Fondamenti di Grafica Tridimensionale

Paolo Cignoni

p.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni

1

Incremental methods based on local updates

- ❖ All of the methods such that :
 - simplification proceeds as a sequence of *local* updates
 - * each update reduces mesh size and [monotonically] **decreases** the approximation precision
- Different approaches:
 - mesh decimation
 - energy function optimization
 - quadric error metrics

3

Simplification Algorithms

❖Simplification approaches:

incremental methods based on local updates

mesh decimation

[Schroeder et al. 92]

energy function optimization

[Hoppe et al. 93,96,97]

quadric error metrics

[Garland et al. '97]

coplanar facets merging

[Hinker et al. `93, Kalvin et al. `96]

❖ Re-tiling

◆ [Turk `92]

Clustering

[Rossignac et al. '93, ... + others]

❖ Wavelet-based

❖[Eck et al. `95, + others]

2

... Incremental methods based on local updates ...

Local update actions:

vertex removal

No. Faces

◆edge collapse

- preserve location
- new location

*triangle collapse

- preserve location
- new location

... Incremental methods based on local updates ...

The common framework:

♦ loop

- *select the element to be deleted/collapsed;
- evaluate approximation introduced;
- •update the mesh after deletion/collapse;

until mesh size/precision is satisfactory;

5

... Energy function optimization: Mesh Optimization ...

approximation quality evalued with an energy function :

$$E(M) = E_{dist}(M) + E_{rep}(M) + E_{spring}(M)$$

which evaluates geometric **fitness** and repr. **compactness**

 $\boldsymbol{E}_{\text{dist}}$: sum of squared distances of the original points from M

E_{rep}: factor proportional to the no. of vertex in M

 $\mathbf{E}_{\mathsf{spring}}$: sum of the edge lenghts

Energy function optimization

Mesh Optimization

[Hoppe et al. `93]

- Simplification based on the iterative execution of :
 - · edge collapsing
 - edge split
 - edge swap

6

... Energy function optimization: Mesh Optimization ...

Algorithm structure

- outer minimization cicle (discrete optimiz. probl.)
 - choose a legal action (edge collapse, swap, split) which reduces the energy function
 - $\ \ \, \ \ \,$ perform the action and update the mesh (M_ $\ \ \, \ \ \,$ -> M $_{_{l+1}})$
- ❖ inner minimization cicle (*continuous* optimiz. probl.)
 - $\boldsymbol{\div}$ optimize the vertex positions of $\,M_{\,\,_{i+1}}$ with respect to the initial mesh $\,M_{_{0}}$

but (to reduce complexity)

- $\ensuremath{\raisebox{.1ex}{$\raisebox{3.5pt}{\raisebox{3.5pt}{$\raisebox{3.5pt}{\raisebox{3.5pt}{$\raisebox{3.5pt}{$\raisebox{3.5pt}{\raisebox{3.5pt}{\raisebox$
- inner minimization is solved in a fixed number of iterations

... Energy function optimization: Mesh Optimization ...

Mesh Optimization - Examples

[Image by Hoppe et al.]

... Energy function optimization: Progressive Meshes

Progressive Meshes
[Hoppe `96]

- execute edge collapsing only to reduce the energy function
- edge collapsing can be easily inverted ==> store sequence of inverse vertex split transformations to support:
 - multiresolution
 - progressive transmission
 - selective refinements
 - geomorphs

11

faster than MeshOptim.

... Energy function optimization: Mesh Optimization ...

Mesh Optimization - Evaluation

- high quality of the results
- preserves topology, re-sample vertices
- high processing times
- not easy to implement
- not easy to use (selection of tuning parameters)
- adopts a global error evaluation, but the resulting approximation is not bounded

10

... Energy function optimization: **Progressive Meshes**

...

