Spatial Search Data

Structures

Corso di dottorato: Geometric Mesh Processing

Fabio Ganovelli

fabio.ganovelli@isti.cnr.it
Spatial Search Data Structure

" JJEE
Problem statement

Let m be a mesh:
Which is the mesh element closest to a given point p?
Which are the elements inside a given region?
Which elements are intersected by a given ray r?

Let m’ be another mesh:
Do m and m’ intersect? If so, where?

A spatial search data structure helps to answer
efficiently to these guestions

Spatial Search Data Structure

" A
Motivations

7N * Picking on a point
_ﬁ%ve been selected ? . Selecting a region

~ &

been selected ?

Spatial Search Data Structure

="
Motivations cntd

Ray tracing: shoot a ray for each pixel, see what
It hits, possibly recur, compute pixel color

Involves plenty of ray-objects intersections

Ray bouncing
ray off the surface
viewpoint

viewport Spatial Search Data Structure

" A
Motivations cntd ¢"d

Collision detection: in dynamic scenes, moving
objects can collide.

How to find out
which triangles
Intersect?

Spatial Search Data Structure

Motivations cntd cntd M

Without any spatial search data structure the
solutions to these problems require O(n) time,
where n is the numbers of primitives (O(n?) for
the collision detection)

Spatial data structure can make it (average)
constant

..0r average logarithmic

Spatial Search Data Structure

" J
Uniform Grid (1/4)

Description : the space including the object is
partitioned Iin cubic cells; each cell contains
references to “primitives” (i.e. triangles)

Construction .
Primitives are assigned to:
The cell containing their feature point (e.g. barycenter

or one of their vertices)

The cells spanned by the primitives |\ i

AP
V=

Spatial Search Data Structure

" J
Uniform Grid (2/4)

Closest element (to point p):
Start from the cell containing p

Check for primitives inside growing spheres centered
atp

At each step the ray increases N

to the border of visited cells
Cost.

Worst: O(#cells+n) -
Average; O(1)

Spatial Search Data Structure

" J
Uniform Grid (3/4)

Intersection with a ray
Find all the cells intersected by the ray

For each intersected cell, test the intersection with the
primitives referred in that cell

Avoid multiple testing by

flagging primitives that =
have been tested %ﬁ/
(mailboxing) _

Cost: /

Worst: O(#cells+n)
Aver: O(/#cells+4/n) /

Spatial Search Data Structure

" J
Uniform Grid (4/4)

Memory occupation: O(#cells+n)

Pros:
Easy to implement
Fast query

cons:

Memory consuming

Performance very sensitive to distribution of the
primitives.

Spatial Search Data Structure

" J
Spatial Hashing (1/2)

The same as uniform grid, except that only non
empty cells are allocated

Uniform grid Spatial hashing
\ 4 \ 4
Pap| < Pap| <
TR Y
U ——> HASH(key(i,},k))

N\
— collisions \.T

0 #eells D <<#cells

Spatial Search Data Structure

" J
Spatial Hashing (2/2)

Cost: same as UG, except that in worst case the access
to a cell is O(#cells) because of collisions

Memory occupation:

Worst. : O(#cells) ,
#cells 3
Vol

Aver.: O(

Pros:
Easy to implement
Fast query if good hashing is done
Less memory consuming

cons:

X5) S:surfaceVol :Volume

Performance very sensitive to distribution of the primitives.

Spatial Search Data Structure

"
Beyond UG

Uniform grids are input insensitive
What's the best choice for the example below?

A
AA\

< 4

A

r2

r2r1 A@V rl

D

Spatial Search Data Structure

" A
Hierarchical Indexing of Space

Divide et impera strategies:
The space is partitioned in sub regions
..recursively

=4
$4,n
|
A

Spatial Search Data Structure

" A
Hierarchical Indexing of Space

Divide et impera strategies:
The space is partitioned in sub regions
..recursively

4 R
%ﬁﬂﬁj é ® O

Spatial Search Data Structure

"
Hierarchical Indexing of Space

Divide et impera strategies:
The space is partitioned in sub regions
..recursively

7 s /‘\6&‘\@
ERCCLLISE

Spatial Search Data Structure

" A
Hierarchical Indexing of Space

Divide et impera strategies:
The space is partitioned in sub regions
..recursively

{

2
/E\

\ﬁ\ AN

CONLY
Wi A

A

Spatial Search Data Structure

" A
Basic Facts

The gueries correspond to a visit of the tree
The complexity is sublinear in the number of nodes
(logarithmic)
The memory occupation is linear

A hierarchical data structure is characterized by:
Number of children per node
Spatial region corresponding to a node

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/3)

Description :

It's a binary tree obtained by recursively partitioning the
space in two by a hyperplane

therefore a node always corresponds to a convex
region

'Y 4
. O

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/3)

Description :

It's a binary tree obtained by recursively partitioning the
space in two by a hyperplane

therefore a node always corresponds to a convex region

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/3)

Description :

It's a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/3)

Description :

It's a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/ 3)

