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ABSTRACT
Watermarking of 3D meshes has received a limited attention
due to the difficulties encountered in extending the algo-
rithms developed for 1D (audio) and 2D (images and video)
signals to topological complex objects such as meshes. Other
difficulties arise from the wide variety of attacks and manip-
ulations 3D watermarks should be robust to. For this rea-
son, most of the 3D watermarking algorithms proposed so
far adopt a non-blind detection. In this paper we present a
new blind watermarking algorithm for 3D meshes. In order
to simultaneously achieve watermark imperceptibility and
robustness a multiresolution framework is adopted. To do
so we assume that host meshes are semi-regular ones, a prop-
erty that permits to first perform a wavelet decomposition
and then to embed the watermark at a suitable resolution
level. Watermark detection is accomplished by computing
the correlation between the watermark signal and the to-
be-inspected mesh. Robustness against geometric transfor-
mations such as rotation, translation and uniform scaling
is achieved by embedding the watermark in a normalized
version of the host mesh, obtained by means of Principal
Component Analysis. Experimental results show the valid-
ity of the proposed algorithm both in terms of imperceptibil-
ity and robustness against a wide class of attacks including
noise addition, smoothing and cropping.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; K.5.1 [Legal Aspects of Computing]:
Software Protection—Copyrights

General Terms
Algorithms
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1. INTRODUCTION
In the last decade, watermarking has been one of the most

active research topics, attracting the interest of researchers
with different backgrounds, such as signal processing, com-
munication and information theory, cryptograhy, and com-
putational vision [4, 2]. However a great deal of this research
effort has focused on digital watermarking of audio, images
and video data. The result is that watermarking technology
for this kind of media has now reached a good maturity. On
the contrary, watermarking of 3D objects is far from this
level of maturity even if 3D models are diffused in several
applications such as virtual prototyping, Cultural Heritage,
and entertainment industry (movies and video-games). One
of the reasons for this gap is that it is difficult to extend
common processing algorithms used in signal processing to
3D data. This is the case, for example of basic tools such as
filtering and frequency analysis.

Even if 3D objects can be represented in several differ-
ent ways (e.g. NURBS, voxels, implicit surface, polygonal
meshes) most of the existing 3D watermarking algorithms
work on polygonal meshes since this representation is the
lowest common denominator of the other ones (i.e. it is
easy to convert the other representations to meshes). For
example the watermark may be inserted by altering mesh
attributes such as vertex coordinates or vertex connectivity.
Here we follow the same approach, i.e. we embed the wa-
termark in the mesh describing the shape of the 3D object.

A strategy which is successfully adopted by many water-
marking algorithms designed to deal with still images and
video sequences, consists in first describing the host doc-
ument by means of a multiresolution framework and then
inserting the watermark at a resolution level presenting a
satisfactory trade-off between perceptibility of the water-
mark and robustness against attacks.

The extension of this multiresolution approach to the 3D
case, however, is not straightforward. The main reason for
this difficulty, as well as for the difficulties encountered when
trying to extend 2D processing tools to the 3D mesh case, is
that the essentially 2-manifold structure of 3D surfaces has
to be taken in account. In particular it is not possible to de-
fine equi-spaced sampling patterns on general 2-manifolds
thus making the extensions of Fourier and other multireso-
lution analysis and synthesis tools very difficult. So, in order
to extend common signal processing algorithms to geometry
data we need to use sampling patterns which are as regular
as possible.
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Subdivision surfaces [20] have recently attracted the at-
tention of computer graphics researchers since by provid-
ing a semi-regular sampling of surfaces, they are likely to
become a fundamental block of many multiresolution algo-
rithms for mesh processing [19]. This is the case, for exam-
ple, of 3D wavelet decomposition [14]. In the following, a
polygonal mesh obtaining by regularly subdividing an irreg-
ular coarse one will be referred to as a semi-regular mesh. In
this paper, we present a novel multiresolution mesh water-
marking algorithm particularly designed to work with semi-
regular meshes with subdivision connectivity.

