SIGGRAPH2009

Computation & Cultural Heritage: Fundamentals and Applications

N ORLEANS

Pitfalls and deficiencies in the use of 3D acquisition techniques

> Paolo Cignoni ISTI - CNR

Wednesday, August 19, 2009

Cultural Heritage world

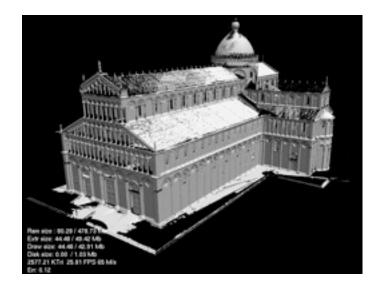
A whole different world

- Rich, vibrant, full of history, traditions, and culture and definitely with a strong appeal
- Fascinating, even if not economically rich

2

So, what could go wrong?

- Different Worlds -> different language
 - CH institutions speak a different language
 - Easy to create wrong expectation/misunderstanding etc.
 - Both sides has their own responsibilities

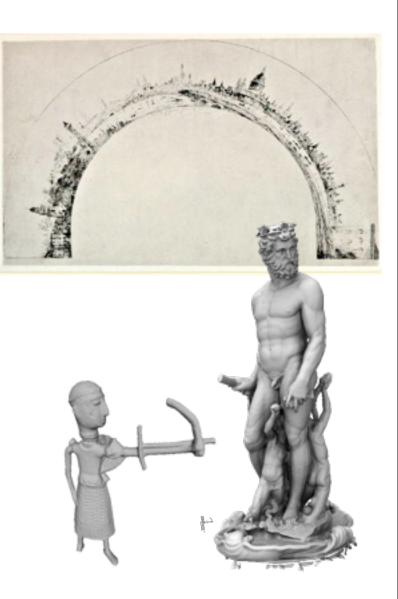


3

Misuse and Pitfalls of Non Technicians

Wrong Expectations:

 Modeled vs acquired misunderstanding



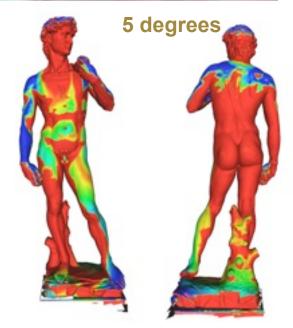
Cignoni – Computation & CH

Wednesday, August 19, 2009

Misuse and Pitfalls of Non Technicians

- Wrong Expectations
- Knowledge of the limits of the technologies
 - 3D vs panorama
 - Size vs error requirements
 - Completeness vs authenticity

Misuse and Pitfalls of Non Technicians


- Wrong Expectations
- Knowledge of the limits of the technologies
- Evaluation of results
 - How good, respectful, accurate, usable is the returned model?

Misuse and Pitfalls of Non Technicians

- Wrong Expectations:
- Knowledge of the limits of the technologies
- Evaluation of results
- Exploitation of results
 - Use the data!
 - Presenting
 - Documenting
 - Analysis
 - Support to restoration
 - Spread the data

Misuse and Pitfalls of the Technicians

- Wrong choice and use of the hardware
 - Many different technologies, just a few example
 - Laser or structured light, Triangulation
 - Laser, Time of flight
 - Photogrammetric techniques

Misuse and Pitfalls of Technicians

- Wrong choice of HW
- Wrong way of processing
 - There is a huge arsenal of mesh processing algorithms that can help you to make your data to look better.
 - Not everything is safe from a CH documentation point of view.

Misuse and Pitfalls of Technicians

- Wrong choice of HW
- Wrong way of processing
- Wrong way of presenting
 - Nice movies vs true data
 - Both of them is not impossible

Misuse and Pitfalls of Technicians

- Wrong choice of HW
- Wrong way of processing
- Wrong way of presenting
- Wrong way of preserving
 - Long term preservation of data
 - Formats, applications?
 - Standards

Technicians' duties 3D processing in CH

- An example and some considerations
- There is a huge arsenal of mesh processing algorithms that can help you to make your data to look better.
- Not everything is safe from a CH documentation point of view.

 When processing 3D scanned data is easy to create new data

- When processing 3D scanned data is easy to create new data
- Noise reduction/surface fitting techniques nicely fill and interpolate.
 - Too nicely sometimes.

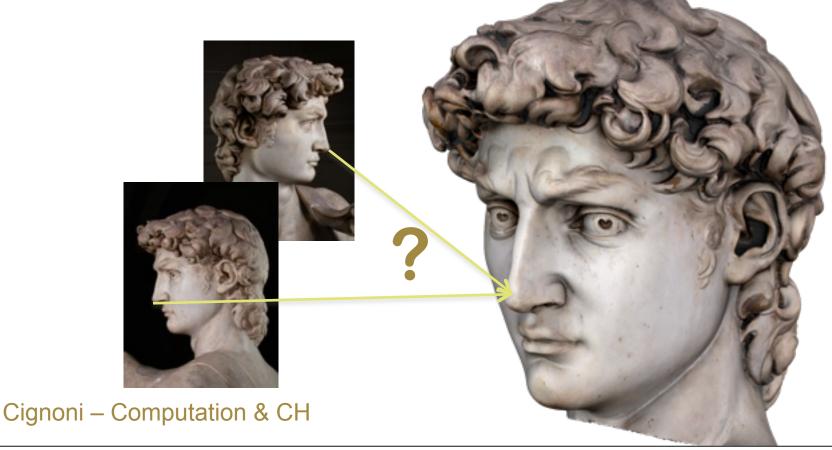
- When processing 3D scanned data is easy to create new data
- Noise reduction/surface fitting techniques nicely fill and interpolate.
 - Too nicely sometimes.

- When processing 3D scanned data is easy to create new data
- Noise reduction/surface fitting techniques nicely fill and interpolate.
 - Too nicely sometimes.
- For this case it was easy to understand what is good.
 - Hausdorff distance between original data and surface.
 - Discard anything farther than half of the scanning acquisition error

- When processing 3D scanned data is easy to create new data
- Noise reduction/surface fitting techniques nicely fill and interpolate.
 - Too nicely sometimes.
- For this case it was easy to understand what is good.
 - Hausdorff distance between original data and surface.
 - Discard anything farther than half of the scanning acquisition error

Technicians' duties Provenance Issues

Pipeline processing can be long and complex:


- What data has produced what?
- What is the confidence of the final data?
- How far is the final mesh different from the "original" data?

14

- Have we added anything "new"?
- Retaining provenance data
 - the origin, or the source, or the history of the ownership or location of an object.

Technicians' duties Provenance issues

 What images contributed to build this model (or this texel?)

15

Wednesday, August 19, 2009

Technicians' duties Recording and preserving Data

- Long Term Preservation
- CH data should live for a loooong time.
 - Open format
 - Avoid closed formats!
 - Open tools for processing
 - Even the processing should be done (if possible) with open tools
 - Easier to achieve long term repeatability of the process

16

- (if someone has documented it)

Technicians' faults

Reasons:

most errors caused by non deep knowledge of the specific CH field

- Gross ignorance
 - You miss to exploit all the potentialities due to the fact that you ignore something
 - What is the important stuff of this object
- Lack of respect
 - Original data should be sacred
 - (Whatever it means!)

Conclusions

- Lot of fruitful interactions between 3D and CH
- Be respectful
 - pay attention to data origin, history, and evolution
- Be open and verbose
 - In data, use open formats and tools
- Final Note: Most of the shown mesh processing tasks were accomplished using MeshLab an open source, portable, mesh processing system:

http://www.meshlab.org

Cignoni – Computation & CH

18