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Normal 

¤Let’s consider 2 manifold surface S in R3

¤Suppose to have a mapping  R2 èR3

S(u,v) è R3

¤Then we can define the normal for each 
point of the surface as:

Where Xu and Xv are vectors on tangent space

Mark Pauly

Differential Geometry

• Continuous surface

• Normal vector

– assuming regular parameterization, i.e.

3

x(u, v) =





x(u, v)
y(u, v)
z(u, v)



 , (u, v) ∈ IR2

n = (xu × xv)/‖xu × xv‖

xu × xv "= 0
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Normals on triangle meshes

v Computed per-vertex and interpolated over the 
faces

v Common: consider the tangent plane as the 
average among the planes containing all the 
faces incident on the vertex



Normals on triangle meshes

v Does it work? Yes, for a “good” tessellation
vSmall triangles may change the result 

dramatically
v Weighting by area, angle, edge len helps

v Note: if you get the normal as cross product of adj edges, if 
you leave it un-normalized its length is twice the area of the 
triangle -> you can get the area weighting for free  



Curvature

¤ Define a tangent vector
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• Normal Curvature

Differential Geometry
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n

p

n =

xu × xv

‖xu × xv‖

t

xu xv

t = cos φ
xu

‖xu‖
+ sinφ

xv

‖xv‖



¤ Consider the plane along n,t and the 2D curve defined on 
it

Curvature



¤ The curvature of C at P is then defined to be the reciprocal 
of the radius of osculating circle at point P. 

Curvature in 2D

The osculating circle of a 
curve C at a given point P is 
the circle that has the same 
tangent as C at point P as 
well as the same curvature. 

Just as the tangent line is the 
line best approximating a 
curve at a point P, the 
osculating circle is the best 
circle that approximates the 
curve at P



¤For each direction t , we define a 
curvature value k.

¤Let’s consider the two directions k1
and k2 where the curvature values k1
and k2 are maximum and minimum

¤Euler theorem
k1 and k2 are perpendicular and 
curvature along a direction t making an 
angle θ with k1 is:

kθ = k1 cos2θ + k2 sin2θ

Main curvature directions
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Curvature principali



¤Defined as K= k1· k2

¤ >0 when the surface is a sphere
¤ 0 if locally flat
¤ <0 for hyperboloids

Gaussian curvature

K>0

K<0
K=0



¤A point x on the surface is called:
¤ elliptic if K > 0 
(k1 and k2 have the same sign) 

¤ hyperbolic if K < 0 
(k1 and k2 have opposite sign) 

¤ parabolic if K = 0 
(exactly one of k1 and k2 is zero)

¤ planar if K = 0 
(equivalently k1=k2=0). 

Gaussian curvature

elliptic

hyperbolic

parabolic

planar



Different classes distributed on the surface

elliptic hyperbolicparabolic planar



¤Developable surface ⇔ K = 0

¤Flattening introduce no distortion

Developable surfaces



¤Gaussian curvature is an intrinsic
properties of the surface (even if we 
defined in an extrinsic way)

¤It is possible to determine it by moving 
on the surface keeping the geodesic 
distance constant to a radius r and 
measuring the circumference C(r) :

Gaussian Curvature: intrinsic / extrinsic
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Differential Geometry

• Intrinsic geometry: Properties of the surface that 
only depend on the first fundamental form
– length
– angles
– Gaussian curvature (Theorema Egregium)
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K = lim
r→0

6πr − 3C(r)

πr3
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Curvatura Gaussiana

Positiva e negativa

K>0
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Curvatura Gaussiana

Positiva e negativa

K<0



¤H=(k1+k2)/2

¤Measure the divergence of the normal in a local 
neighborhood of the surface

¤The divergence divs is an operator that measures a 
vector field's tendency to originate from or converge 
upon a given point

Mean Curvature



¤Imagine a vector field represents water flow:
¤ If divs is a positive number, then water is flowing out of the point.
¤ If divs is a negative number, then water is flowing into the point.

Divergence

divs >0 divs >0 divs =0 divs =0 divs >0



¤A surface is minimal iff H=0 everywhere

¤All surfaces of minimal AREA (subject to boundary constraints) have 
H= 0 (not always true the opposite!)

¤The surface tension of an interface, like a soap bubble, is 
proportional to its mean curvature

Minimal surface and minimal area surfaces



¤Red > 0 Blue < 0 , not the same scale

Then… finally…

mean gaussian min max



¤Given a function F: R2→R (our surface) the gradient of F is the vector 
field ∇F:R2→R2 defined by the partial derivatives: 

¤Intuitively: At the point p0, the vector ∇F(p0) points in the direction of 
greatest change of F. 