The proposed algorithm embeds the watermark by modi-
fying the wavelet coefficients of 3D models obtained by de-
composing the host mesh by means of the algorithm pro-
posed by Lounsbery et al. [14]. Particular attention is paid
to ensure that the embedding algorithm preserves the vi-
sual integrity of the models. The watermark is recovered
by means of a correlation detector designed according to
statistical detection theory [12].

Another distinguishing feature of the watermarking algo-
rithm proposed in this paper, regards watermark detection.
In fact, whereas most 3D watermarking systems proposed so
far adopt non-blind detection, our system does not require
that the original non-marked mesh is available at the de-
tector, thus resulting in a much more flexible system easily
adaptable to practical applications.

This paper is organized as follows. In section 2 a brief
overview of 3D models representation is given, and the pe-
culiarities of 3D watermarking reviewed. In section 3, the
state of the art of 3D watermarking is briefly sketched. Sec-
tion 4 describes the new watermarking algorithm, with re-
gard to the embedding phase, whereas section 5 is devoted
to watermark detection. Experimental results are presented
in section 6. Finally some conclusions are drawn in section
7.

2. BACKGROUND
In this section we give some background material on 3D

models representation and outline the main peculiarities of
3D watermarking.

2.1 3D models representation
Different representations are commonly used for 3D mod-

els; for example a 3D model can be described as a collection
of parametric curves (e.g. Non-Uniform Rational B-Splines,
NURBS) or as a set of implicit surfaces1. More usually, a
3D model is represented by polygonal meshes.

A mesh M can be seen as a t−uple (K, V ) where V =
{vi ∈ R3|i = 1 . . . Nv} is the set of the vertices of the model
(points in R3) and K is a set encoding adjacency informa-
tion for vertices, edges and faces of the mesh. In particular
K is formed by subsets of I = {1, . . . , Nv} called simplices.
We have three types of simplices: vertices V = {{i}|i ∈ I},
edges E = {{i, j}|i, j ∈ I, {i, j} is an edge} and faces F =
{{i, j, k}|i, j, k ∈ I, {i, j, k} is a face}. The set K is called
simplicial complex and is defined as K = V⋃ E ⋃F . A
vertex vi is a neighbor of another vertex vj if an edge ex-
ists that connects vi and vj . The set of all the neighbors

1The implicit method uses a function depending on axis
variables, usually equal to 0, to describe a shape. For ex-
ample the equation x2 + y2 + z2 = 1 represents the sphere
of radius 1.

of a vertex vi is called 1-ring of the vertex and is defined
as v1(i) = {j|{i, j} ∈ E}. The cardinality of v1(i) is called
degree or valence of the vertex vi. The geometric realization
of a simplex s ∈ K, denoted with ϕ(s), is the strictly convex
hull of the vertices vi with i ∈ s. For example the geometric
realization of an edge {i, j} ∈ E is the segment connecting
the vertex vi with the vertex vj , the realization of a face
{i, j, k} ∈ F is the triangle defined by the vertices vi, vj and
vk, and so on. The 3D model is the geometric realization of
the mesh ϕ(K) defined as

⋃
s∈K ϕ(s). Usually the vertices

are characterized not only by theirs coordinates but even by
other attributes such as texture coordinates, color and so
on. Here we are interested only in the geometry of the mesh
so we do not take in account these attributes. In the follow-
ing when we refer to a mesh we intend a triangular mesh,
i.e. a mesh composed by triangles only. This assumption
implies no loss of generality since every polygon of a non-
triangular mesh can be triangulated to obtain a triangular
mesh. A mesh is called irregular if its vertices can have any
valence, completely-regular if all vertices have the same va-
lence and semi-regular if most of its vertices have the same
degree except a small number that can have any valence.
This last definition arises because a semi-regular mesh is
obtained by repeatedly and regularly subdividing [20] an ir-
regular mesh. During the subdivision process the irregular
vertices of the initial mesh remain irregular while most of the
newly inserted vertices converge to valence six (for triangu-
lar semi-regular mesh). This classification is very important
because for semi-regular meshes (and for completely regular
ones) a lot of geometric processing tools exist. For exam-
ple wavelet decomposition is defined only for semi-regular
and completely-regular meshes[14]. It is important to un-
derline that an irregular mesh can be always converted to
a semi-regular one by an operation called remeshing [1, 21,
13]. As noted in the introduction, our algorithm is expressly
designed to work with semi-regular meshes so to take ad-
vantage of the multiresolution framework provided by 3D
wavelet analysis [14].

