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Remeshing
¤ Any discretization is an approximation 

¤ For the same abstract shape you can have many different 
discretizations

¤ No absolute ideal discretization exists 



Remeshing
¤ Any discretization is an approximation 

¤ For the same abstract shape you can have many different 
discretizations

¤ No absolute ideal discretization exists 

¤ Metrics depends on applications
¤ Closeness/Distance

¤ How far is my discretization from the intended shape
¤ Conciseness

¤ Number of primitive really needed
¤ Shape/Robustness

¤ Not all triangles are equals VS



Remeshing
¤ Refinement / Subdivision

¤ Your starting discretization is too coarse
¤ Guess/invent information consistently
¤ Metrics!

¤ Coarsening / Simplification
¤ Your starting discretization is too dense

¤ Drop less useful information 
¤ Metrics!



Subdivision Surfaces
¤ Subdivision defines a smooth curve or surface as the limit of a 

sequence of successive refinements



An example
¤ Geri's Game (1997)

¤ First non academic use of subdivisions surfaces



Motivation
¤ Why using them? 

¤ CONTROL
¤ By adjusting the position of a few points of (a) you control the 

complex shape of a few control points



Sharp Features



Subdivision Classification

Primal Dual
Faces split into sub faces New faces for each vertex, edge 

face

Approximating Interpolating
Vertexes of the base mesh are just 
control points

Vertices of the base mesh stay 
fixed and you build a surface 
intepolating them



Subdivision Classification



Subdivision Classification



Doo Sabin
¤ Dual, Approximating 

¤ Polygonal mesh

¤ Creates a face for each vertex, edge and face



Doo Sabin



Catmull Clark
¤ Polygonal / Primal / Approximating

¤ 1 to 4 subdiv

¤ New vertexes obtained from existing ones again using 
appropriate masks



Catmull-Clark
¤ Two Nice Properties

¤ Pure quad mesh after one subdivision step 

¤ The limit surface and its derivative of Catmull–Clark subdivision 
surfaces can also be evaluated directly, without any recursive 
refinement.
[Stam 1998]



Loop Scheme
¤ Triangular meshes, (primal, approximating)

¤ Edges are splitted and new vertices are 
reconnected to create new triangles



Loop Subdivision



Butterfly subdivision
¤ Primal / Triangular Meshes / Interpolating

¤ Continuous 
¤ C0 on extraordinary vertices(valence <4 or >7) 
¤ C1 elsewhere



Butterfly subdivision



Butterfly subdivision



Simplification

¤ Reduce the amount of polygons composing a mesh with 
minimal effect on the geometry

150 K triangles 80 K triangles



Applications

¤ Erase redoundant information with minimal effect on the 
geometry (in case of iso-surface extraction)



Applications

¤ Multi-resolution hierarchies for
¤ efficient geometry processing 
¤ level-of-detail (LOD) rendering 
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Applications

¤ • Adaptation to hardware capabilities 
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Applications

• Adaptation to hardware capabilities



Size-Quality Tradeoff

¤ • Complexity vs accuracy is a non linear relation
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Size-Quality Tradeoff
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error

size



Problem statement

¤ Given: M=(V,F)

¤ Find: M′ = (V′, F′) such that
¤ |V’| = n < |V| and ||M − M’|| is minimal, or
¤ ||M − M′|| < ε and |V′| is minimal

¤ Reduce the amount of vertices minimizing the error, or

¤ Keep the error below a threshold and minimize the number 
of vertices
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Problem Statement

• Given:  

• Find:                      such that

1.                          and                    is minimal, or

2.                            and         is minimal

M = (V,F)

M
′ = (V ′

,F
′)

|V ′| = n < |V|

|V ′|

‖M−M′‖

‖M−M′‖ < ε

M M
′



Appearance similarity

¤ Difference between two images: (trivial)

¤ Difference between two objects: Integrate the above over 
all possible views

D(I1, I2 ) = 1
n2

d(I1(x, y), I2 (x, y))
y
∑

x
∑
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Appearance similarity

● Difference between two images: (trivial)

● Difference between two objects:
– Integrate the above over all possible views

I
1 I
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D  I 1, I 2=
1

n
2∑

x

∑
y

d  I 1x , y , I 2x , y



Approximation error

¤ Quantifies the notion of “similarity” , Two kinds of similarity:
¤ Geometric similarity (surface deviation) 
¤ Appearance similarity (material, normal...)
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Approximation error

● Quantifies the notion of “similarity”
● Two kinds of similarity:

– Geometric similarity (surface deviation)

– Appearance similarity (material, normal…)



Geometric Similarity

¤ Two main components:
¤ Distance function 
¤ Function Norm:

¤ L2: average deviation
¤ Linf : maximum deviation - Hausdorff distance
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Geometric similarity

