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What is a parametrization?
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Surface Parameterization

[www.wikipedia.de]



What is a parametrization?

http://vcg.isti.cnr.it/~tarini/spinnableworldmaps/

http://vcg.isti.cnr.it/~tarini/spinnableworldmaps/


Why Parametrization?
¤ Texture Mapping
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Why Parametrization?
¤ Manual UV mapping

¤ An advanced artistic skill



Why Parametrization?
¤ Remeshing
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Why Parametrization?
¤ Remeshing

QUADRILATERAL

Bommes, et AL.: Mixed Integer Quadrangulation

TRIANGULAR

Pietorni, et AL. :Almost isometric mesh 
parameterization through abstract domains

HEXAGONAL

Nieser et al.: Hexagonal Global 
Parameterization of Arbitrary Surfaces

HEXAHEDRAL

Nieser, et AL. : CUBECOVER – Parameterization of 3D Volumes



Why Parametrization?
¤ Analysis…. 2D is easier than 3D

Pietroni, et AL.: An Interactive Local Flattening Operator 
to Support Digital Investigations on Artwork Surfaces



Parametrization: what we need?
¤ A strategy to flatten a 3D surface on 2D domain

¤ Introducing as few distortion as possible

¤ A strategy to introduce cuts
3D
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Flattening a surface
¤ surface

¤ parameter domain

¤ mapping                       and



Parametrization: Cylindrical coords



Minimize Distortion

¤ Angle preservation: conformal

¤ Area preservation: equiareal

¤ Area and Angle: Isometric
Christian Rössl, INRIA 248

• By first fundamental form I

– Eigenvalues λ1,2 of I 

– Singular values σ1,2 of J (σi
2= λi)

• Isometric
– I = Id,   λ1= λ2=1

• Conformal
– I = µ Id ,  λ1 / λ2=1

• Equiareal
– det I = 1,  λ1 λ2=1

Characterization of Mappings

angle preserving

area preserving
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What happens to the surface point f(u,v) as we move a tiny little bit 
away from (u,v) in the parameter domain?

¤ Approximate with first order Taylor expansion

¤ Jf Jacobian of f, i.e. the 3×2 matrix with partial derivatives of  f as column vectors 
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¤ Consider singular value decomposition of the Jacobian 

¤ The transformation VT first rotates all points around u such that the vectors V1 and V2 are in 
alignment with the u- and the v-axes afterwards. 

¤ The transformation Σ then stretches by the factor σ1 in the u- and by σ2 in the v-direction. 
¤ The transformation U finally maps the unit vectors (1, 0) and (0, 1) to the vectors U1 and U2 in 

the tangent plane Tp at p. 
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¤ In practice σ1 and σ2 describe local deformations

Distortion
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Isometric Mapping

¤ σ1=σ2=1

¤ preserves areas, angles and lengths
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Conformal Mapping

¤ σ1/σ2=1

¤ preserves angles
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Mercatore Projection Peirce quincuncial projection



Equiareal Mapping

¤ σ1⋅σ2=1

¤ preserves areas
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Lambert cylindrical equal-area



Bijectivity

¤ Parametrization map must be bijective ⇔ triangles in 
parametric domain do not overlap (no triangle flips)



Bijectivity

¤ Parametrization map must be bijective ⇔ triangles in 
parametric domain do not overlap (no triangle flips)

should 



Cuts 1

sphere in 3D
2D surface disk

¤ Clearly needed for closed surfaces



Cuts 2
¤ Usually more cuts -> less distortion

sphere in 3D
2D surface



Cuts 3: closed surfaces
¤ How many cuts?

for a genus 0 surface ? any tree of cuts



Cuts 3: closed surfaces
¤ How many cuts?

for a genus 1 surface ? two looped cuts



Cuts 3: closed surfaces
¤ How many cuts?

for a genus 3 surface ? 6 looped cuts



Cuts 3: closed surfaces
¤ How many cuts?

for a genus n surface ? 2n looped cuts

genus 6



Generic Cut Strategies
¤ Texture Mapping

Christian Rössl, INRIA 241

Motivation

•Texture mapping

Lévy, Petitjean, Ray, and Maillot: Least squares conformal maps for automatic 
texture atlas generation, SIGGRAPH 2002

Lévy, et AL.: Least squares conformal maps for automatic texture atlas generation

Pietroni, et AL.: Almost isometric mesh parameterization through abstract domains

