From Point Clouds to tessellated surfaces explicit methods

Alpha Shapes [Ededsbumeres3]

Convex Hull

$C H(S)=\mathbb{R}^{d} \backslash \bigcup E H(S)$
$E H(S)$: halfspace not containing any point in S

Alpha Hull

$$
\alpha H(S)=\mathbb{R}^{d} \backslash \bigcup E B_{\alpha}(S)
$$

$E B_{\alpha}(\mathrm{S})$: ball with radius α not containing any point in S

Computing Alpha Shapes

- Alpha Diagram: Voronoi Diagram restricted to space closest than α to one point in S
- Alpha Complex: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Computing Alpha Shapes

- Alpha Diagram: Voronoi Diagram restricted to space closest than α to one point in S
- Alpha Complex: Subset of Delaunay Triangulation computed as the dual of the alpha diagram

Alpha Diagram

Point Set

Voronoi Diagram

Point Set

Voronoi Diagram

Point Set

Delaunay Triangulation

Voronoi Diagram

Alpha Diagram

Delaunay Triangulation

Alpha triangulation

Voronoi Diagram

Alpha Diagram

Delaunay Triangulation

Alpha triangulation

Delaunay triangulation

Alpha Complex

- $\alpha=0$ then α-shape is the point set
- $\alpha \rightarrow \infty \alpha$-shape tends to the convex hull
- A finite number of thresholds $\alpha_{0}<\alpha_{1}<\ldots<\alpha_{n}$ defines all possible shapes (at most $2 n^{2}-5 n$)

Sampling Conditions for Alpha Shapes

Proposition

Given a smooth manifold M and a sampling S, if it holds that

1. the intersection of any ball of radius α with M is homeomorphic to a disk
2. Any ball of radius α centered in the manifold contains at least one point of S

Then the α-shape of S is homeomorphic to M

Ball Pivoting [bernardini99]

- Motivations
- Alpha shapes computation is fairly cumbersome
- May produce non manifold surfaces
- Core idea: approximate the alpha shapes just «rolling» a ball of radius α on the sampling S
- Same sampling conditions as α-shape holds

Low sampling density

Curvature grater than $\frac{1}{\alpha}$

The algorithm

-Edge (si, sj)
-Opposite point so, center of empty ball c -Edge: "Active", "Boundary"

Pivoting example

Initial seed triangle:
Empty ball of radius ρ passes through the three points
$\xrightarrow{\text { Active edge }}$

- Point on front

Pivoting example

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge
- Point on front

Pivoting example

Ball pivoting around active edge
$\xrightarrow{\text { Active edge }}$

- Point on front

Pivoting example

Ball pivoting around active edge
$\xrightarrow{\text { Active edge }}$

- Point on front

Pivoting example

Ball pivoting around active edge
$\xrightarrow{\text { Active edge }}$

- Point on front

Pivoting example

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge
- Point on front
- Internal point

Pivoting example

Boundary edge
\longrightarrow

Ball pivoting around active edge No pivot found
$\xrightarrow{\text { Active edge }}$

- Point on front
- Internal point

Pivoting example

Boundary edge

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge
- Point on front
- Internal point

Pivoting example

Boundary edge

Ball pivoting around active edge
$\begin{aligned} & \text { No pivot found }\end{aligned}$
$\xrightarrow{\text { Active edge }}$

- Point on front
- Internal point

Pivoting example

Boundary edge

$\xrightarrow{\text { Active edge }}$
Ball pivoting around active edge
- Point on front
- Internal point

Not any point clouds: the Range Maps

- 3D scanners produce a numner of dense structured height fields, that is, a regular (X, Y) grid of points with a distance Z value. These are called range maps
- Trivial to triangulate but: How to merge different range maps?

Mesh Zippering [Turk94]

■Input: triangulated ranges maps (not just point clouds)
-Works in pairs:
\square Remove overlapping portions
\square Clip one RM against the other
\square Remove small triangles

Mesh Zippering

Input: triangulated ranges maps (not just point clouds)
Works in pairs:
\square Remove overlapping portions
\square Clip one RM against the other
\square Remove small triangles

Mesh Zippering

■Input: triangulated ranges maps (not just point clouds)
■Works in pairs:
\square Remove overlapping portions
\square Clip one RM against the other
\square Remove small triangles

Mesh Zippering

Input: triangulated ranges maps (not just point clouds)
Works in pairs:
\square Remove overlapping portions
\square Clip one RM against the other
\square Remove small triangles

Mesh Zippering

■Input: triangulated ranges maps (not just point clouds)
■Works in pairs:
\square Remove overlapping portions
\square Clip one RM against the other
Remove small triangles

Mesh Zippering

-Not so trivial to implement...for example..
\square remove overlapping regions: «a face of mesh A overlaps if its 3 vertices project on mesh B» -Hole may appear, to be fixed later...

Mesh Zippering

- Not so trivial to implement...for example..

remove

 overlapping regions: criterion?
Mesh Zippering

- Not so trivial to implement...for example..
remove overlapping regions: criterion?

Preserve faces from left

Preserve faces from right

Halfway (distance from the border)

