limited on a duration of . The characteristics of TROCKSISD are initially assumed as per Table 3, 30 s
where the parameters are assumed by traditional experimental values. For more exact results, for instance 
referring to dynamic and static friction coefficients, some innovative experimental techniques are presented in 
[38]].

Table 2 Selected ULS and SLS natural response spectra compatible accelerograms.
Accelerograms Earthquake 

name
Date Mw PGA

[m/s2]
Accelerograms Earthquake 

name
Date Mw PGA

S1 - ULS Gazli 17/05/76 6.7 6.038 S1 - SLS Friuli 
(aftershock)

15/09/76 6 2.136

S2 - ULS Bucharest 04/03/77 7.5 1.690 S2 - SLS Montenegro - 6.9 2.361
S3 - ULS Vrancea 30/05/90 6.9 0.373 S3 - SLS Campano 

Lucano
23/11/80 6.9 1.526

S4 - ULS Umbria 
Marche

26/09/97 6 0.185 S4 - SLS Umbria 
Marche

26/09/97 6 5.138

S5 - ULS Izmit 17/08/99 7.6 2.580 S5 - SLS Umbria 
Marche

26/09/97 6 0.897

S6 - ULS Izmit 
(aftershock)

13/09/99 5.8 0.3906 S6 - SLS South 
Iceland

17/06/00 6.5 2.038

S7 - ULS Izmit 
(aftershock)

13/09/99 5.8 0.3258 S7 - SLS South 
Iceland

17/06/00 6.5 4.678

Mean 6.6 3.436 Mean 6.4 2.682

Table 3 Input characteristics of the TROCKSISD.
Parameter Symbol 

(unit)
Value/Type

Mass of the device (approximated)  (kg)mb 600
Height of the upper plate  (m)Δh 0.255
Angular sliding stroke  (°)Δφ 5
Static friction coefficient μs 0.18
Dynamic friction coefficient μ𝑑 0.09



4.2 Design at SLS

The vertical loading, from which the tribological moment (Section 2) is derived, is obtained from the total 
mass of the system that is . To limit the dimension of the TROCKSISD, an upper limit of m + mb = 2100 kg
the diameter of the spherical cup base circle may be imposed. In the present case such value is arbitrarily 
selected to be . The best value for the angle that can be found by plotting parametrically  Dmax = 1300mm
Eq.(34) (Figure 14) is φ0 = 72°.

Figure 14 Case study design of the TROCKSISD at SLS.

Therefore, it can be consequently obtained:

 ;  φ = φ0 ‒ Δφ = 67° R = 1664 mm (38)

To be on the safe side the final value  is adopted. Based on the radius value found R, the R =  1685 mm
following variables can be updated:

 ; h = 2.204 m mb = 1019 kg (39)

4.3 Modal analysis and design at ULS

The eigenvalue problem solved parametrically by varying the rotational stiffness  yields the periods kα
represented in Figure 15a. It can be observed that for higher values , the second period  tend towards kα T2
zero, while contemporarily the first period  asymptotically approaches the value of  (dash-dot line in T1 Tref
Figure 15a), which is the period of the superstructure considered as SDOF. This result confirms the accuracy 
of the analytical model because the larger is the stiffness, the closer to a rigidly connected basement results 
TROCKSISD.

Rescaling Figure 15a, the variables are plotted in Figure 15b in a more interesting  range of values (kα
). Hence, the first period  is within the values of more than  and less than . This 100 ‒ 1000 kN m T1 0.6 s 2.0 s

guarantees a high isolation level for the superstructure that otherwise would have been submitted to the 
maximum acceleration level (at the plateau of the response spectra for ). In the same range,  Tref = 0.357s T2
is approximately constant. The optimal value of , and similarly of , is such that the seismic loading is T1 kα
lowered but the displacement demand can still be met by the components.

