Discrete Differential Geometry

Paolo Cignoni paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni

erentiarGeometry

Let's consider 2 manifold surface S in R³

$$\mathbf{x}(u,v) = \left\{ \begin{array}{l} x(u,v) \\ h y(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ h y(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}(u,v) \end{array} \right\} = \left\{ \begin{array}{l} x(u,v) \\ \mathbf{x}(u,v) \\ \mathbf{x}($$

■Then we can define the normal for each point of the surface as:

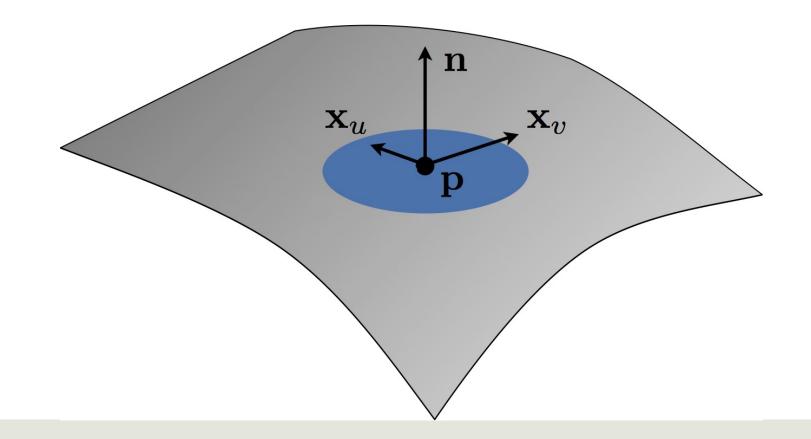
$$\mathbf{n} = (\mathbf{x}_u \times \mathbf{x}_v) / \|\mathbf{x}_u \times \mathbf{x}_v\|$$

Where Xu and Xv are vectors on tangent space

$$\mathbf{x}_u imes \mathbf{x}_v
eq \mathbf{0}$$

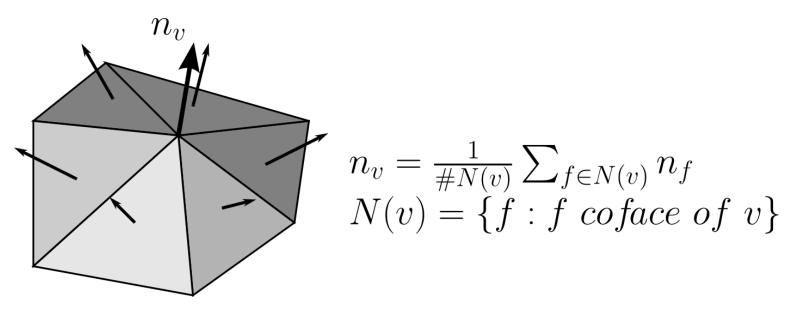
$$\mathbf{x}(u,v) = \left(\begin{array}{c} y(u,v) \\ z(u,v) \end{array}\right), \ (u,v) \in \mathbb{R}^{2}$$
Normal

lacksquare Normal $\mathbf{n} = (\mathbf{x}_u imes \mathbf{x}_v) / \|\mathbf{x}_u imes \mathbf{x}_v\|$



Normals on triangle meshes

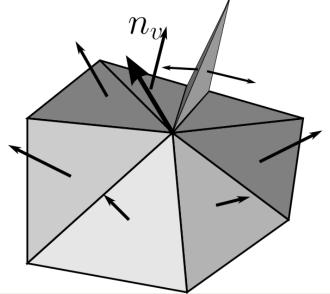
- Computed per-vertex and interpolated over the faces
- Common: consider the tangent plane as the average among the planes containing all the faces incident on the vertex



Normals on triangle meshes

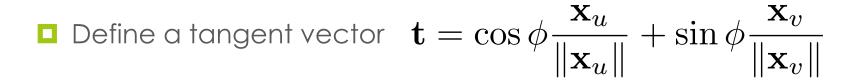
Does it work? Yes, for a "good" tessellation

- Small triangles may change the result dramatically
- Weighting by area, angle, edge len helps
 - Note: if you get the normal as cross product of adj edges, if you leave it un-normalized its length is twice the area of the triangle -> you can get the area weighting for free