Description :

It's a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex

region
@ ®
F e Aﬁ
PRI
AQ 4B

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (1/ 3)

Description :

It's a binary tree obtained by recursively partitioning
the space in two by a hyperplane

therefore a node always corresponds to a convex
region
BSP tree 3

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP) (1/ 3)

Query: Is the point p inside a primitive?
Starting from the root, move to the child associated
with the half space containing the point

When in a leaf node, check all the primitives
Cost:

3

Worst: O(n) '@ .
Aver: O(logn) @/i% @ ﬁ
A of
SR e

Ao AB . Q

BSP tree

Spatial Search Data Structure

" J
BSP-Tree For Rendering

ordering primitives back-to-front

void DrawBackToFront(n,p){
if (IsLeaf(n))
3 Draw(n);
if (InNegativeHS(p,n))
DrawBackToFront(RightChild(n),p);

oF © else
/
/@ N 2 @ ﬁ DrawBackToFront(LeftChild(n),p);

) """-'..._
P'Q__int of view

Spatial Search Data Structure

"
BSP-Tree For Rendering

Not so fast. set of polygons not always
separable by a plane

Spatial Search Data Structure

" A
Binary Space Partition-Tree (BSP) (3/3)

Auto-partition :
use the extension of primitives as partition planes
Store the primitive used for PP in the node

C/AW c/

/
(&) (A

Spatial Search Data Structure

"
Bulding a BSP-Tree

Building a BSP-tree requires to choose the
partition plane

Choose the partition plane that:
Gives the best balance ?

Minimize the number of splits ?
..... It depends on the application

Cost of visiting T |

Cost of a BSP-Tree /\
C(T)=1+P(T,) C(T,)+P(T;) C(TR)

Probability that T |, Is visited
If T has been visited

Spatial Search Data Structure

"
Bulding a BSP-Tree: example

C(T) =1+P(T,) C(T,) + P(T) C(Tg)

CM=1+ [8['+ [§f'+ bs

S;r = humbemwf primitivesintheleft[right] subtree
s =numberof primitivessplitbythe chosenplane

a, b used for tuning

Big alpha, small beta yield a balanced tree (good for
In/out test)

Big beta, small alpha yield a smaller tree (good for
visibility order)

Spatial Search Data Structure

"
Binary Space Partition-Tree (BSP)

Memory occupation: O(n)

For each node:
(d+1) floatig point numbers (in d dimensions)
2 pointers to child node

Cost of descending the three:
d products, d summations (dot product d+1 dim.)
1 random memory access (follow the pointer)

Less general data structures can be faster/ less
memory consuming

Spatial Search Data Structure

"
kd-tree

Kd-tree : k dimensions tree

E una specializzazione dei BSP in cui i piani di
partizione sono ortogonali a uno degli assi principali

Scelte:
L'asse su cui piazzare il piano
Il punto sull’asse in cui piazzare il piano

Vantaggi sui BSP:

determinare in quale semispazio risiede un punto costa un
confronto

La memorizzazione del piano richiede un floating point +
gualche bit

Spatial Search Data Structure

"

kD-Trees: esempio

A
% y¥y
A

AAAA

Data Structure

"

kD-Trees : esempio

A*‘A}
A

Data Structure

4
AAAA

"

kD-Trees : esempio

A

s ﬂ%

"

kD-Trees : esempio

0

Yy

A
ad

LA
A

" JJEE
Costruire un kD-tree

Dati:

axis-aligned bounding box (“cell”)

lista di primitive geometriche (triangoli)
Operazioni base

Prendi un piano ortogonale a un asse e dividi la cella in
due parti (in che punto?)

Distribuire le primitive nei due insiemi risultanti
Ricorsione
Criterio di terminazione (che criterio?)

Esempio: se viene usato per il ray-tracing, si vuole
ottimizzare per Il costo dell’intersezione raggio
primitiva

Spatial Search Data Structure

"

Costruire un kD-tree efficiente per RayCast

In che punto dividere la cella?
Nel punto che minimizza il costo

Quanto e il costo? Riprendiamo la formula per | BSP
Cosfi(cell) =1+

cell

Prob(eft _cell|cell) Cost Left)

Sapendo che il raggio interseca la cella cell, qual’e
la probabilita che intersechi la cella left_cell ??

cell
left_cell -

L
e

Z

[
—

B
>

/ /
/7

Spatial Search Data Structure

Prob(eft _cell|cell)

Probicell |left _cell] = #raggichentersecaoleft cell

cell
left cell

#raggichentersecaon cell

s (left_cell) s (left_cell)

da da

Ogni raggio che
interseca una cella
corrisponde a una
coppia di punti sulla
sua superficie.
Contiamo le coppie di
punti sulla superficie
delle celle

_ Ared(left_cell)® _ Area(left_cell)

Probfcell|left _cell]=

Aredcell)?
da da aAcel)

s (cell) s $paltjal Search Data Structure

Ared(cell)

"

cosi(left _cell)

Sapendo che il raggio interseca la cella left_cell,
gual’e il costo di testare l'intersezione con i triangoli?