2.2 Main peculiarities of 3D watermarking
Any watermarking system must cope with three basic, yet

conflicting, requirements: payload, robustness and imper-
ceptibility. In 3D watermarking, each of the above aspects
assume a particular characterization.

2.2.1 Watermark payload
The payload of a watermarking systems is the amount

of information bits that the watermark is able to convey.
In general, watermark payload depends on the particular
watermarking algorithm and it is related to the character-
istic of the host data. This is also true for 3D models: the
achievable payload is tightly related to the complexity of
the mesh. Because it is not simple to define mesh complex-
ity from an information theoretic viewpoint, we will refer to
mesh complexity as the number of faces and vertices it con-
tains, assuming that mesh vertices do not over-sample the
shape they represent.

2.2.2 Imperceptibility
Watermark imperceptibility is a crucial point for 3D wa-

termarking since in many cases the user is allowed to ma-
nipulate the 3D mesh in a variety of ways. For instance, it is
easily guessed that watermark visibility will depend on the
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particular rendering algorithm used to visualize the mesh,
e.g. it will depend on the shading algorithm, the reflectance
properties of the object and so on. So far, only a few studies
on 3D watermark perceptibility have been done, all the more
that a 3D model can be viewed in an interactive way thus
making the perceptual analysis of 3D models more complex
than for image or video data. Our approach to guarantee
the visual quality of the watermarked model is to perform
an interactive visual comparison between the watermarked
and the original mesh to establish the maximum watermark
power that can be injected within the host model without
introducing significant distortions in the geometry of the
model. Fixed rendering conditions have been also assumed.
The possibility of using an automatic process indicating the
maximum watermark power still ensuring invisibility is a
matter of an on-going research.

2.2.3 Robustness
A final important requirement for any watermarking al-

gorithms, especially for those used in Intellectual Property
Right (IPR) protection applications, is robustness against
manipulations. One of the main peculiarities of 3D water-
marking is that a lot of sophisticated and difficult-to-prevent
attacks are possible on polygonal meshes. Just to men-
tion some, the watermark should be robust against noise
addition, translation, rotation, scaling, simplification, re-
triangulation, smoothing, cutting, remeshing and many oth-
ers. A detailed description of some of these attacks follows:

• Translation/Rotation/Uniform Scaling. These
geometric transformations are very used in computer
graphics to position a 3D model inside a scene. Other
geometric transformations less used than these, are
affine and projective ones may be used, even if they
are less common than .

• Noise. By noise attack we intend the addition of ran-
dom vectors to mesh vertices. The modulus of these
vectors have to be small compared with the mesh di-
mension to preserve the overall shape of the model.

• Re-triangulation. This attack changes the connec-
tions between mesh vertices leaving their position un-
altered. (see figure 1).

• Mesh smoothing. A smoothing of the surface repre-
sented by a polygonal mesh can be obtained by mesh
filtering such as Taubin filtering [22]. This kind of fil-
ter acts on the mesh as a low-pass filter attenuating
the roughness of the surface.

• Polygonal simplification. Polygonal simplification
is often used to transmit a low-level version of the
model or to optimize a model eliminating most of the
non-salient faces.

• Cropping. Cropping concerns the disjunction of a
part of the model. Users can discard the pieces of
the model that they do not need (e.g. the hand of a
statue).

• Remeshing Remeshing is used to regularize a mesh
converting an irregular mesh into a semi-regular [13,
1, 21] or a completely-regular [6] one. This operation
can be seen as a geometric resampling of the shape of

Retriangulation

Figure 1: Re-triangulation attack.

the model followed by a re-definition of the vertices
connections (a re-triangulation).

2.2.4 Embedding domain
The first step towards the definition of a watermarking al-

gorithms, consists in the choice of the host features, i.e. the
selection of a set of properties of the host model that will
bear the watermark information. For a 3D objects many
possibilities exist, vertices positions, texture coordinates,
shape-related features and so on. Here, we are interested
in the geometric properties of the mesh, so we focus only on
geometric and topological features.