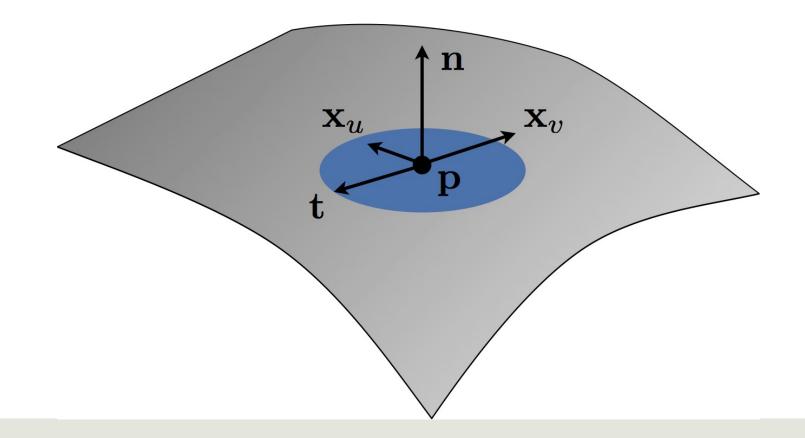


Curvature

 \mathbf{x}_u



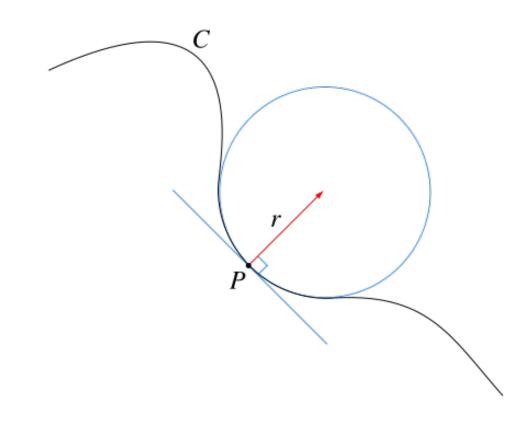
 $\mathbf{X}_{\mathcal{V}}$



Consider the plane along n,t and the 2D curve defined on i† n С

Curvature in 2D

The curvature of C at P is then defined to be the reciprocal of the radius of osculating circle at point P.



The osculating circle of a curve C at a given point P is the circle that has the same **tangent** as C at point P as well as the same **curvature**.

Just as the tangent line is the line best approximating a curve at a point P, the osculating circle is the best circle that approximates the curve at P

Main curvature directions

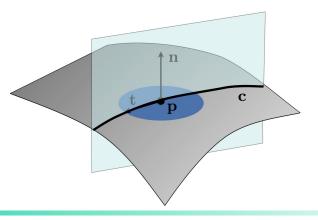
For each direction \mathbf{t} , we define a curvature value k.

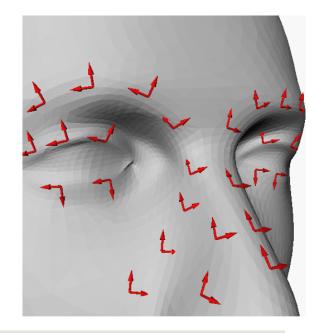
Let's consider the two directions k_1 and k_2 where the curvature values k_1 and k_2 are **maximum** and **minimum**

Euler theorem

 k_1 and k_2 are perpendicular and curvature along a direction t making an angle θ with k_1 is:

 $k_{\theta} = k_1 \cos^2 \theta + k_2 \sin^2 \theta$

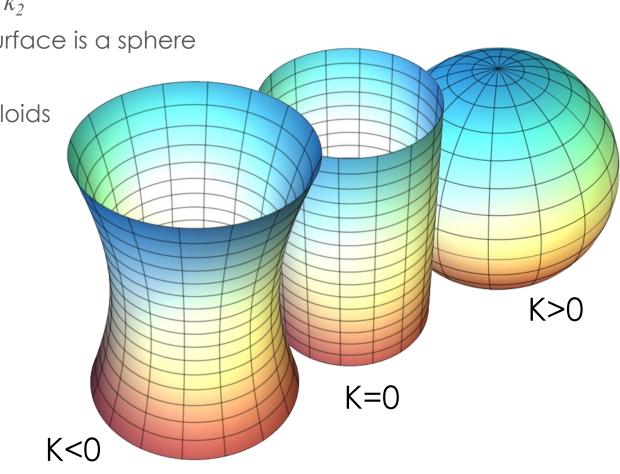




Gaussian curvature

• Defined as $K = k_1 \cdot k_2$

- >0 when the surface is a sphere
- O if locally flat
- <0 for hyperboloids</p>



Gaussian curvature

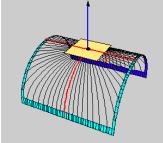
 A point x on the surface is called:
 elliptic if K > 0 (k₁ and k₂ have the same sign)