Si approssima con il numero di triangoli che toccano
la cella

cell

Cosf{left _cell) =4

Spatial Search Data Structure

" JEE
Esempio

Come si suddivide la cella qui sotto?

A

Spatial Search Data Structure

A meta

A

Non tiene conto delle probabilita
Non tiene conto del costi

Spatial Search Data Structure

"
Nel punto mediano

A

ST

Rende uguali | costi di left_cell e right_cell
Non tiene conto delle probabilita

Spatial Search Data Structure

"

Ottimizzando 1l costo

A

Separa bene spazio vuoto
Distribuisce bene la complessita

Spatial Search Data Structure

"
Range Query with kd-tree

Query : return the primitives inside a given box
Algorithm:

Compute intersection between the node and the box

If the node is entirely inside the box add all the primitives
contained in the node to the result

If the node is entirely outside the box return
If the nodes is partially inside the box recur to the children

Cost: if the leaf nodes contain one primitive and the tree

IS balanced: 1
O(n 9 +K)

n number of primitives, d dimension
O(n*®) possible results

Spatial Search Data Structure

"
Nearest Neighbor with kd-tree

Query: return the nearest primitive to a given point ¢

Algorithm :
Find the nearest neighbor in the leaf containing c

If the sphere intersect the region boundary, check the primitives
contained in intersected cells

Spatial Search Data Structure

"
Quad-Tree (2d)

The plane is recursively subdivided in 4 subregions by
couple of orthogonal planes

Region Quad-tree Point Quad-tree
(@) (@)
(@) (@) O
(@) (@)
(@) (@)
) © L)
(@) (@) (@) (@)
(@) (@)
(@) (@)
° o o I8 ©) o

Spatial Search Data Structure

" JEE
Quad-Tree (2d). examples

Widely used:

Keeping level of detail of images

HE
MIP-map

level
MIP-map evel s
level 2 MIP-map
HEE B H "HER level 4
| [B e | | MIP-map
HEE o | level 1

MIP-map
level O

Spatial Search Data Structure

"
Quad-Tree (2d). examples

Widely used:
Terrain rendering: each cross in the quatree is associated with a
height value
N
|
VANVAN NA N

Spatial Search Data Structure

"
Oct-Tree (3d)

The same as quad-tree but in 3 dimensions

(root)

7
e
-// // //.a
T _
{1 leveD

<
i
al // v Illlilll

= (7 levels)
s

Spatial Search Data Structure

" A
Oct-Tree (3d) : Examples

Processing of Huge Meshes (ex: simplification)
Problem: mesh do not fit in main memory
Arrange the triangles in a oct-tree

Spatial Search Data Structure

Oct-Tree (3d) : Examples

Extraction of isosurfaces on large dataset
Build an octree on the 3D dataset
Each node store min and max value of the scalar field

When computing the isosurface for alpha, nodes whose interval
doesn’t contain alpha are discarded

Spatial Search Data Structure

Advantages of quad/oct tree

Position and size of the cells are implicit

They can be explored without pointers (convenient if the
hierarchies are complete) by using a linear array where:

Children(i) = 41 +1,...4* (1 +1)
Paren(i) =1/4

guadtree

Children(i) =81 +1,...8* (i +1)
Paren{i) =1/8

octree

Spatial Search Data Structure

Z-Filling Curves

Position and size of the cells are implicit
They can be indexed to preserve locality, i.e.

Spatiallyclose® closan memory

1 Z-Filling curve
Y E ion bet
asy conversion between

(1’0) (,1"1) position in space and
order in the curve
Just use the 0..1
coordinates as bits

(@,
(00) (O 00011011

X

»
»

Spatial Search Data Structure

I

Z-Filling Curves

Spatiallyclose® closan memory

Position and size of the cells are implicit
They can be indexed to preserve locality, i.e.

Z-Filling curve

10
\(%

20)

-

©9)

o

00)

©1

(L0)

(oY)

o9

01)

©0)

©1)

XL

Spatial Search Data Structure

00
01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

Z-Filling Curves

Conversion from spatial coordinates to
Write the coord values in binary
Interleave the bits

x = BB b
YW b
N bbb by b

Id

Spatial Search Data Structure

Index.

by
by

lierarchical Z-Filling Curves

Spatial Search Data Structure

B

IMAGE SYNTHESIS GROUP - TRINITY COLLEGE DUBLIN

9:7 4BBB

,4E)$; 2$

|||||||>|<|||| L

.l 3
SM(R) $

Sm(Sn(r) E Sn(r,)) = S, E 1)

The hierarchy is updated (n)
time

Note: this is not the same as
rebuilding the hierarchy

refitting

rebuilding

Note: SA Is a normal to a
face 75% of the times

Trick: Ignore the tests on the
edges!

1 " .
c=— p
3N 1

n

1
Coyy =~ (p'- 6)(Pj-©))

h=1

Cov Is symmetric eigenvectors
form an orthogonalbasis