• Geometric Features. The main geometric features
of a mesh are its vertices. One possible way to embed
the watermark is to modify the position of the vertices.
Another way to embed the watermark is to modify the
normals of vertices (vertex normals are related to the
curvature of the mesh, hence to the shape of the 3D
objects). Both these entities are altered by perturbing
the coordinates of mesh vertices.

• Topological Features. These features are related
to the connectivity of the mesh vertices. Usually, a
set of connected vertices is selected by using some
geometric features. Then, the topology of these ver-
tices is redefined to encode one or more bits. Usually
topological features are used when the robustness con-
straint of the watermarking algorithm is relaxed, in
fact these features are particularly vulnerable to the
re-triangulation attack, that it is straightforward to
implement.

Our algorithm embeds the watermark by modifying the po-
sition of the mesh vertices in a transformed domain, i.e.
wavelet domain.

2.2.5 Watermark retrieval
The way the system extracts the embedded information

from the host mesh has a strong impact on practical ap-
plications. For example, it is known that non-blind tech-
niques are less useful in practical applications than blind
ones. Another important distinction is between readable and
detectable watermarks. In the first case, the algorithm em-
beds a code that can be re-extract (read) without knowing
it in advance. In the second case the algorithm is only ca-
pable of verifying whether a given code is contained in the
data or not. The latter kind of techniques are sometimes
referred to as 1-bit watermarking because the output of the
detector is just yes or not. The algorithm presented in this
paper belongs to the category of detectable watermarks.
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3. PREVIOUS WORKS
Watermarking of 3D models is a relatively new research

topic. One of the earliest works on 3D watermarking was
presented by Ohbuchi et al. in [16, 17]. They presented
several techniques embedding the watermark in the geomet-
rical domain: the watermark is embedded into the polygon
data by modifying either the vertex coordinates, the vertex
connectivity , or both. They also discussed the ordering
schemes into a set of geometrical or topological elements for
embedding and extracting the watermark. The techniques
they presented are non blind and robust to 3D affine trans-
formations and cropping.

Kanai et al. [10] propose to decompose the host mesh
into a multiresolution representation by applying the lazy
wavelet transform proposed by Lounsbery et al. [14]. Then
they modify the wavelet coefficients to embed the watermark
and detect it in a non-blind way. Our method is based on
this work and extend it providing a novel blind technique
for 3D watermarking.

Praun and Hoppe [18], also presented a detail-preserving
non-blind method driven by multiresolution theory. Due to
the construction of filters applied to the mesh, the water-
mark affects the overall sweep of surfaces, so that the algo-
rithm is resistant against many local transformation such as
noise addition and smoothing. Moreover robustness against
complex attacks such as remeshing are achieved thanks to a
regisration - resampling phase performed before the extrac-
tion phase.

Benedens [3] developed two methods, namely Normal Bin
Encoding and Affine Invariant Embedding, both of which
are based on the alteration of surface normals. He maps
surface normals onto the unit sphere, and then subtly alters
groups of similar normals in order to embed the individual
bits of the watermark sequence. However he demonstrates
robustness only with simplification attacks. These meth-
ods are not completely blind (semi-blind), in that some in-
formation directly derived from the original mesh must be
provided to the detector.

Thomas Harte and Adrian G. Bors[8] presented a blind
technique to embed information in a 3D objects by altering
vertices position in geometric domain. They demonstrated
robustness only against scaling and rotation and combina-
tion of geometrical transformation.

In [15], Ohbuchi et al. proposed a frequency domain ap-
proach to the watermarking of 3D shapes. The mesh is
first segmented into patches, and then the watermark is em-
bedded by modulating the amplitude of the mesh spectral
coefficients with a spread-spectrum approach. Spectral coef-
ficients are computed by means of a spectral analysis based
on the Kirchhoff matrix of each patch. Nevertheless, the
patch generation step cannot be performed automatically,
and manual interaction is needed.