■ hyperbolic if K < 0(k_1 and k_2 have opposite sign)

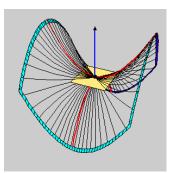
D parabolic if K = 0(exactly one of k_1 and k_2 is zero)

D planar if K = 0(equivalently $k_1 = k_2 = 0$).

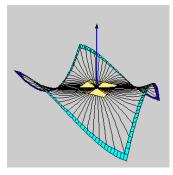
elliptic



parabolic

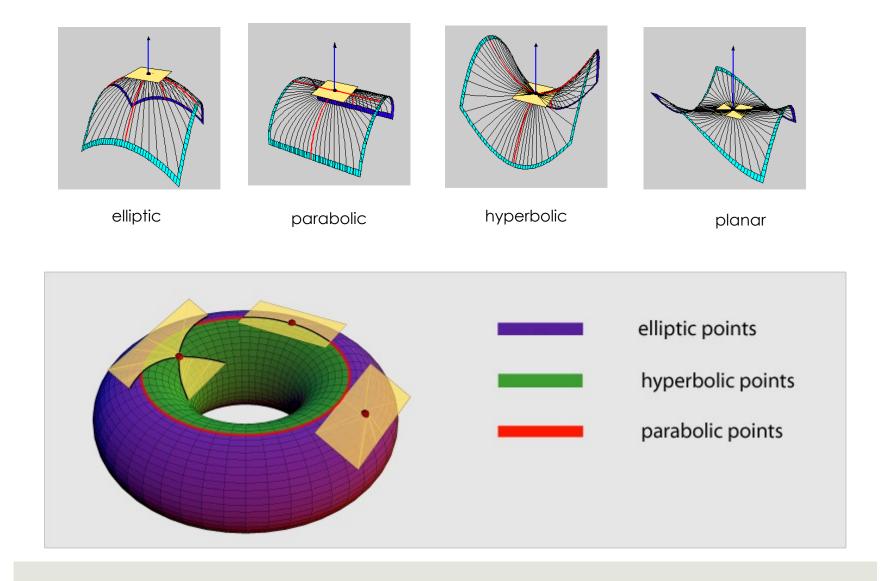


hyperbolic



planar

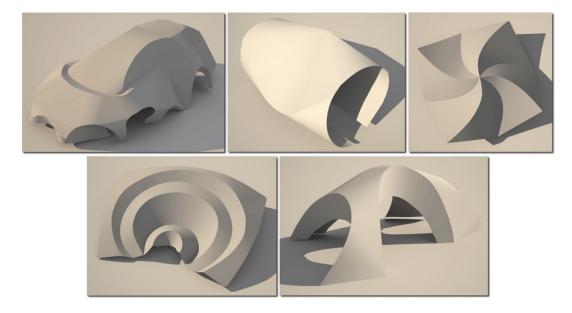
Different classes distributed on the surface

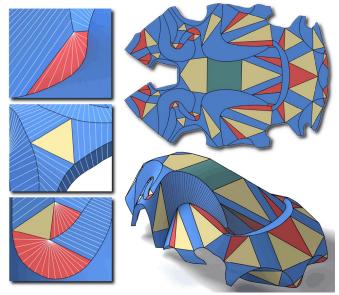


Developable surfaces

□ Developable surface \Leftrightarrow K = 0

■ Flattening introduce no distortion



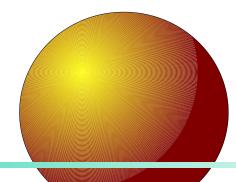


erentalusiaocua/dtyre: intrinsic / extrinsic

Gaussian curvature is an **intrinsic** properties of the surface (even if we defined in an extrinsic way)

