Glass exhibits brittle failure behavior. Therefore, redundancy is a fundamental design requirement when using glass as a main structural material. On this basis, a novel structural concept has been developed for hybrid glass-steel posttensioned triangulated structures, where the two materials collaborate. In forming such lattice structure, local fracture must be avoided. This paper presents a parametric study that highlights the influences of mechanical and geometrical parameters on the in-plane and out-of-plane static behaviour of laminated triangular glass panels. The resulting data set constitutes a useful source for the designer to select the most appropriate component. The main sensitivity parameters are panel length, laminate thickness, and interlayer stiffness.