In the range of interest, the modal mass associated with the first mode of vibration  is clearly prevalent kα M1
with respect to  and represents about the 90% of the dynamic mass of the system. Assuming e.g. M2 kα

, the following modal shapes are obtained:= 500kNm



 ; ,{Φ1} = { ‒ 0.0239
‒ 0.0089} {Φ2} = { + 0.0097

‒ 0.0219} (40)

displayed in Figure 16-Figure 17.

(a) (b)

Figure 15 Periods of vibration  and  in the range of  (a) and of T1 T2 kφ = 0 ‒ 100000 kNm kφ
 (b).= 100 ‒ 1000 kNm

Figure 16 Modal masses M1 and M2 in the range of 100-1000 kN m.kφ =

The optimal values of both mechanical parameters  and  can be found from the displacement spectra of kφ cφ
the second Langrangian parameter , obtained by solving the numerical problem (Eq.(24)) with the (seven) α
selected seismic records. Parametrically varying the stiffness , the superstructure presents different periods. kφ
At each step in the period range of interest ( , Figure 15b), two significant values from the T1 = 0.7 ‒ 1.9s
rotation time-history are considered:

- their absolute maximum , selected among the maximum absolute rotation values of all the seismic 𝛼𝑚𝑎𝑥
records (and therefore referred to an individual acceleration time-history);

- their mean value : the maximum absolute rotation value is selected for each acceleration time-𝛼𝑚𝑎𝑥
history, and from these seven values the mean value is derived.

These values are plotted respectively in Figure 18a, obtaining a classic displacement spectrum of , and 𝛼𝑚𝑎𝑥
Figure 18b, a displacement spectrum of mean values .  In these graphs, the spectra have been evaluated 𝛼𝑚𝑎𝑥
for several values of the rotational damping ratio  (0.00; 0.05; 0.08; 0.10).ξφ



(a) (b)
Figure 17 Modal shapes of vibration for  (measures in m): (a) fist mode ; (b) second mode kφ = 500 kNm Φ1

.Φ2

(a) (b)

Figure 18 Displacement spectra for several values of the rotational damping ratio  in the period range ξφ
 : absolute maximum rotation  (a) and mean of the maximum rotations  (b).T1 = 0.7 ‒ 1.9s 𝛼𝑚𝑎𝑥 𝛼𝑚𝑎𝑥

As expected, rotations usually increase with the period, so highly isolated structures are also more demanding 
in terms of displacement capacity. Curves in Figure 18b  appear concentric with a monotonic trend for lower 
periods and almost constant value for periods greater than . On the other hand, in Figure 18a rotations 1.1 s
show a monotonic growth in the monitored range of periods with some fluctuations and a localized peak around 
the period  probably due to resonance. In undamped conditions ( ) these phenomena are T = 1.0 s ξφ = 0
emphasized; while it is definitely less relevant whether the damping ratio is greater than . This underlines 0.05
the importance to put viscous elastic components into TROCKSISD. Acceptable rotation values are assumed 
to be the following:

𝛼𝑙𝑖𝑚 = 2.0° (41)



αlim = 3.5°

values that are well within the angular sliding stroke limit  (previous Table 3). The assumed limit Δφ =  5°
rotations are displayed as dash-dotted lines in Figure 18. To meet these specific design objectives, the first 
period of the system could be selected as , yielding the value of in-plane rotational stiffness ofT1 = 1.4 s

kα = 200 kNm (42)

Moreover, the damping ratio that all the viscous elastic components have to score should be in the range of

ξφ = 0.08 ‒ 0.10 (43)

identified by purple and red lines in Figure 18.