Yin et al. reported an informed (non blind) detection,
robust mesh watermarking algorithm that works in a trans-
formed domain [23]. It is based on a multiresolution de-
composition of polygonal mesh shapes developed by Guskov
[7] that separates a mesh into detail and coarse feature se-
quences essentially by repeatedly applying local smoothing
combined with shape difference. This non-blind watermark-
ing algorithm has shown good robustness properties, some-
what similar to the method proposed by Praun et al. [18].

As some of the methods discussed above, our scheme em-
beds the watermark in a transformed domain, namely the

wavelet domain. As opposed to these methods, though, we
do not need the original mesh to recover the watermark,
since blind detection is accomplished.

4. WATERMARK EMBEDDING
The 3D watermarking system presented in this paper em-

beds a numeric code into a semi-regular mesh with subdi-
vision connectivity using a multiresolution framework. An
advantage of the multiresolution analysis is that it permits
to extend the geometrical deformations introduce by the wa-
termark from low to high resolution in a smooth way, so
that deformations result distributed around the perturbed
vertices avoiding the ”noise” effect usually caused by most
watermarking algorithm that works at full resolution. In
this way, the visual quality of the final watermarked model
is greatly improved. Moreover robustness improvements are
expected from this approach since the watermark is tied to
the very basic shape of the mesh, and hence it is very dif-
ficult to remove the watermark without that, at the same
time, the mesh quality is severely degraded. This also ex-
plains why we chose to work with semi-regular meshes, since
this is the basic assumption multiresolution analysis relies
on.

Another important feature of the new algorithm is de-
tector blindness. To obtain this result, and yet preserve
robustness against geometrical transformations, it is neces-
sary that the watermark embedding and detection phases
work on a normalized model, i.e. on a model re-oriented
and scaled as the original one. This normalization allows
to ignore translation, rotation and uniform scaling modifi-
cations. It goes without saying that model normalization at
the detector must be accomplished without the use of the
original model, not to compromise the blindness of the over-
all watermarking system. For this reason, a normalization
phase expressly designed to cope with geometric manipula-
tions of the host model is inserted before the embedding and
detection stages (see section 4.2).

In the following, after a brief excursus on subdivision sur-
face and multiresolution analysis, we describe in detail the
normalization phase and the watermark embedding algo-
rithm. Watermark recovery will be described in section 5.

4.1 3D multiresolution framework
Wavelet theory, and multiresolution analysis in general, is

a powerful tool for representing signals at different levels of
detail. In our system we implemented a class of 3D wavelets
based on subdivision surface [14]. According to this theory,
it is assumed that the mesh to be decomposed by wavelet
analysis is a semi-regular one, i.e. a triangular mesh ob-
tained by regularly subdividing an irregular one [20]. Note
that it is always possible to transform an irregular mesh
into a semi-regular one by a remeshing operation [1, 21, 13].
Usually remeshing operation is performed by extracting a
base mesh, parameterizing the model, and choosing a rule
of subdivision [20].

Figure 2 illustrates the decomposition and multiresolution
representation of a polygonal model by using the wavelet
transform. The high-resolution polygons are decomposed
into a low-resolution part and a detail part. The detail parts
are expressed as the wavelet coefficient vectors, while the low
resolution part is the coarse model.

In the following we indicate by M the semi-regular mesh.
The mesh M can be seen as a tuple (V, H) where V is the

146



(a) (b) (c)
B B ...

A A A
...

wavelet

coefficients

wavelet

coefficients

Figure 2: Decomposition of a polyhedral surface.

set of vertices and H encodes adjacency information (to rep-
resent edges and faces). M j indicates the mesh at level of
resolution j, in particular for a mesh with n levels of reso-
lution, M0 is the base mesh and Mn−1 = M is the mesh
at full resolution. With this notation we can formulate the
wavelet transformation by:

V j−1 = Aj−1V j

W j−1 = Bj−1V j
(1)

where V j = [vj
1v

j
2...v

j

mj ]
T is a matrix whose rows correspond

to vertex coordinates of the model M j , V j−1 corresponds to
the next lower resolution level j − 1 and mj is the number
of vertices at resolution j. W j−1 = [wj−1