Some math…. Gradient and divergence



¤Example :

Some math…. Gradient and divergence



¤Given a function F(F1,F2): R2→R2 the divergence of F is the function 
div:R2→R defined as:

div F(x,y)= ∂F1/∂x + ∂F2/∂y 

¤Intuitively: At the point p0, the divergence div F(p0) is a measure of 
the extent to which the flow (de)compresses at p0. 

Some math…. Gradient and divergence



¤Example :

Some math…. Gradient and divergence

div ∇F(x,y) = 4 div ∇F(x,y) = 0



¤Given a function F(F1,F2): R2→R
the Laplacian of F is the function ΔF: R2→R defined by the 
divergence of the gradient of the partial derivatives:

ΔF= div(∇F(x,y))=∂2F/∂x2 + ∂2F/∂y2

¤Intuitively: The Laplacian of F at the point p0 measures the extent to 
which the value of F at p0 differs from the average value of F its 
neighbors.

Some math…. Laplacian



Discrete Differential Operators
¤Assumption: Meshes are piecewise linear 

approximations of smooth surfaces 

• Approach: Approximate differential properties at 
point x as spatial average over local mesh 
neighborhood N(x), where typically 
• x = mesh vertex
• N(x) = n-ring neighborhood (or local geodesic ball)



Discrete Laplacian
¤Uniform discretization

¤depends only on connectivity → simple and 
efficient

¤bad approximation for irregular triangulations 



¤ Cotangent formula

Discrete Laplacian
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Discrete Laplace-Beltrami

• Cotangent formula
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∆Sf(v) :=
2

A(v)

∑

vi∈N1(v)

(cot αi + cot βi) (f(vi) − f(v))

v

vi vi

v
A(v) v

vi

αi

βi



¤ Mean Curvature

¤ Gaussian Curvature

¤ Principal Curvatures

Discrete Curvatures
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Discrete Curvatures

• Mean curvature

• Gaussian curvature

• Principal curvatures
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G = (2π −

∑

j

θj)/A

A

θj

κ1 = H +

√

H2
− G κ2 = H −

√

H2
− G

H = ‖∆Sx‖
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Mean curvature on a triangle 
mesh



Gaussian curvature on a triangle 
mesh

v It's the angle defect over the area
v

v Gauss-Bonnet Theorem: The integral of the 
Gaussian Curvature on a closed surface 
depends on the Euler number 



¤Problems:
¤ Depends on triangulation!
¤ Very sensitive to Noise…

Discrete Curvatures



¤ The radius r of the neighborhood of 
each point p is used as a scale 
parameter
¤ 1. gather all faces in a local 

neighborhood of radius r

¤ 2. set an axis                          

¤ where nv is the number of vertices 
gathered and ni is the surface normal 
at each such vertex 

Curvature via Surface Fitting



¤ 3. discard all vertices vi such that ni⋅w < 0
¤ 4. set a local frame (u,v,w) where u and v 

are any two orthogonal unit vectors lying on 
the plane orthogonal to w, and such that 
the frame is right-handed

¤ 5. express all vertices of the neighborhood in 
such a local frame with origin at p

¤ 6. fit to these points a polynomial of degree 
two through p (least squares fitting)

¤ Curvatures at p are computed analytically
via first and second fundamental forms of f
at the origin

Curvature via Surface Fitting
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curvature  via  surface fitting
¤ Curvatures extracted at different scales



Screen Space Mean Curvature
¤ Known effect as 

Cavity Shading
// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/)
#extension GL_OES_standard_derivatives : enable

varying vec3 normal;
varying vec3 vertex;

void main() {
vec3 n = normalize(normal);

// Compute curvature
vec3 dx = dFdx(n);
vec3 dy = dFdy(n);
vec3 xneg = n - dx;
vec3 xpos = n + dx;
vec3 yneg = n - dy;
vec3 ypos = n + dy;
float depth = length(vertex);
float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

// Compute surface properties
vec3 light = vec3(0.0);
vec3 ambient = vec3(curvature + 0.5);
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
float shininess = 0.0;

// Compute final color
float cosAngle = dot(n, light);
gl_FragColor.rgb = ambient +

diffuse * max(0.0, cosAngle) +
specular * pow(max(0.0, cosAngle), shininess);

}