5 Influence of friction on TROCKSISD performances 

The role of friction has three purposes: to prevent the rocking mechanism at SLS (as investigated in Section 
4), to dissipate energy at the ULS (discussed later in 6.3) and to limit the rotations. The parametric analysis 
performed in this Section has the aim of discussing the latter aspect. It appears clear that if friction is 
suppressed, the reactive role could be only played by the viscous elastic dampers. Therefore, to obtain a 
frictionless displacement spectrum that matches the original spectrum (where friction contribution is present), 
the damping capacity of these components is varied. For easy reference, the same geometric and mechanical 
parameters used in the previous section are employed. The friction coefficient is set on the  (μs = 0.18 μd

) or alternatively on . In the first case, the rotational damping ratio is , in = 0.09 μ = μs = μd = 0.00 ξφ = 0.08
the second it varies from  to . ξφ = 0.08 ξφ = 0.25

The displacement spectra of absolute maximum rotations  and mean value of the maximum rotations  𝛼𝑚𝑎𝑥 𝛼𝑚𝑎𝑥
are reported in Figure 19. The curves exhibit some peaks due to resonance phenomena, which, as in previous 
cases (Figure 18), flatten when damping increases. With respect to the reference case-study curve ( ; μs = 0.18

), both mean and absolute maximum rotations are magnified along the entire monitored spectrum if ξφ = 0.08
the friction is suppressed and dampers with same characteristics are adopted. Increasing the damping ratio, for 
values of periods smaller than  the curves tend to approach the reference curve. For larger periods the 1.0 s
curves diverge, and, while the reference curve tends to be constant, the frictionless curves are monotonically 
growing. To guarantee performances which are similar to those of a tribological device at least for lower 
periods, the viscous damping capacity should increase substantially, bringing to larger devices that may also 
impair the feasibility of the device. 

(a) (b)

Figure 19 Displacement spectra for several values of the rotational damping ratio  in the period range ξφ
 with and without friction: absolute maximum rotation  (a) and mean of the T1 = 0.7 ‒ 1.9 s 𝛼𝑚𝑎𝑥

maximum rotations  (b).𝛼𝑚𝑎𝑥



For the case under examination, one would need of a value of damping ratio of about 20-25% to attain similar 
rotations reached for the case with friction (Figure 19). Consequently, the contribution of friction is 
fundamental both in the dynamic behavior to minimize the displacement and to increase the dissipative 
capacity, as well as in the economy of the device itself.

Displacement spectra are reported in Figure 19 for the case of concomitant zerofriction ( ) μ = μs = μd = 0.00
and damping ratio ( ). In addition, the case  of the solely presence of friction ( ; ) ξφ = 0.00 μs = 0.18 μd = 0.09
with null damping ratio ( ) is investigated, to simulate the only presence of friction. In the first case, ξφ = 0.00
the rotations (both  and ) appear similar to the  curves of Figure 19, confirming the main 𝛼𝑚𝑎𝑥 𝛼𝑚𝑎𝑥 ξφ = 0.08
role of friction in the dynamics of TROCKSISD. On the other hand, the frictionless curves in  Figure 20(

) show slightly smaller rotations with respect to the corresponding curves (μ = 0.00, ξφ = 0.00 μ = 0.00, ξφ
) in Figure 19. However, a device without damping and friction would have no dissipative features. = 0.08

The curves with zero damping and friction diverse from zero ( , Figure 20), have similar μ = 0.18, ξφ = 0.00
values of maximum rotations with respect to the case  (Figure 19), demonstrating that the μ = 0.18, ξφ = 0.08
amount of damping ratio 8% does not sensitively influence the maximum displacements. 

(a) (b)

Figure 20 Displacement spectra for null rotational damping ratio   in the period range ξφ = 0 T1
 with and without friction: absolute maximum rotation  (a) and mean of the maximum = 0.7 ‒ 1.9 s 𝛼𝑚𝑎𝑥

rotations  (b).𝛼𝑚𝑎𝑥

6 Analysis results and discussion

The results of the dynamic analyses both at the SLS and at the ULS are collected in this section. The 
displacement time histories of both DOFs of the system under some significant natural accelerogram are 
reported. The results of the superstructure translational DOF at the ULS are compared with the response of a 
not-isolated Reference SDOF oscillator (ROS) with same geometric and dynamic properties.