1 wj−1
2 ...wj−1

nj−1 ]
T

denotes a matrix whose rows correspond to the wavelet co-
efficient vectors at resolution level j− 1 where nj−1 = mj −
mj−1. The matrices Aj and Bj are called analysis filters.
The process defined in equation (1) is recursively applied to
the high resolution part until the coarsest representation of
the mesh V 0 is obtained. The whole process can be formu-
lated as:

V 0 = A0A1...Al−2Al−1V l

W 0 = B0B1...Bl−2Bl−1V l
(2)

On the contrary, the inverse wavelet transform is expressed
as:

V j = P j−1V j−1 + Qj−1W j−1 (3)

where P and Q are called synthesis filters. The relationship
between these filters and the analysis ones is:

[
P j−1 Qj−1

]
=

[
Aj−1

Bj−1

]−1

(4)

The synthesis can be viewed more concretely as consisting
of two steps: each triangle of the low resolution mesh (V j−1)
is split into four sub-triangles by introducing the new ver-
tices at the midpoints of edges by using P j−1 (polyhedral
subdivision), and then the position of these new vertices is
modified according to the wavelet coefficients by using Qj−1.
Figure 3 shows this process. It is important to remark that
in this implementation the wavelet coefficients are vectors.

4.2 Mesh normalization
Mesh normalization works in two stages. In the first one,

model orientation is normalized by means of Principal Com-
ponent Analysis (PCA). Then the model is fitted to a bound-
ing box consisting of a cube of dimensions 1.0× 1.0× 1.0
centered in the barycenter of the model. Fitting is obtained
by applying a translation and a uniform scaling. While
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Figure 3: Inverse wavelet transform. In the first
step each triangle of the low resolution mesh is split
into four sub-triangles by introducing new vertices
at the midpoints and then the position of these new
vertices is modified according to the wavelet coeffi-
cients vectors.

translation and scaling are trivial operations, the orienta-
tion phase needs some comments.

As we already said, the basic idea is to re-orient the model
using principal component analysis. As opposed to previous
works (see for example [9]), we compute the covariance ma-
trix and the center of mass of the model by considering the
centers of the faces of the mesh, instead of its vertices. Each
face center is associate to a mass mi which is equal to the
area of the face (see [5]). This strategy is more reliable than
the one based on vertices positions because re-orienting the
model by means of its surface area distributions provides
more robustness against vertices positions changes. For ex-
ample, if we imagine to add randomly vertices around a
specific location on the mesh, in the first approach the cen-
ter of the mass changes, while in our approach mass center
remains the same. Specifically, we calculate the center of
mass O of the model as:

O =
1

nf

nf∑
i=1

pimi, (5)

where pi is the center of the i-th face of the model and the
mass mi associated to pi is the area of the face pi belongs
to. Then, the PCA is applied to the following covariance
matrix:

I =




∑n
i=1 x2

i mi

∑n
i=1 yiximi

∑n
i=1 ziximi∑n

i=1 xiyimi

∑n
i=1 y2

i mi

∑n
i=1 ziyimi∑n

i=1 xizimi

∑n
i=1 yizimi

∑n
i=1 z2

i mi


 (6)

where (xi, yi, zi) are the coordinates of the points pi’s rel-
ative to the center of mass O. Finally, the eigenvectors of
I are computed and used to align the principal axis of I to
the coordinate axis. This is done by simply multiplying the
position of each vertex by the PCA matrix.

4.3 Embedding rule
The watermarking embedding algorithm works according

to three parameters: i) a secret key K; ii) the resolution
level l that will host the watermark, and iii) a coefficient γ
determining the strength of the watermark.
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Figure 4: Scheme of the watermark embedding algorithm.

An overall picture of the watermark insertion process is
shown in figure 4. In particular the following steps are per-
formed:

1. A particular watermark-dependent structure called wa-
termarking map is generated according to K.

2. The input model M is decomposed into a set of wavelet
coefficients W 0, W 1, . . . , W n−1 and a base domain M0.

3. The vertices of the model at level l (V l) and the wavelet
coefficients at the same level (W l) are used by the em-
bedding algorithm to embed the watermark by altering
the modulus of a subset of the wavelets coefficients of
W l.

4. The watermarked wavelet coefficients W l
∗ and the other

sets of wavelets W l+1, . . . , W n−1 are used to recon-
struct the watermarked full resolution model.