Preserving mesh appearance

- shape and crease edges
- scalar fields discontinuities
 (e.g. color, normals)
- discontinuity curves

[image by H. Hoppe]

Managed by inserting two new components in the *energy function*:

- $\boldsymbol{\diamondsuit} \;\; \boldsymbol{E}_{\text{scalar}} \boldsymbol{:} \; \boldsymbol{measures} \; \boldsymbol{the} \; \boldsymbol{accuracy} \; \boldsymbol{of} \; \boldsymbol{scalar} \; \boldsymbol{attributes}$
- $\ \, \stackrel{\ \, }{\bullet} \ \, E_{\text{disc}} \colon$ measure the geometric accuracy of discontinuity curves

... Energy function optimization: Progressive Meshes

Progressive Meshes Examples

(a) Base mesh M⁰ (150 faces) (b) Mesh M¹⁷⁵ (500 faces

13

Decimation

Mesh Decimation

[Schroeder et al'92]

- Based on controlled removal of vertices
- Classify vertices as removable or not (based on local topology / geometry and required precision)

Loop

- $\boldsymbol{\diamondsuit}$ delete $\boldsymbol{\textit{v}}_{\textit{i}}$ and the incident faces
- re-triangulate the hole

until

no more removable vertex **or** reduction rate fulfilled

15

... Energy function optimization: Progressive Meshes...

Progressive Meshes - Evaluation

- high quality of the results
- preserves topology, re-sample vertices
- not easy to implement
- not easy to use (selection of tuning parameters)
- $\ensuremath{^{\diamond}}$ adopts a global error evaluation, not-bounded approximation
- preserves vect/scalar attributes (e.g. color) discontinuities
- supports multiresolution output, geometric morphing, progressive transmission, selective refinements
- much faster than MeshOpt.

An implementation is present as parto of DirectX 6.0 tools

... Decimation ...

14

- *General method (manifold/non-manifold input)
- Algorithm phases:
 - *topologic classification of vertices
 - evaluation of the decimation criterion (error evaluation)
 - re-triangulation of the removed triangles patch

... Decimation ...

Topologic classification of vertices

➤ for each vertex: find and characterize the loop of incident faces

>interior edge: if dihedral angle between faces $< k_{angle}$

(Kangle: user driven parameter)

> not-removable vertices: complex, [corner]

17

... Decimation ...

(but star-shaped) Recursive 3D triangulation

Re-triangulation

- * face loops in general non planar!
- * adopts recursive loop splitting re-triangulation

control aspect ratio to ensure simplified mesh quality

- for each vertex removed:
 - ❖if simple or boundary vertex ==> 1 loop
 - ❖if interior edge vertex ==> 2 loops
 - ❖if boundary vertex ==> - 1 face
 - ◆otherwise ==> - 2 faces

Decimation criterion -- a vertex ... Decimation ...

is removable if:

*simple vertex:

if distance vertex - face loop average plane distance to plane is lower than ϵ_{max}

boundary / interior / corner vertices:

if distance vertex - new boundary/interior **edge** is lower than ϵ_{max}

d: distance to edg

- adopts local evaluation of the approximation!!
- * ϵ_{max} : value selected by the user

18

... Decimation...

Decimation - Examples

75% decimated (142K Gouraud shaded triangles)

75% decimated (142K flat shaded triangles)

90% decimated (57K flat shaded triangles)

(images by W. Lorensen)

20

... Decimation...

Original Mesh Decimation - Evaluation

- good efficiency (speed & reduction rate)
- simple implementation and use
- · good approximation
- preserves topology; vertices are a subset of the original ones
- error is not bounded (local evaluation ==> accumulation of error!!)

21

... Enhancing Decimation -- Error Evaluation...

Heuristics proposed for **global error evaluation**:

- accumulation of local errors [Ciampalini97] fast, but approximate
- vertex--to--simplified mesh distance

requires storing which of the original vertices maps to each simplified face; very near to exact value (but large under-estimation in the first steps)

23

Approximation Error Evaluation

Classification of simplification methods based on *approximation error* evaluation euristics:

 locally-bounded error, based on mesh distances
 [ex. standard Mesh Decimation]

globally bounded error, based on mesh distances

[ex. Envelopes + enhanced Decimation + others]

control based on mesh characteristics
 [ex. vertex proximity, mesh curvature]

energy function evaluation
[ex. Mesh Optim. , Progr. Meshes]

User' viewpoint:
- simple to grasp
- simple to drive

very handy

may be
misleading
not easy, many
parameters to be
selected

... Enhancing Decimation -- Error Evaluation...