It is possible to determine it by moving on the surface keeping the geodesic distance constant to a radius r and measuring the circumference C(r) :

$$K = \lim_{r \to 0} \frac{6\pi r - 3C(r)}{\pi r^3}$$





Mean Curvature

 \Box H=(k₁+k₂)/2

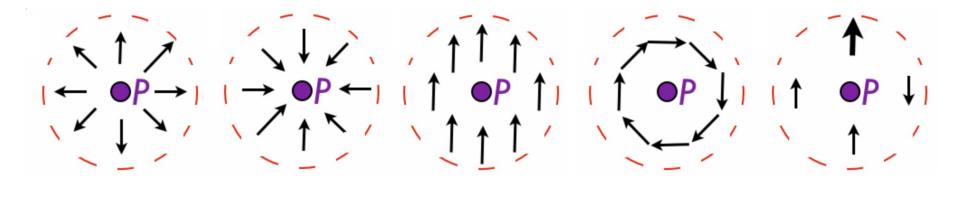
Measure the divergence of the normal in a local neighborhood of the surface

■The **divergence div**_s is an operator that measures a vector field's tendency to originate from or converge upon a given point

Divergence

□Imagine a vector field represents water flow:

- □ If **div**s is a **positive** number, then water **is flowing out** of the point.
- □ If **div**s is a **negative** number, then water is **flowing into** the point.



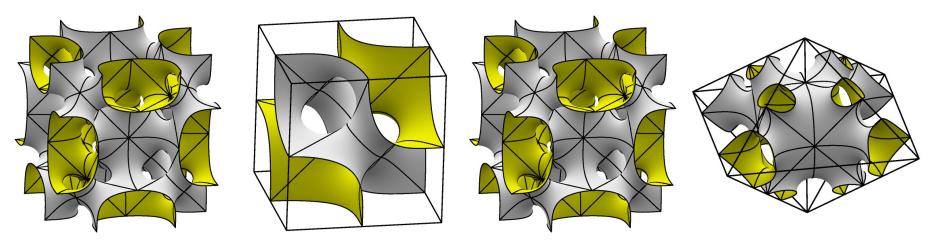
 $div_s > 0$ $div_s = 0$ $div_s = 0$ $div_s = 0$ $div_s > 0$

Minimal surface and minimal area surfaces

□ A surface is **minimal** iff H=0 everywhere

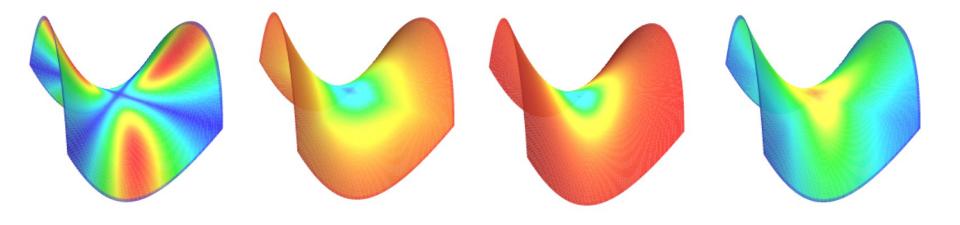
All surfaces of minimal AREA (subject to boundary constraints) have
 H= 0 (not always true the opposite!)

The surface tension of an interface, like a soap bubble, is proportional to its mean curvature



Then... finally...