UNSTRUCTURED CUTS

REGULAR CUTS
PER QUAD

Brent Burley et al : Ptex: Per-Face Texture Mapping for Production Rendering

IMPLICIT

Tarini, et AL.: PolyCube Maps



Globally Smoothess

¤ Tangent directions varyes 
smoothly across seams



Globally Smoothess

¤ Tangent directions vary 
smoothly across seams



Feature Alignment

¤ Useful for quadrangulation

¤ Need good placement of singularities



Details: Parametrization

¤ triangle mesh 
¤ vertices
¤ Triangles

¤ parameter mesh
¤ parameter points
¤ parameter triangles

¤ parameterization
¤ piecewise linear map 



Parametrization: Mass-Spring

¤ replace edges by springs

¤ Position of vertices p0..pn

¤ UV Position of vertices u0..un

¤ relaxation process



Energy Minimization

¤ energy of spring between pi and pj :

¤ spring constant (stiffness)

¤ spring length (in parametric space)

¤ total energy

¤ partial derivative



Linear System

¤ ui is expressed as a convex combination of its neighbours uj

¤ With weights

¤ LEAD to Linear System!



Which Weights?

¤ uniform spring constants

¤ Proportional to 3D distance



Which Weights?

¤ NO linear reproduction

¤ Planar mesh are distorted



Which Weights?

¤ suppose S to be is planar

¤ specify weights        such that

¤ Then solving

¤ Reproduces S



Which Weights?

¤ Wachspress coordinates

¤ discrete harmonic coordinates

¤ mean value coordinates normalization



Recap

¤ Parametrization

f S

Ω f-1

2D 3D



Weight ed average

¤ discrete harmonic coordinates

normalization



Harmonic parametrization

¤ Linear sistem

¤ Sparse matrix (2n x 2n), where n is number of vertices of the 
mesh

¤ Express each point as weighted sum of its neighbors

¤ Find x such that Ax=0

¤ x are the final UV coordinates!



Harmonic parametrization
¤ Fix the boundary of the mesh to UV

¤ Express each UV position as linear combination of neighbors

¤ Use cotangent weights!



Harmonic Weights

¤ Used to smoothly interpolate scalar values over a mesh given 
some sparse constraint

¤ Useful to interpolate deformations



Least Squares Conformal maps

¤ Doesn’t  need the entire boundary to be fixed

¤ Imposing that two vectors on UV maps to 2 orthogonal, same 
length vectors in 3D.
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Least Squares Conformal maps
¤ Need to fix only 2 vertices to disambiguate

¤ Why?



As-rigid-as-possible parametrization (0)
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Input 3D 
mesh

Output 2D 
parameterization

Local-Global Approach



As-rigid-as-possible parametrization (1)

¤ Each individual triangle is independently flattened into plane 
without any distortion

Isometric



As-rigid-as-possible parametrization (1)

¤ Merge in UV space (averaging or more sophisticated 
strategied)

Reference triangles x Parameterization u



As-rigid-as-possible parametrization (1)

¤ Warning: it does not guarantee injectivity…



Deriving Cuts

¤ Splitting the mesh in sub-partitions

¤ Each patch must be disk-like



Orthoprojection (0)

¤ Use orthographics Projection from multiple directions

¤ Map each triangle in the “best projection”

¤ Use depth peeling for handling overlapping parts

3D
UV



Depth peeling
¤ Depth peeling is a multipass technique to render translucent 

polygonal geometry without sorting polygons.
(zbuffer and transparency do not work well together)

¤ The idea is to to peel geometry from front to back until there is 
no more geometry to render.



Orthoprojection (1)

¤ Small isolated pieces are removed 
and merged with bigger areas, to 
avoid fragmentation

¤ Useful for Color-to-Geometry 
mapping

¤ If you have a set of photos
aligned over a 3D object
they induce a direct 
parametrization by simply 
assigning each triangle to 
the best photo



Growing Cuts

¤ Isolated pieces are removed and 
merged with bigger areas, to avoid 
fragmentation

¤ Useful for Color-to-Geometry 
mapping

Find the shortest path from the point with the 
highest distortion to the boundary.
Iterate. 



Measuring Parametrization Quality
¤ Not an easy task to be done in a synthetic way

¤ Many different measures 
¤ see Real-World Textured Things dataset -> https://texturedmesh.isti.cnr.it/index

¤ Atlas crumbliness and solidity
¤ Crumbliness is the ratio of the total length of the perimeter of the atlas charts, 

summed over all charts, over to the perimeter 
of an ideal circle having 
the same area as 
the summed 
area of all charts.