- ... Heuristics proposed for **global error evaluation**:
- input mesh -- to -- simplified mesh edges distance [Ciampalini97]
 - for each internal edge:
 - ❖ select sampling points p_i (regularly/random)
 - evaluate distance d(M₀, p_i)

sufficiently precise and efficient in time $% \label{eq:continuous} % \begin{center} \end{center} \begin{center} \end{center}$

input mesh -- to -- simplified mesh distance [Klein96] precise, but more complex in time

• use envelopes [Cohen et al. 96] precise, no self-intersections but complex in time and to be implemented.

Enhancing Decimation -- Simplification Envelopes

Simplification Envelopes

[Cohen et al.'96]

- given the input mesh M
 - \diamond build two envelope meshes $\textit{M}_{\text{-}}$ and $\textit{M}_{\text{+}}$ at distance $-\emph{e}$ and $+\emph{e}$ from M ;
 - simplify M (following a decimation approach) by enforcing the decimation criterion:
 - a candidate vertex may be removed **only if** the new triangle patch does not intersect neither M_{-} or M_{+}

25

... Enhancing Decimation - Simplification Envelopes ...

Simplification Envelopes - Evaluation

- works on manifold surface only
- bounded approximation
- construction of envelopes and intersection tests are not cheap
- > three times more RAM (input mesh + envelopes + border tubes)
- preserve topology, vertices are a subset of the original, prevents self-intersection

available in public domain

... Enhancing Decimation - Simplification Envelopes ...

 by construction, envelopes do not self-intersect
 => simplified mesh is not self-intersecting!!

- distance between envelopes becomes smaller near the bending sections, and simplification harder
 - simplification harder
- border tubes are used to manage open boundaries

(drawing by A. \

26

... Enhancing Decimation -- Jade ...

Results

❖ Simplification times ~= linear with mesh size

Construction of a multiresolution model

... Enhancing Decimation -- Jade ...

Keep the *history* of the simplification process :

*when we remove a vertex we have **dead** and **newborn** triangles

*assign to each triangle t a **birth** error t_h and a death error t_d equal to the error of the simplified mesh just before the removal of the vertex that caused the birth/death of t

By storing the **simplification history** (faces+errors)

29

31

simply extract **any approximation level** in real time

Quadric Error Metrics

Simplification using Quadric Error Metrics

[Garland et al. Sig'97]

· Based on incremental edge-collapsing

... Enhancing Decimation -- Jade ...

Real-time resolution management

 \diamond by extracting from the **history** all the triangles t_i with $t_b <= \varepsilon < t_d$

we obtain a model M_{ϵ} which satisfies the approximation error ϵ

 mantaining the whole history data structure costs approximately 2.5x - 3x the full resolution model

... Quadric Error Metrics ...

Geometric error approximation is managed by simplifying an approach based on plane set distance [Ronfard,Rossignac96]

- ❖INIT: store for each vertex the set of incident planes
- ♦ Vertex_Collapsing $(v_1, v_2) = > v_{new}$
 - plane_set (v_{new}) = union of the two plane sets of v_1 , v_2
 - collapse only if v_{new} is not "farther" from its plane set than the selected target error &

criticism:

*storing plane sets and computing distances is not cheap!

Algorithm structure:

*select valid vertex pairs (upon their distance), insert them in an heap sorted upon minimum cost;

... Quadric Error Metrics ...

repeat

extract a valid pair v₁, v₂ from heap and contract into v_{new}; *re-compute the cost for all pairs which contain v₁ or v₂ and update the heap;

until sufficient reduction/approximation or heap empty

34

Error Heuristics

Quadric Error for Surfaces

- **❖** Let $\mathbf{n}^{\mathsf{T}}\mathbf{v} + d = 0$ be the equation representing a plane
- ❖The squared distance of a point x from the plane is

$$D(\mathbf{x}) = \mathbf{x}(\mathbf{n}\mathbf{n}^{\mathsf{T}})\mathbf{x} + 2d\mathbf{n}^{\mathsf{T}}\mathbf{x} + d^2$$

This distance can be represented as a quadric

$$Q = (A,b,c) = (\mathbf{n}\mathbf{n}^{\mathsf{T}},d\mathbf{n},d^2)$$
$$Q(\mathbf{x}) = \mathbf{x}A\mathbf{x} + 2\mathbf{b}^{\mathsf{T}}\mathbf{x} + c$$

Quadric Error Metrics solution:

- quadratic distances to planes represented with matrices plane sets merge via matrix sums
 - *very efficient evaluation of error via matrix operations

but

triangle size is taken into account only in an approximate manner (orientation only in Quadrics +

33

... Quadric Error Metrics ...

