Spatial Indexing GMP 22/23

Paolo Cignoni
Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche

Problem statement

- Let \boldsymbol{m} be a mesh:
- Which is the mesh element closest to a given point \boldsymbol{p} ?
- Which are the elements inside a given region on the screen?
- Which elements are intersected by a given ray r ?
- Let m^{\prime} be another mesh:
- Do \boldsymbol{m} and \boldsymbol{m}^{\prime} intersect? If so, where?

A spatial search data structure helps to answer efficiently to these

Problem statement

- Picking on a point
- Selecting a region

Problem statement: Rendering

- Path tracing (aka unbiased ray tracing):
- From the eye, shoot a ray for each pixel, and find the first surface it encounters.
- From this point shoot many other rays and find their intersection Recur until you find either the sky or an emissive surface

Problem statement: Rendering

- Path tracing (aka unbiased ray tracing):
- The core of the problem is

Given a ray find the first primitive it encounters.

- You shoot many rays (10~1000) for each hit surface
- Primitives can easily be $\mathrm{O}\left(10^{\wedge} 5\right)^{\sim} \mathrm{O}\left(10^{\wedge} 9\right)$

> viewport

Problem statement: Dynamics/Simulation

- Simulating rigid body dynamics requires mainly two tasks:
- Computing the position according to current forces
- Computing what are the new forces according the current positions
- Reaction forces after collision

Problem statement

- Collision detection: in dynamic scenes, moving objects can collide.

Problem statement

- Without any spatial search data structure the solutions to these problems require $O(n)$ time, where n is the numbers of primitives ($\mathrm{O}\left(\mathrm{n}^{2}\right)$ for the collision detection)
- Spatial data structure can make it (average) almost constant or expected logarithmic.
- Strong complexity lower bound (worst case log) are possible only for restricted (often not-practical) settings.
- Hard to be proved, reasonable heuristics are the the standard

Indexing Structures

- Two Class of structures
- Non Hierarchical / Flat based
- It would seem trivial, but there are reasons for them
- Hierarchical
- Divide et impera

Uniform Grid

- Description: the space including the object is partitioned in cubic cells; each cell contains references to "primitives" (i.e., triangles)
- Construction.

Primitives are assigned to:

- The cell containing their feature point (e.g., barycenter or one of their vertices)
- All the cells spanned by each primitive
- Regular grids access by position is trivial:
- If you want to know if something is at (x, y, z) just use integer division...

Uniform Grid

- Closest element (to point p):
- Start from the cell containing p
- Check for primitives inside growing spheres centered at p
- At each step the ray increases to the border of visited cells
- Cost
- Worst: O(\#cells+n)
- Average: O(1)

Uniform Grid

- Intersection with a ray:

- Find all the cells intersected by the ray
- For each intersected cell, test the intersection with the primitives referred in that cell
- Avoid multiple testing by flagging primitives that have been tested (mailboxing)
- Cost:

- Worst: $\quad O(\#$ cells $+n)$
- Aver: $\quad O(\sqrt[d]{\# \text { cells }}+\sqrt[d]{n})$

Uniform Grid

- Memory occupation: O (\# cells + n)
- Pros:
- Easy to implement
- Fast query
- Cons:
- Memory consuming
- Performance very sensitive to distribution of the primitives.

Spatial Hashing

- The same as uniform grid, except that only non empty cells are allocated

Uniform grid

Spatial hashing

Spatial Hashing

- Cost: same as UG, except that in worst case the access to a cell is O(\#cells) because of collisions
- Memory occupation:
- Worst.: all volumetric cells are used
- Aver. : only a few surface intersecting cells are allocated
- Pros
- Fast query if good hashing is done
- Easy to implement
- Less memory consuming
- Cons:

Sparse 3D data $n=41,127$ voxels in 128^{3} volume $\quad \begin{gathered}\text { Hash table } H \\ m=35^{3} \\ (=42,875)\end{gathered}$

Perfect spatial hashing [Lefebvre,Hoppe 06]

- Performance very sensitive to distribution of the primitives.

UG Approach: Cell Size

- Uniform grids are input insensitive
- What's the best choice for the example below?

Hierarchical Indexing

- Divide et impera strategies:
- The space is partitioned in sub regions
- ..recursively

Hierarchical Indexing

- Divide et impera strategies:
- The space is partitioned in sub regions
- ..recursively

Hierarchical Indexing

- Divide et impera strategies:
- The space is partitioned in sub regions
- ..recursively

Hierarchical Indexing

- Divide et impera strategies:
- The space is partitioned in sub regions
- ..recursively

Basic Facts

- The queries correspond to a visit of the tree
- The complexity is sublinear (logarithmic) in the number of nodes
- The memory occupation is linear
- A hierarchical data structure is characterized by:
- Number of children per node
- Spatial region corresponding to a node

Binary Space Partition-Tree (BSP)

- Description:
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

- Description:
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

- Description:
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

- Description:
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

- Description:
- It's a binary tree obtained by recursively partitioning the space in two by a hyperplane
- therefore a node always corresponds to a convex region

Binary Space Partition-Tree (BSP)

- Query: is the point p inside a primitive?
- Starting from the root, move to the child associated with the half space containing the point
- When in a leaf node, check all the primitives
- Cost:
- Worst: $O(n)$
- Aver: $O(\log n)$

Binary Space Partition-Tree (BSP)

-What could go wrong?