6. 1 SLS dynamic response

For the present level of actions, friction substantially prevents the sliding of the base surfaces, namely the 
second DOF  of the system is blocked. Figure 21 shows for the accelerograms S3 and S7 the displacement 𝛼
time-history of the two DOFs, x translational of the superstructure and α rotational of the jointed mechanism. 
Table 4 summarizes the resulting maximum values. Concerning the first DOF, horizontal displacement is not 
larger than , a value for which the superstructure is designed to behave elastically. 11 mm

As evidenced by the second DOF plots, the dynamics is characterized by a prevailing stick phase; although 
some residual rotations still occur (Figure 21b). The reason is that the single accelerogram approximates the 
code spectrum, so some points inevitably generate larger actions. Rotations are indeed instantaneous and 
correspond to a specific acceleration local peak. However, despite its irreversibility, the magnitude of such 



rotation is small and tolerable. The absolute maximum of the rotation occurs at S2 ( ), while the mean α = 0.14°
value of all data is . The residual rotation is even smaller ( ; ) because the α = 0.07° αr = 0.08° αr = 0.03°
periodic nature of seismic action helps the system to re-center.

 
Figure 21 SLS dynamic response for S1 and S7 seismic records (in black the input record, in blue the 

horizontal displacement time-history, in red the rotation time-history).

Table 4 Main result of the dynamic analysis at the SLS: maximum values of horizontal displacement (x), 
rotation ( , and residual rotation at the end of motion .𝛼) 𝛼𝑟

Accelerogram  (mm)x  (°)α  (°)αr

S1 9 0.06 0.06
S2 11 0.14 0.08
S3 7 0.00 0.00
S4 7 0.00 0.00
S5 9 0.09 0.02
S6 9 0.06 0.01
S7 9 0.12 0.02

Max 11 0.14 0.08
Mean 9 0.07 0.03

6.2 ULS dynamic response

The dynamic response can be evaluated at the ULS for the considered acceleration time-histories. For the sake 
of brevity, only the outcomes of some analyses are reported, e.g. for S4 and S7 seismic record, shown in Figure 
23. To immediately compare the response of the isolated system, the results concerning the first DOF are 
plotted together with those of the reference SDOF oscillator (ROS) schematically reported in Figure 22.



Figure 22 Not-isolated reference SDOF oscillator (ROS).

 
Figure 23 ULS dynamic response for S4 and S7 seismic inputs.

The first plot depicts the absolute horizontal displacement of both systems. As usual for isolated system, the 
superstructure equipped with TROCKSISD exhibits larger displacement than the ROS.



In the second plot the ROS curve is compared with the relative displacement of the superstructure mass , xrel
where the horizontal displacement due to rotations at the second DOF is deducted from the absolute value.

𝑥𝑟𝑒𝑙 = x ‒ hα (44)

The third plot that concerns the oscillations of the second rotational DOF shows the presence of a slip-stick 
motion with incipient motion phases included. Residual rotations occur at the end of each acceleration story. 
Their magnitudes, as in the SLS case, are relatively reduced, if compared with the maximum rotations.

The maximum values of displacement and rotation are reported in Table 5. In all cases, the rotation values are 
close to the limitation imposed in the design phase of  for the absolute maximum and  for the mean of 3.5° 2.0°
maximum values. Concerning the translation of the first DOF,  values are meanly three times larger than xmax
these of  in terms of absolute values, or at least more than two times larger for the mean value (  vs. xROS 38 mm

). This result is consistent with the strategy adopted of shifting the  period towards higher values in 90 mm T1
order to gain from a reduced level of accelerations but paying with increased displacement. Nevertheless, it is 
interesting to observe that the relative displacement is about the 30% of the . This outcome has two xROS
implications. First, the second DOF becomes successfully prevalent in the dynamics of the system, contrary to 
what might be thought from the mass participation in the modal analysis (Figure 16). Second, the 
superstructure equipped with TROCKSISD is less stressed than the ROS, since the inertial forces generated at 
the lumped mass m level, produce displacement  and  respectively, which result smaller in the first xrel xROS
case rather than in the second one.