\square Red > 0 Blue < 0 , not the same scale



mean

gaussian

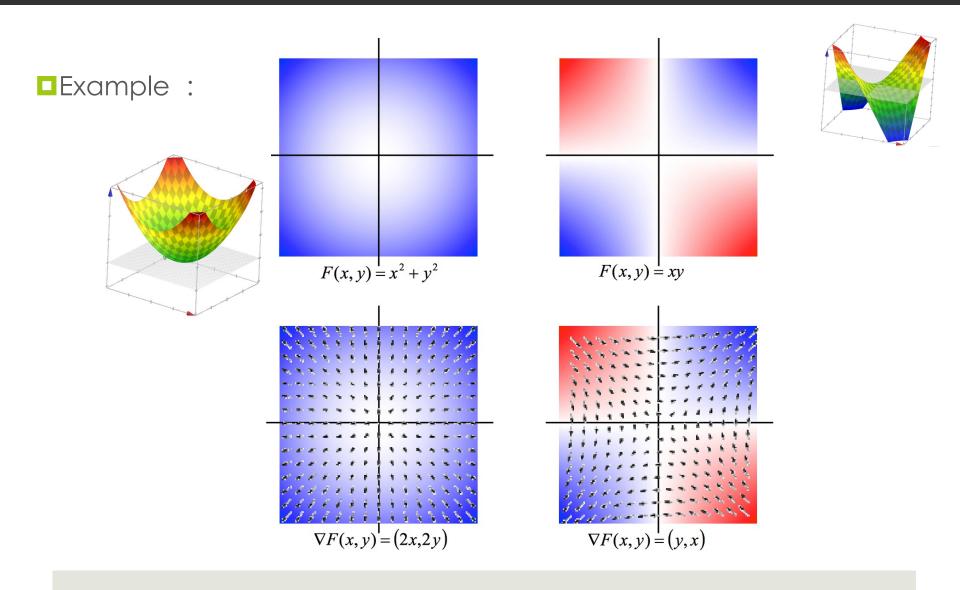
min

max

Given a function $F: \mathbb{R}^2 \to \mathbb{R}$ (our surface) the gradient of F is the vector field $\nabla F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the partial derivatives:

$$\nabla F(x, y) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)$$

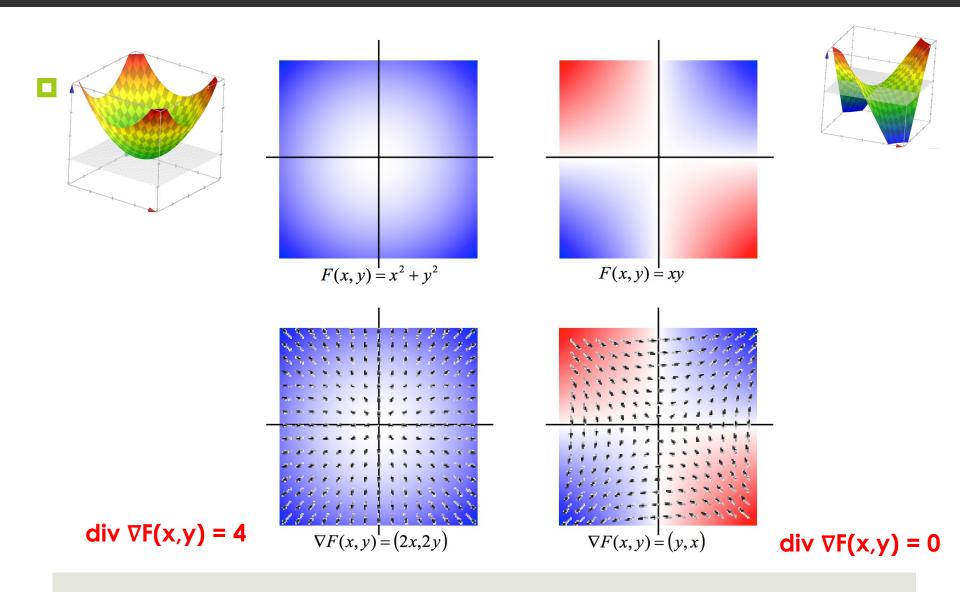
Intuitively: At the point p_0 , the vector $\nabla F(p_0)$ points in the **direction of** greatest change of **F**.



Given a function $F(F_1, F_2)$: $R^2 \rightarrow R^2$ the divergence of F is the function $div: R^2 \rightarrow R$ defined as:

div $F(x,y) = \partial F_1 / \partial x + \partial F_2 / \partial y$

Intuitively: At the point p_0 , the divergence div $F(p_0)$ is a measure of the extent to which the flow (de)compresses at p_0 .



Some math.... Laplacian

Given a function $F(F_1, F_2): \mathbb{R}^2 \to \mathbb{R}$ the Laplacian of F is the function $\Delta F: \mathbb{R}^2 \to \mathbb{R}$ defined by the divergence of the gradient of the partial derivatives:

$\Delta F = \operatorname{div}(\nabla F(x,y)) = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$

Intuitively: The Laplacian of F at the point p_0 measures the extent to which the value of F at p_0 differs from the average value of F its neighbors.