An example

- foot (4.204 faces).
- Original. Bones of a human's left
 Edge Contractions. 250 face approximation.
- Note the many separate bone segments.
 Bone segments at the ends of the toes have disappeared; the toes appear to be receding back into the foot.

Clustering. 262 face approximation.

[Images by Garland and Heckbert]

Quadric

- The boundary error is estimated by providing for each boundary vertex v a quadric Q_{ν} representing the sum of the all the squared distances from the faces incident in *v*
 - ❖The error of collapsing an edge e=(v,w) can be evaluated as $\dot{Q}_{w}(v)$.
 - ❖After the collapse the quadric of v is updated as follow $Q_v = Q_v + Q_w$

37

... Quadric Error Metrics Extension ...

Quadric can be extendeed to take into

- · color and texture attributes error are computed by projecting them in [Garland 98]
- by computing attribute error as the squared deviation between original value and the value interpolated [Hoppe 99]

Error

Domain Error

- The two dataset D and D' span different domains Ω , Ω'
- Same problem of classical surface simplification
- Measure the Hausdorff distance between the boundary surfaces of the two datasets D and D'

- Various techniques to approximate this distance between two surfaces [Ciampalini et al. 97]
- ٠
- ٠

38

... Quadric Error Metrics ...

Quadric Error Metrics -- Evaluation

- * iterative, incremental method
- · error is bounded
- allows topology simplification (aggregation of disconnected components)
- * results are very high quality and times incredibly short
- Various commercial packages use this technique (or variations)

Simplification Algorithms

Not-incremental methods:

coplanar facets merging [Hinker et al. '93, Kalvin et al. '96]

❖re-tiling

[Turk `92]

clustering [Rossignac et al. `93, ... + others]

❖wavelet-based

[Eck et al. `95]

41

43

... Coplanar Facets Merging...

Geometric Optimization -**Evaluation**

simple and efficient heuristic

*evaluation of approximation error is highly inaccurate and not bounded

(error depends on relative size of merged faces)

- vertices are a subset of the original
- * preserves geometric discontinuities (e.g. sharp edges) and topology

Coplanar Facets Merging

Geometric Optimization

- Construct nearly co-planar sets (comparing normals)
- Create edge list and remove duplicate edges
- * Remove colinear vertices
- * Triangulate resultant polygons

42

... Coplanar Facets Merging...

Superfaces

[Kalvin, Taylor

- group mesh faces in a set of superfaces:
 - \diamond iteratively choose a seed face f_i as the current superface Sf_i
 - $\ \, \ \, \text{find by propagation all faces adjacent to} \, f_i \ \, \text{whose} \\$ vertices are at distance e/2 from the mean plane to Sf_i and insert them in Sf_i
 - moreover, to be merged each face must have orientation similar to those of others in Sf_i
- straighten the superfaces border
- re-triangulate each superface

Superfaces - an example

 Simplification of a human skull (fitted isosurface), images courtesy of IBM

45

47

Re-tiling

Re-Tiling [Turk `92]

- Distribute a new set of vertices into the original triangular mesh (points positioned using repulsion/relaxation to allow optimal surface curvature representation)
- Remove (part of) the original vertices
- Use local re-triangulation

no info in the paper on time complexity!