Table 5 Main result of the dynamic analysis at the ULS: maximum values of horizontal displacement of 
ROS ( ), absolute and relative horizontal displacement of the superstructure (x, ) rotation ( , and 𝑥𝑅𝑂𝑆 𝑥𝑟𝑒𝑙 𝛼)

residual rotation at the end of motion .𝛼𝑟

Accelerogram  (mm)xROS  (mm)x (x ‒ xROS)/x  (mm)xrel (𝑥𝑟𝑒𝑙 ‒ 𝑥𝑅𝑂𝑆)/𝑥𝑟𝑒𝑙  (°)α  (°)αr

S1 36 31 -16% 9 -300% 0.68 0.08
S2 40 147 73% 15 -167% 3.51 0.19
S3 27 107 75% 12 -125% 2.53 0.20
S4 49 64 23% 11 -345% 1.43 -
S5 30 61 51% 11 -173% 1.34 0.19
S6 28 69 59% 10 -180% 1.55 0.21
S7 55 151 64% 15 -267% 3.56 0.33

Max 55 151 64% 15 -267% 3.56 0.33
Mean 38 90 58% 12 -217% 2.09 0.20

6.3 Energy dissipation

The energy dissipated can be regarded as the area delimited by the hysteresis loop , where  is the M ‒ α M
loading bending moment and  is the rotational DOF. Particularly,  is the sum of three contributions α M
(qualitatively represented in Figure 24): 

- Elastic moment:  Mk = kφ α
- Viscous moment: 𝑀𝑐 = cφα
- Tribological moment: Mμ = Mμ, d



Figure 24 Qualitative hysteresis cycles of the three contributions of moment.

The hysteresis cycles obtained from the accelerograms S1 to S7 are represented in Figure 25. Despite the 
viscous capacity of dampers constitutes a non-negligible contribution in the dynamic motion of the system, 
from the energetic point of view the viscosity alters only slightly the area. Each cycle plot approximates a 
parallelogram, as the system is only elastic-frictionally isolated. To highlight this feature, in Figure 26, the 
curve with the only  component is graphically compared with the total M curve for S4 and S7 Mk + Mμ
accelerograms. Since no damage occurs during the motion of the system, the non-degrading behavior exhibited 
by curves in Figure 26 appears accordingly reasonable. 

Figure 25 Hysteresis cycles  of all the accelerograms S1 to S7.M ‒ α

Figure 26 Hysteresis cycles M-α of selected accelerograms S4 and S7 in comparison with the  Mk + Mμ
component cycles.



7. Comparison between TROCKSISD and existing seismic isolation devices

Most of the traditional seismic isolation devices exhibit a purely translational dynamics (shear behavior), 
whereas TROCKSISD is based on a rocking motion that reduces the seismic demand of the superstructure. 
Even in the double concave surface sliders, the rotational dynamics eases the re-centering of the system once 
that the seismic input vanishes. However, unlike the inverted pendulum devices, TROCKSISD allows a 
relevant energy dissipation, due to (i) the presence of peripheral dampers and to (ii) the development of friction 
at the interface of the curved surfaces. Such a coupling of energy dissipation systems permits a reduction of 
the isolator size, aspect relevant in the preservation of artistic assets. Moreover, with respect to existing 
isolation devices, the polar symmetrical arrangement of the springs allows efficiently absorbing the vertical 
components of the dynamic motion.  