● Two main components:
– Distance function

– Function Norm:

● L2: average deviation 

● Linf : maximum deviation  - Hausdorff distance

[Image by C. Andujar]



Hausdorff Distance

DH (S1,S2 ) =maxx∈S1
(min
x∈S2

D(x, y))

D(S1,S2 ) =max{DH (S1,S2 ),DH (S2,S1))
Symmetric version

  

Hausdorff Distance

●

Symmetric version:

DH S 1,S 2=max
x∈S1

min
y∈S 2

Dx , y 

S 1

S 2

D S 1,S2=max {DH S 1,S 2 , DH S 2,S 1}



Hausdorff Distance: How to compute

¤ Approximate as:
1. Sample one surface surface (uniformly distributed)
2. For each point compute

Also consider using average distance 

max
y∈S2

D(x, y)

  

Computing Hausdorf Distance
● In a approximate way 

● Sample a surface

– Points uniformly distributed over it

– For each point x compute 

● points usually very near to surface, 

● UG works well, better than trees

– Avg are useful too...

min
y∈S2

D x , y



Problem statement

¤ Given: M=(V,F)

¤ Find: M′ = (V′, F′) such that
¤ |V’| = n < |V| and ||M − M’|| is minimal, or
¤ ||M − M′|| < ε and |V′| is minimal

¤ Reduce the amount of vertices minimizing the error, or

¤ Keep the error below a threshold and minimize the number 
of vertices

HARD .. The space of solution is huge!!!



NP- Hardness
¤ It is NP-Hard to decide if a given surface of n vertexes can be 
ε-approximated with a surface composed by k vertices. 

Agarwal, Pankaj K., and Subhash Suri. "Surface approximation and geometric 
partitions." SIAM Journal on Computing 27.4 (1998): 1016-1035.

¤ But even the 2D version of the problem is NP-Hard
¤ Simplifying a polyline to k vertexes so that it ε-approximate a 

optimal simplification using the undirected Hausdorff distance is 
NP-hard. The same holds when using the directed Hausdorff
distance from the input to the output polyline, whereas the 
reverse can be computed in polynomial time.

van Kreveld, Marc, Maarten Löffler, and Lionov Wiratma. "On Optimal Polyline 
Simplification using the Hausdorff and Frechet Distance." arXiv preprint 
arXiv:1803.03550 (2018).



Heuristics: Incremental methods

¤ Based on Local Updates Operations

¤ All of the methods such that : 
¤ simplification proceeds as a sequence of small changes of the 

mesh (in a greedy way) 
¤ each update reduces mesh size and [~monotonically] 

decreases the approximation precision 



Local Operations

¤ vertex removal 

¤ edge collapse
¤ preserve location (one 

among the 2 vertex)
¤ new location

¤ triangle collapse
¤ preserve location (one 

among the 3 vertex)
¤ new location

remove
vertex

No. Faces

n-2

n-2

remove
face n-4



The common framework

¤ Loop{

select the element to be deleted/collapsed;

evaluate approximation  introduced; (simulate the 
operation)

update the mesh after deletion/collapse;

} until mesh size/precision is satisfactory;



Mesh Optimization

¤ As in [Hoppe et al. ‘93]

¤ Simplification based on the iterative execution of :
¤ edge collapsing
¤ edge split 
¤ edge swap



Mesh Optimization

approximation quality evalued with an  energy function :

E (M)= Edist (M) + Erep (M) + Espring (M)

which evaluates geometric Fitness and repr. Compactness

Edist : sum of squared distances of the original points from M

Erep : factor proportional to the no. of vertex in M

Espring : sum of the edge lenghts



Greedy Approach (bounded error)

¤ For each region{
1. evaluate quality after simulated operation
2. put the operation in the heap (quality, region)
}

¤ Repeat{
¤ pick best operation from the heap
¤ If introduced error <ε{

¤ Execute the operation
¤ Update heap
}

} Until no further reduction possible



Simplification: Topology Preservation

¤ Edge collapse operation may create non manifoldness

Definitions
Manifold

� A surface is a 2Ͳmanifold if it is everywhereA�surface�is�a�2 manifold if�it�is�everywhere�
locally�homeomorphic�
to a diskto�a�disk

� Examples for a non manifold vertex and a� Examples�for�a�nonͲmanifold�vertex�and�a�
nonͲmanifold�edge
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Definitions
Manifold

� A surface is a 2Ͳmanifold if it is everywhereA�surface�is�a�2 manifold if�it�is�everywhere�
locally�homeomorphic�
to a diskto�a�disk

� Examples for a non manifold vertex and a� Examples�for�a�nonͲmanifold�vertex�and�a�
nonͲmanifold�edge