In the next sections we give a detailed description of each
of the above step.

4.3.1 Watermarking map generation
Given the key K, a matrix called watermarking map (WMAP )

is built. This map is used in the embedding phase to insert
K within the host model. To build WMAP , the key K is
used as a seed to generate a pseudo-random sequence of dis-
placement values D = {d1, d2, . . . , dt} uniformly distributed
in the [−1, 1] interval. Then, this sequence is arranged into
a matrix with n rows and m columns (t = n × m). The
basic meaning of WMAP , is that of a mapping of the water-
marking signal into polar coordinates, where the row index
of WMAP samples the azimuth angle (θ ∈ [0, 2π]) and the
column index samples the elevation angle (φ ∈ [0, π]). The
number of rows and columns of WMAP determines the ac-
curacy with which the polar representation of the unitary
sphere is sampled. Here we adopted a WMAP of 360 × 180
elements, i.e. 1 degree of resolution.

4.3.2 Watermark casting
As we already said, the set of wavelet coefficients W l and

the vertices V l are used to embed the watermark. In partic-
ular the modulus of the each wavelet coefficients wi at level
l (W l) is altered as follows:

|wi,∗| = |wi|+ γ ∆D(v̂(wi), WMAP ) , ∀wi ∈ W
l
, (7)
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Figure 5: Watermark embedding. The modulus of
the wavelet coefficient |wl−1| is perturbed according
to the value of the watermarking map (WMAP ) in-
dexed by the polar coordinates (θv̂, φv̂) of the appli-
cation point v̂l of the wavelet coefficient.

where the exact meaning of W
l
will be explained below. The

exact amount of perturbation the modulus of the wavelet
coefficient undergoes, namely γ ∆D(v̂(wi), WMAP ), is de-
termined by the parameter γ, and by ∆D(v̂(wi), WMAP ),
a quantity which depends on the application point v̂(wi)
of the wavelet coefficient wi and by the watermarking map
WMAP .

Specifically, the polar coordinates (θv̂, φv̂) of v̂(wi) are
used to index the watermarking map and to obtain a value of
perturbation specific for that position and that watermark.
In the following we assume that (θv̂, φv̂) are expressed in
degrees and not in radians. Of course no guarantee exists
that the polar coordinates of v̂(wi) will exactly correspond to
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Figure 6: Example of computation of
∆D(v̂(wi), WMAP ). As an example, a 24-sample
long sequence D = {d1, . . . , d24} is arranged into a
watermarking map of 4 × 6 elements. The point
v̂(wi) of polar coordinates (θv̂ = 110.2°, φv̂ = 73.5°) is
mapped to ∆D(v̂(wi), WMAP ) = d9.

a position expressed by an integer index of WMAP , hence the
following simple interpolation rule is adopted to calculate
the exact value of ∆D(v̂(wi), WMAP ):

∆D(v̂(wi), WMAP ) = WMAP (θi, φi) (8)

θi = round(θv̂(m/360.0))

φi = round(φv̂((n− 1)/180.0))
(9)

where round(x) is the integer nearest to the value of x.
Note that if two or more points v̂(wi)’s are mapped to the
same index of WMAP , then some correlation is introduced
within the watermarking sequence ∆D(v̂(wi), WMAP ), hence
it is desirable that this happens as rarely as possible. In our
system the resolution of 1 degree has been found to be a good
trade-off between independence of wi’s and robustness. This
question will be better clarify in the experimental results
section. Figure 6 shows graphically how ∆D(v̂(wi), WMAP )
is calculated.

In order to minimize the geometrical distortion introduced
by the use of spherical coordinates, only those wavelets for
which φv̂ is far from the poles are marked. Thus, only
wavelets with ∆φ ≤ φv̂ ≤ 180.0 − ∆φ are marked. In our
implementation ∆φ is set to twenty degrees. We indicate

this subset with W
l
.