- What happen to split primitives? Can I bound them?
- Where to place the plane?
- A common strategy is:
- Primitives are planar faces:
- Use one of the primitive as splitting plane and decompose the rest

BSP-Tree Cost

- Building a BSP-tree requires to choose the partition plane
- Choose the partition plane that:
- Gives the best balance?
- Minimize the number of splits ?
-it depends on the application
-Cost of a BSP-Tree

```
C(T)=1+P(TL)C(TL)+P(T}\mp@subsup{T}{R}{})C(\mp@subsup{T}{R}{}
```

- Where $P\left(T_{L}\right)$ s probability that T_{L} isvisited given that T has been visited.

BSP Tree Cost

- How to choose the splitting primitive?
- Try to guess the cost:

$$
C(T)=1+P\left(T_{L}\right) C\left(T_{L}\right)+P\left(T_{R}\right) C\left(T_{R}\right)
$$

- We choose the primitive that minimize

$$
1+\left|S\left(T_{L}\right)\right| \alpha+\left|S\left(T_{R}\right)\right| \alpha+\beta S
$$

- S_{L} number of primitives in the left subtree
- s number of primitives split by the chosen primitive
- $\operatorname{Big} \alpha$, small β yield a balanced tree
- $\operatorname{Big} \beta$, small α yield a smaller tree

KD-Tree

- Kd-tree : k dimensions tree
- It's a special kind of BSP tree with axis-aligned bisector planes
- It depends on:
- Choosen Axis
- Point on axis where to define the plane
- Advantages wrt BSP:
- Test are really fast (to explore the tree)
- Lower memory consumption

KD-Tree

KD-Tree

KD-Tree

KD-Tree

Kd-tree More on cost

- Example Ray intersection
- $C(T)=1+P\left(T_{V}\right) C\left(T_{L}\right)+P\left(T_{R}\right) C\left(T_{R}\right)$
- The cost of a final leaf is roughly the number of primitives
- (you have to test them)
- $\mathrm{P}\left(\mathrm{T}_{\mathrm{L}}\right)$ is more interesting: $P\left(T_{L}\right)=\frac{\mid \text { rays intersecting } T_{L} \mid}{\mid \text { rays intersecting } T \mid}$

Kd-tree More on cost

$$
P\left(T_{L}\right)=\frac{\mid \text { rays intersecting } T_{L} \mid}{\mid \text { rays intersecting } T \mid}
$$

You can consider rays as pairs of points over the surface of the cell.
Intuitively a ray $\left(p_{1}, p_{2}\right)$ that hits T hits also T_{L} IFF either p_{1} or p_{2} are on T_{L} With a few assumptions on ray distrib.

$$
P\left(T_{L}\right)=\frac{\mid \text { surface area } T_{L} \mid}{\mid \text { surface area } T \mid}
$$

KD-Tree:construction

- Input:
- axis-aligned bounding box ("cell")
- List of triangles

- Base Operations

- Split a cell using an axis aligned plane (where?)
- Distribute triangles among the two sets
- Recursive call

In the middle

KD-Tree:range query

- Query: return the primitives inside a given box

- Algorithm:

- Compute intersection between the node and the box
- If the node is entirely inside the box add all the primitives contained in the node to the result
- If the node is entirely outside the box return
- If the nodes is partially inside the box recur to the children
- Cost: if the leaf nodes contain one primitive and the tree is balanced: $O\left(n^{1-\frac{1}{d}}+k\right) \mathrm{n}=$ \#primitives $\mathrm{d}=$ dimension
- $\mathrm{O}\left(\mathrm{n}^{2 \mathrm{~d}}\right)$ possible results

Nearest Neighbor with kd-tree

- Query: return the nearest primitive to a given point c
- Algorithm:
- Find the nearest neighbor in the leaf containing c
- If the sphere intersect the region boundary, check the primitives contained in intersected cell s.

Quad-Tree (2D)

- The plane is recursively subdivided in 4 subregions by couple of orthogonal planes

Region Quad-tree

Point Quad-tree

Quad-Tree (2d):example

- Widely used:
- Terrain rendering: each cross in the quatree is associated with a height value

Oct-Tree (3d)

- The same as quad-tree but in 3 dimensions:

Large meshes: out of core

Oct-Tree (3d)

- Extraction of isosurfaces on large dataset
- Build an octree on the 3D dataset
- Each node store min and max value of the scalar field
- When computing the isosurface for alpha, nodes whose interval doesn't contain alpha are discarded

Advantages of quad/oct tree

- Position and size of the cells are implicit
- They can be explored without pointers by using a linear array (convenient only if the hierarchies are complete) where:
quadtree

$$
\text { Children }(i)=4 i+1, \ldots, 4^{*}(i+1)
$$

$$
\operatorname{Parent}(i)=\lfloor i / 4\rfloor
$$

octree

$$
\begin{aligned}
& \text { Children }(i)=8 i+1, \ldots, 8 *(i+1) \\
& \text { Parent }(i)=\lfloor i / 8\rfloor
\end{aligned}
$$

Conclusion

- No perfect data structure
- Depend a lot on your pattern of query
- Close to surface vs random
- Static vs dynamic

