From Point Clouds to tessellated surfaces *explicit methods*

Alpha Shapes [Edelsbrunner83]

Convex Hull

 $CH(S) = \mathbb{R}^d \setminus \bigcup EH(S)$

EH(S): halfspace not containing any point in S

Alpha Hull

$$\alpha H(S) = \mathbb{R}^d \setminus \bigcup EB_\alpha(S)$$

 $EB_{\alpha}(S)$: ball with radius α not containing any point in S

Computing Alpha Shapes

- Alpha Diagram: Voronoi Diagram restricted to space closest than α to one point in S
- Alpha Complex: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Computing Alpha Shapes

- Alpha Diagram: Voronoi Diagram restricted to space closest than α to one point in S
- Alpha Complex: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Alpha Diagram

Voronoi Diagram

Voronoi Diagram

Delaunay Triangulation

٠ ٠ ٠ Point Set

Voronoi Diagram

Delaunay Triangulation

Alpha Diagram

Voronoi Diagram ٠ ٠ ٠ Point Set Alpha Diagram

٠

٠

Delaunay Triangulation

- $\alpha = 0$ then α -shape is the point set
- $\alpha \rightarrow \infty \alpha$ -shape tends to the convex hull
- A finite number of thresholds $\alpha_0 < \alpha_1 < ... < \alpha_n$ defines all possible shapes (at most $2n^2 5n$)

Sampling Conditions for Alpha Shapes

Proposition

Given a smooth manifold *M* and a sampling *S*, if it holds that

- 1. the intersection of any ball of radius α with M is homeomorphic to a disk
- 2. Any ball of radius α centered in the manifold contains at least one point of S

Then the α -shape of *S* is homeomorphic to *M*

Ball Pivoting [bernardini99]

- Motivations
 - Alpha shapes computation is fairly cumbersome
 - May produce non manifold surfaces
- Core idea: approximate the alpha shapes just «rolling» a ball of radius α on the sampling *S*
- Same sampling conditions as α –shape holds

The algorithm

- •Edge (si, sj)
- -Opposite point so, center of empty ball c
- -Edge: "Active", "Boundary"

Initial seed triangle:

Empty ball of radius ρ passes through the three points

Active edge

• Point on front

Ball pivoting around active edge

Ball pivoting around active edge

Active edge
Point on front
Internal point

Active edge
Point on front
Internal point

No pivot found

Point on frontInternal point

Ball pivoting around active edge

Active edge
Point on front
Internal point

Not any point clouds: the Range Maps

- 3D scanners produce a numner of dense structured height fields, that is, a regular (X,Y) grid of points with a distance Z value. These are called **range maps**
- Trivial to triangulate but: How to merge different range maps?

Mesh Zippering [Turk94]

Input: triangulated ranges maps (not just point clouds)

•Works in pairs:

- Remove overlapping portions
- □Clip one RM against the other
- □Remove small triangles

- Input: triangulated ranges maps (not just point clouds) Works in pairs:
- Remove overlapping portions
- Clip one RM
 against the other
- Remove small triangles

Input: triangulated ranges maps (not just point clouds)

Works in pairs:

□Remove overlapping portions

□Clip one RM against the other

□Remove small triangles

Input: triangulated ranges maps (not just point clouds) Works in pairs:

- Remove overlapping portions
- Clip one RM against the other
- Remove small triangles

- Input: triangulated ranges maps (not just point clouds)
- •Works in pairs:
- Remove overlapping portions
- Clip one RM against the other
- Remove small triangles

Not so trivial to implement...for example..
 remove overlapping regions: «a face of mesh A overlaps if its 3 vertices project on mesh B»
 Hole may appear, to be fixed later...

Not so trivial to implement...for example..

remove
 overlapping regions:
 criterion?

Not so trivial to implement...for example..

remove overlapping regions: criterion?

Preserve faces from left

Preserve faces from right

Halfway (distance from the border)