Olga�Sorkine,�NYU,�Courant�Institute 1/28/2009

manifold Non-manifold Non-manifold
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 Topology Preservation

● 2-Manifold
–  A surface Σ in R2 such that any point on Σ has an 

open neighborhood homeomorphic to an open disc 
or to half an open disc in R2

● A edge collapse can create non manifold 
situations



Simplification: Topology Preservation

¤ Let Σ be a 2 simplicial complex without boundary Σ’ is 
obtained by collapsing the edge e = (ab)

¤ Let Lk (σ) be the set of all the faces of the co-faces of σ 
disjoint from σ
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Topology Preservation

● Let Σ be a 2 simplicial complex without boundary 
● Σ’ is obtained by collapsing the edge e = (ab)
● Let Lk (σ) be the set of all the faces of the co-faces of σ disjoint 

from σ

a ab

Σ and Σ’ are homeomorphic iff 
Lk (a) ∩ Lk (b) = Lk (ab)

[Dey 99]



Simplification: Topology Preservation

¤ Lk(a) ∩ Lk(b)= {x,y }=Lk(ab)

¤ Lk(a) ∩ Lk(b) ={x,y,z,zx} ≠ {y,z}= Lk(ab)

  21

Topology Preservation

Lk(a) ∩ Lk(b)= {x,y }=Lk(ab)

Lk(a) ∩ Lk(b) ={x,y,z,zx} ≠ {y,z}= Lk(ab)

a

y

x

b

a
z

y

x

b
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Topology Preservation

Lk(a) ∩ Lk(b)= {x,y }=Lk(ab)

Lk(a) ∩ Lk(b) ={x,y,z,zx} ≠ {y,z}= Lk(ab)
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y
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Topology Preservation

¤ Mesh with boundary can be 
managed by considering a 
dummy vertex vd and, for 
each boundary edge e a 
dummy triangle connecting 
e with vd.

¤ Think it wrapped on the 
surface of a sphere
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Topology Preservation

● Mesh with boundary can be 
managed by considering a 
dummy vertex vd and, for 

each boundary edge e a 
dummy triangle connecting e  
with vd

● Think it wrapped on the 
surface of a sphere



Simplification: Efficient Evaluation
¤ Evaluating the error introduced by a collapse efficiently is not 

trivial

¤ Ideally use Hausdorff
¤ problem: at the beginning is easy (few points approximate well H) 

but at the end it become costly (you need a lot of time to 
evaluate properly)



Interpolating Positions (edge collapse)

¤ Average Vertex Position
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Computing a Representative

Average vertex position → Low-pass filter



Interpolating Positions (edge collapse)

¤ Median Vertex Position
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Computing a Representative

Median vertex position → Sub-sampling



Interpolating Positions (edge collapse)

¤ Quadrics Error Minimization
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Computing a Representative

Error quadrics



Quadric Edge collapse

¤ Create a plane for each involved vertex, considering their  
Normals

¤ Place the position of the new vertex where it minimize the 
squared distance to the planes

¤ Involves solving a simple linear system



Let nTv +d =0  be the equation representing a 
plane

The squared distance of a point x from the plane is
D(x) = x(nnT)x + 2dnTx + d2

This distance can be represented as a quadric
Q = (A,b,c) = (nnT,dn,d2)

Q(x)= xAx + 2bTx + c

also the sum of the distance of a point from a set of 
planes is still a quadric...

Quadric Error



The  error is estimated by providing for each  
vertex v a quadric QV representing the sum of the 
all the squared distances from the faces incident 
in v
The error of collapsing an edge e=(v, w) can be 
evaluated as Qw (v). 
After the collapse the quadric of v is updated as 
follow Qv= Qv+ Qw

Quadric Error



Quadric Edge collapse



Triangle Quality

¤ Possibly adding an energy term that penalize bad shaped 
triangles
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• Rate quality after decimation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– Color differences

– ...
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Fairness Criteria



Triangle Quality

¤ Possibly adding an energy term that tend to balance 
valence
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• Rate quality after decimation

– Approximation error

– Triangle shape

– Dihedral angles

– Valence balance

– Color differences

– ...
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Fairness Criteria



Examples : quadric edge collapse

Reduced from 50K to 12k faces
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Clustering
Vertex Clustering [Rossignac, Borrel `93]

detect and unify clusters of nearby vertices  (discrete gridding and 
coordinates truncation)
all faces with two or three vertices in a cluster are removed
does not preserve topology (faces may degenerate to edges, genus may 
change)
approximation depends on grid resolution

(figure by Rossignac)
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Clustering -- Examples
Simplification of a table lamp,  IBM 3D Interaction 
Accelerator

10,108 facets 1,383 facets 474 facets 46 facets