Discrete Differential Operators

- Assumption: Meshes are piecewise linear approximations of smooth surfaces
- Approach: Approximate differential properties at point *x* as spatial average over local mesh neighborhood *N(x)*, where typically
 - x = mesh vertex
 - N(x) = n-ring neighborhood (or local geodesic ball)

Discrete Laplacian

Uniform discretization

$$\Delta_{uni} f(v) := \frac{1}{|\mathcal{N}_1(v)|} \sum_{v_i \in \mathcal{N}_1(v)} (f(v_i) - f(v))$$

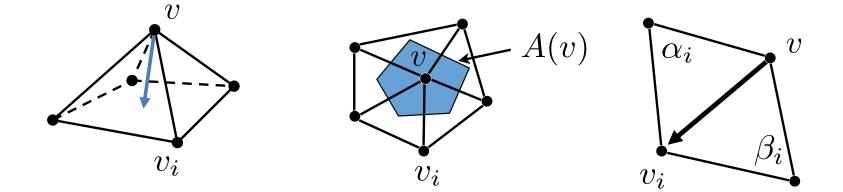
■ depends only on connectivity → simple and efficient

bad approximation for irregular triangulations

otangent formula

Discrete Laplacian

$$sf(v) := \frac{2}{A(v)} \sum_{\substack{v_i \in \mathcal{N}_1(v) \\ v_i \in \mathcal{N}_1(v)}} \left(\cot \alpha_i + \cot \beta_i\right) \left(f(v_i) - f(v_i)\right)$$
$$\Delta_s f(v) := \frac{2}{A(v)} \sum_{\substack{v_i \in \mathcal{N}_1(v) \\ v_i \in \mathcal{N}_1(v)}} \left(\cot \alpha_i + \cot \beta_i\right) \left(f(v_i) - f(v)\right)$$

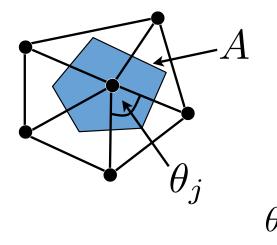


Discrete Curvatures

Discrete Curvatures

$$H = \|\Delta_{\mathcal{S}} \mathbf{x}\| \qquad H = \|\Delta_{\mathcal{S}} \mathbf{x}\|$$
$$H = \|\Delta_{\mathcal{S}} \mathbf{x}\| \qquad H = \|\Delta_{\mathcal{S}} \mathbf{x}\|$$
$$\text{Mean Curvature } H = \|\Delta_{\mathcal{S}} \mathbf{x}\|$$

$$\Box G G = \frac{1}{j} \frac{1}{G} \frac{1}$$



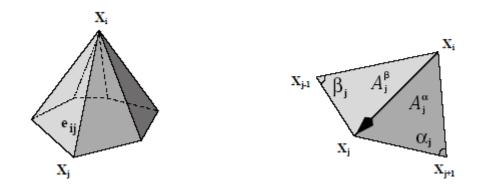
Principal Curvatures

$$\begin{aligned} \kappa_1 &= H + \sqrt{H^2 - G} \\ \kappa_1 &= H + \sqrt{H^2 - G} \\ \kappa_1 &= H + \sqrt{H^2 - H} \\ \mathcal{K}_1 &= H + \sqrt{H^2 - H} \\ \mathcal{K}_1 &= H + \sqrt{H^2 - G} \\ \mathcal{K}_2 &= H \\ \mathcal{K}_2 &= H \\ \mathcal{K}_2 &= \mathcal{K}_2 \\ \mathcal{K}_2 \\ \mathcal{K}_2 &= \mathcal{K}_2 \\ \mathcal{K}_2 \\$$

Mean curvature on a triangle mesh

$$H(p) = \frac{1}{2A} \sum (\cot \alpha_i + \cot \beta_i) \|p - p_i\|$$

where α_j and β_j are the two angles opposite to the edge in the two triangles having the edge e_{ij} in common *A* is the sum of the areas of the triangles



Gaussian curvature on a triangle mesh

It's the angle defect over the area

**

$$\kappa_G(v_i) = \frac{1}{3A} \left(2\pi - \sum_{t_j adj \, v_i} \theta_j \right)$$