Superfaces - Evaluation

- slightly more complex heuristics
- evaluation of approximation error is more accurate and bounded
- vertices are a subset of the original ones
- preserves geometric discontinuities (e.g. sharp edges) and topology

46

Clustering

Vertex Clustering

[Rossignac, Borrel `93]

- detect and unify clusters of nearby vertices (discrete gridding and coordinates truncation)
- all faces with two or three vertices in a cluster are removed
- does not preserve topology (faces may degenerate to edges, genus may change)
- $\ensuremath{\raisebox{.1em}{$^\circ$}}$ approximation depends on grid resolution

(figure by Rossignac)

Clustering -- Examples (1)

 Simplification of a table lamp, IBM 3D Interaction Accelerator,

courtesy IBM

10,108 facets 1,383 facets

474 facets

46 facets

... Clustering...

49

Clustering - Evaluation

- high efficiency (but timings are not reported in the paper)
- very simple implementation and use
- low quality approximations
- does not preserve topology
- error is bounded by the grid cell size

Clustering -- Examples (2)

 Simplification of a portion of Cluny Abbey, IBM 3D Interaction Accelerator, courtesy IBM

46,918 facets

6,181 facets

50

Wavelet methods

Multiresolution Analysis

[Eck et al. '95, Lounsbery'97]

- Based on the wavelet approach
 - simple base mesh
 - + local correction terms (wavelet coefficients)
- Given input mesh M:
 - **partition**: build a low resolution base mesh K_0 with tolerance \mathcal{E}_1
 - \diamond **parametrization**: for each face of K_0 build a parametrization on the corresponding faces of M
 - \diamond **resampling**: apply **j** recursive quaternary subdivision on K_0 to build by parametrization different approximations K_i

bounded error, compact multiresolution repr., mesh editing at multiple scales

... Wavelet methods Wavelet methods ...

Hoppe's experiment: comparative eval. of quality of multiresolution representation

Progressive Meshes

(a) M (12,946 faces)

es) (b) M⁷⁵ (200 faces)

(c) M⁴⁷⁵ (1,000 faces)

♦ Multiresolution Analysis

 $\epsilon = 2.75 \text{ (1,070 faces)}$ (f) $\epsilon = 0.1 \text{ (15,842)}$

E2

55

Preserving detail on simplified meshes

❖ Problem Statement :

how can we preserve in a *simplified* surface the **detail** (or **attribute value**) defined on the *original* surface ??

*What one would preserve:

- * color (per-vertex or texture-based)
- * small variations of shape curvature (bumps)
- scalar fields

Multires Signal Processing for Meshes

[Guskov, Swelden, Schroeder 99]

- Still the Partition, Parmetrization and Resampling approach but the original mesh connectivity is retained:
 - partition is done on the simplified mesh
 - use of a non-uniform relaxation procedure (instead of standard triangle quadrisection) that mimics the inverse simplification process
 - Possibility of using signal processing techniques on mesh (eg. Smoothing, detail enhancement...)

54

limage by courtesy of Guskov et al. 991

... Preserving detail on simplified meshes ...

Approaches proposed in literature are:

integrated in the simplification process

(ad hoc solutions $\mbox{\bf embedded}$ in the simplification codes)

independent from the simplification process

(post-processing phase to restore attributes detail)

... Preserving detail: Integrated Appr....

Integrated approaches:

- attribute-aware simplification
 - do not simplify an element e IF e is on the boundary of two regions with different attribute values

(image by H. Hopp

- ٠.
- use an enhanced multi-variate approximation evaluation metrics (shape+color+...)
 [Hoppe96,GarHeck98,Frank etal98, Cohen etal98]
- store removed detail in textures
 - vertex-based [Maruka95, Soucyetal96]
 - * texture-based [Krisn.etal96]
- preserve topology of the attribute field [Bajaj et al.98]

57

A simple idea: ... Preserving detail: Simplif.-Independent...

- for each texel simplified face:
 - detect the original detail by choosing either the closest point or along the normal.

... Preserving detail: Simplif.-Independent... Simplification-Independent approach:

our Vis'98 paper

[Cignoni etal 98]

- higher generality: attribute/detail preservation is not part of the simplification process
- performed as a post-processing phase (after simplification)
- any attribute can be preserved, by constructing an ad-hoc texture map
- ❖Used today in most games...

58

... Preserving detail: Simplif.-Independent...

an example of color preservation

example of geometric detail preservation by normal mapping

Original 20k face simplified 500 face

Original 60k faces simplified 250 faces