In conclusion, the following phenomena occur with the use of TROCKSISD as seismic mitigation device:

- rocking mechanism not impeded, but allowed and controlled;
- automatic re-centering of the system thanks to the springs, with their circumferential and peripheral 

disposition to avoid undesired torsional motions and reducing the device size; 
- relevant contribution of friction between the two spherical caps in the seismic energy dissipation; 
- high energy dissipation level thanks to the rotational dynamics of the system; 
- possibility of 3D rocking thanks to the polar symmetrical arrangement of the visco-elastic dampers. 

8. Conclusions and future developments

The Tribological ROCKing Seismic ISolation Device (TROCKSISD) can provide seismic protection of 
slender structures and valuable objects such as artistic or historic assets (altars, statues, art objects, etc.). It is 
based on the development of friction at the interface of a jointed mechanism that allows smooth rocking of the 
superstructure in a frictional model. Energy dissipation as well as re-centering capability are provided by 
perimetral viscous elastic dampers and springs. The reactive static friction force can be designed to delimit 
two types of dynamic behavior of prevalent stick phase (at SLS) and of mixed slip-stick phase (at ULS), leading 
to a performance-based designed geometry and mechanics.

The behavior of a system equipped with such a device has been described by means of a simple 2DOFs 
analytical model, where the superstructure is essentially regarded as a simple oscillator with translational DOF. 
Based on the performances obtained from the simulations, the following concluding remarks can be drawn. 

- A performance-based design approach is feasible, and it has been demonstrated with the case study 
presented, where the target rotations are met. At the SLS, rocking is substantially prevented, and, at 
the ULS, rotations occur within pre-fixed designed limits.

- The radius of the spherical cup defines the threshold of the incipient motion, which separate stick from 
slip motions. This design specification usually results in large radius so that the vertical and horizontal 
loading is easily transferred through the device without peaking the strength limit of the components. 
So generally, it can be asserted that the statics is not governing the problem as long as the radius is 
defined for the dynamics of the system.

- The amplitude of rotations at ULS are influenced by the mechanical characteristics of the dampers  kφ
and , supposing constant the contribution of friction, whose tribological moment is derivable once ξφ
designed the radius at the SLS. 

- Friction constitutes a substantial contribution in impeding the rocking mechanism at SLS, reducing 
the rotations and dissipates energy at ULS. In terms of rotations, similar performances with a 
frictionless device can be achieved only with larger dampers, which are more expensive and, due to 
their size, may also impair the overall feasibility.

- At the ULS the absolute horizontal displacement of the lumped mass of the superstructure is larger if 
compared with the reference conventional ductile system, but, its relative displacement is rather 



smaller, so the resulting stress on the superstructure is lowered. The jointed mechanism allows all the 
relative movements between the parts.

- Concerning isolation capabilities, two comments can be raised. First, the relative displacement of the 
superstructure at the ULS results smaller and close enough to the SLS displacement, despite the , PGA
going from SLS to ULS, is usually doubling. The superstructure can indeed be designed to behave 
elastically at the isolated-ULS and so that can it will not report any damage. Second, the hysteresis 
plot shows that a large amount of energy can be dissipated through a non-degrading cyclic behavior, 
essentially due to friction. Friction developed for smooth contact of the sliding surfaces provides 
continuous energy dissipation and avoids undesired impacts (which in the case of stepping structures 
led to a degradation of the surfaces).

From the previous statements, it is clear that TROCKSISD follows DAD principles. Both the superstructure 
and the jointed device result undamaged after motion. The residual rotations at ULS shall be reversed once the 
excitation stops, guaranteeing immediate post-event serviceability. The device meets both the objectives of 
energy dissipation and control of displacements.

Further research is needed in the extension of the study to a more detailed model, e.g. the P-Delta effects 
generating by the rocking superstructure, and other design scenarios. The three-dimensional nature of loading 
and structural response, especially that related with the superstructure, would require a complete consideration 
of the spatial behavior. Moreover, experiments are going to be performed by the authors to confirm the 
analytical results.
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