Gauss-Bonnet Theorem: The integral of the Gaussian Curvature on a closed surface depends on the Euler number

$$\int_{S} \kappa_{G} = 2\pi \chi$$

Discrete Curvatures

Problems:

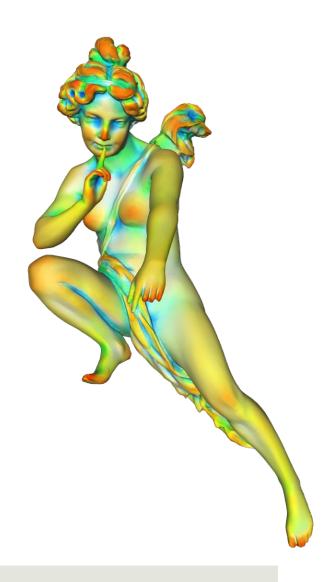
- Depends on triangulation!
- Very sensitive to Noise...

Curvature via Surface Fitting

- The radius r of the neighborhood of each point p is used as a scale parameter
 - 1. gather all faces in a local neighborhood of radius r

• 2. set an axis
$$\mathbf{w} = \frac{1}{n_v} \sum_{i=1}^n \mathbf{n}_i$$

where n_v is the number of vertices gathered and n_i is the surface normal at each such vertex



Curvature via Surface Fitting

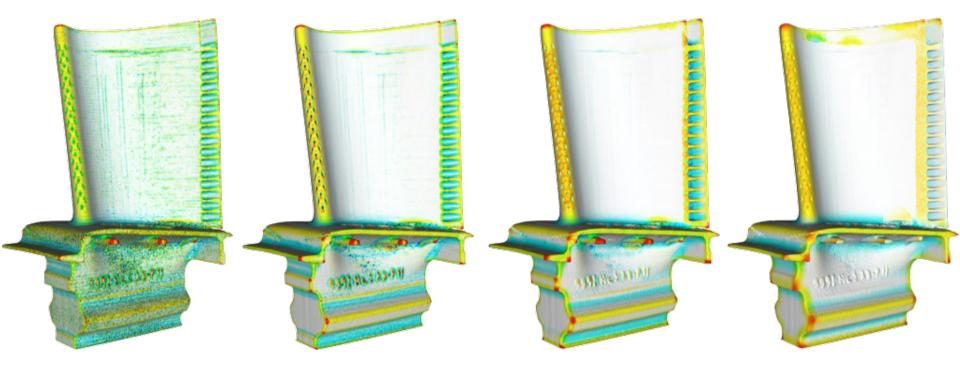
- 3. discard all vertices v_i such that $n_i \cdot w < 0$
- 4. set a local frame (u,v,w) where u and v are any two orthogonal unit vectors lying on the plane orthogonal to w, and such that the frame is right-handed
- 5. express all vertices of the neighborhood in such a local frame with origin at p
- 6. fit to these points a polynomial of degree two through p (least squares fitting)

$$f(u,v) = au^2 + bv^2 + cuv + du + ev$$

Curvatures at p are computed analytically via first and second fundamental forms of f at the origin

curvature via surface fitting

Curvatures extracted at different scales



Screen Space Mean Curvature

// License: CC0 (http://creativecommons.org/publicdomain/zero/1.0/) #extension GL_OES_standard_derivatives : enable

varying vec3 normal; varying vec3 vertex;

void main() {
 vec3 n = normalize(normal);

// Compute curvature vec3 dx = dFdx(n); vec3 dy = dFdy(n); vec3 xneg = n - dx; vec3 xpos = n + dx; vec3 yneg = n - dy; vec3 ypos = n + dy; float depth = length(vertex); float curvature = (cross(xneg, xpos).y - cross(yneg, ypos).x) * 4.0 / depth;

// Compute surface properties
vec3 light = vec3(0.0);
vec3 ambient = vec3(curvature + 0.5);
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
float shininess = 0.0;

// Compute final color float cosAngle = dot(n, light); gl_FragColor.rgb = ambient + diffuse * max(0.0, cosAngle) + specular * pow(max(0.0, cosAngle), shininess);

Known effect as Cavity Shading

