Global Non-Rigid Alignment

 Benedict J. BrownKatholieke Universiteit Leuven

3-D Scanning Pipeline

- Acquisition

Scanners acquire data from a single viewpoint

3-D Scanning Pipeline

- Acquisition
- Alignment

3-D Scanning Pipeline

- Acquisition
- Alignment
- Merging

Iterative Closest Points [Bes/92]

- To fit two meshes, need correspondence between points
- Assume points correspond to closest points on other mesh
- Compute best fit on a subset of all points

Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
- Assume points correspond to closest points on other mesh
- Compute best fit on a subset of all points
- If starting point was good, result should be better

Iterative Closest Points [Besl92]

- To fit two meshes, need correspondence between points
- Assume points correspond to closest points on other mesh
- Compute best fit on a subset of all points
- If starting point was good, result should be better
- Iterate until fit converges to minimum error

Range Scanning: Calibration Error

Range Scanning: Calibration Error

$\square \mathrm{mm} \quad 2 \mathrm{~mm}$

Range Scanning: Calibration Error

Mechanical Distortion

Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging

Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly

Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly
- Preserve detail without introducing new warp

Goal: Multi-Scan Non-Rigid Alignment

We desire an algorithm that will:

- Prevent artifacts in merging
- Distribute error evenly
- Preserve detail without introducing new warp
- Be practical, efficient, and parallelizable for large datasets

David's head comprises 1400 scans and 230 million vertices

Global Alignment Pipeline

Pairwise Correspondences

Global Alignment Pipeline

Pairwise Correspondences

Global Alignment Pipeline

Pairwise Correspondences

Global Alignment Pipeline

Pairwise Correspondences

Global Feature Positioning

Global Alignment Pipeline

Pairwise Correspondences

Global Feature Positioning

Global Alignment Pipeline

Global Alignment Pipeline

Results: David's Head

- 1400 range scans
- 230 million points

Correspondences

- 78 hours CPU time
- 1.5 hours wall time

Positioning and Alignment

- 30 minutes CPU time

Results: David's Head

Results: David's Head

Results: David's Head

Results: Awakening

Rigid

1836 scans, 390 million vertices Correspondences: 51.5 CPU hours Alignment: 1 CPU hour

Results: Awakening

Non-Rigid

1836 scans, 390 million vertices Correspondences: 51.5 CPU hours Alignment: 1 CPU hour

Results: Forma Urbis Romae \#033

Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Results: Forma Urbis Romae \#033

Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Results: Forma Urbis Romae \#033

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Results: Forma Urbis Romae \#033

Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Results: Forma Urbis Romae \#033

Non-Rigid

140 scans, 71 million vertices; Correspondences: 48 hours; Alignment: 27 minutes

Summary

- Consistently align all pairs of scans to each other
- Scalability: never more than two scans in memory
- Compensates for calibration error and slight deformations
- Supports rigid alignment too: just restrict to rigid transforms
- Code: www.cs.princeton.edu/~bjbrown