A particular attention must be paid to avoid that the
watermarking process produces negative modules. To do so
we replace negative modules with zero, that is:

|wi,∗| = min(0, |wi|+ γ∆D(v̂(wi), WMAP )) , ∀wi ∈ W
l

(10)

5. WATERMARK DETECTION
The detection procedure works as follows: the user speci-

fies the numeric key K and the level of resolution l where he
wants to verify the presence of K and the detector provides
a positive or negative answer.

To do so the watermarking map WMAP is generated by
starting from K, Vl and Wl are obtained by wavelet analysis,
and then the correlation between the watermarking signal

and the wavelet coefficients is calculated as follows:

ρ =
1

n

∑

wi∈W
l

|wi|∆D(v̂(wi), WMAP ) (11)

where n is the cardinality of W
l
.

If ρ is greater than a certain threshold Tρ the watermark
is present, else the model is declared non-marked. The value
of Tρ is obtained by means of statistical considerations. In
the next section we provide the theoretical analysis used to
determine this threshold and a theoretical evaluation of the
performance of the proposed algorithm. In the experimental
results section we validate this theoretical performance.

5.1 Choice ofTρ

The most popular approach to the choice of Tρ consists
in resorting to statistical detection theory. Specifically the
Neyman-Pearson criterion is usually adopted, which con-
sists in maximizing the missed detection probability for a
given probability of falsely revealing the watermark in a non-
marked host mode [2]. We use the same approach here. To
go on, we need to compute the probability of falsely detect-
ing the watermark presence, i.e.:

Pf = P{ρ > Tρ|H0}. (12)

where H0 indicates the hypothesis that |wi| are not marked.
Similarly we can define the probability of missing the wa-
termark as:

Pm = P{ρ < Tρ|H1}. (13)

where H1 indicates the hypothesis that |wi| are marked with
the watermark K whose presence is under verification.

In both cases, the error probabilities are obtained by fixing
the host model and averaging over different watermarks K.
In the sequel we will assume that watermark samples are
zero mean i.i.d. random variables. As we anticipated when
describing the role of the watermarking map, this is true only
if the application points of wavelet coefficients are mapped
into different elements of WMAP . In turn, this is true only
if the step used to sample the polar coordinates of v̂(wi) is
small enough. We found experimentally that by letting such
a sample step be equal to 1 degree a reasonable trade-off is
reached between independence of watermark samples and
robustness (see section 6).

In order to go on, let us indicate by w′i the i-th coeffi-
cient under inspection. We use a different symbol w′i to
explicitly indicate that the detector does not know whether
w′i is marked or not. We start by noting that according to
our model ∆D(wi)’s are independent random variables and
|w′i|’s are fixed parameters which are known to the detec-
tor2, hence, by invoking the central limit theorem, we can
conclude that ρ follows a normal distribution. To completely
characterize ρ, then, it is sufficient to estimate its mean and
variance. Let us assume that H0 holds. In this case we have
|w′i| = |wi|, hence:

µρ|H0 = E[ρ|H0] =
1

n
E


 ∑

wi∈W
l

|wi|∆D(v̂(wi))


 =

= µ∆D w = 0,

(14)

2From now on we avoid to explicitly indicate the dependence
of ∆D upon WMAP .
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where w =
∑ |wi|/n, n is the number of elements in W

l

and µ∆D is the mean of the sequence ∆D(v̂(wi)). As to the
variance of ρ under hypothesis H0, we can write:

σ2
ρ|H0 = var


 1

n

∑

wi∈W
l

|wi|∆D(v̂(wi))


 =

1

n
σ2

∆D
w2, (15)

with

w2 =
1

n

∑

wi∈W
l

|wi|2, (16)

denoting the sample mean square value of |wi| ∈ W
l
, and

σ2
∆D

denoting the variance of the sequence ∆D(v̂(wi)). We
can now calculate the false detection probability, obtaining:

Pf =

∫ ∞

Tρ

p(ρ|H0)dρ =
1

2
erfc

(√
(Tρ − µρ|H0)

2

2σ2
ρ|H0

)
. (17)

This expression of Pf can be inverted to calculate the de-
tection threshold, yielding:

Tρ =
√

2σρ|H0erfc
−1(2Pf ) + µρ|H0 . (18)

By inserting equations (14) and (15) in the above expression,
we finally have:

Tρ =

√
2σ2

∆D
w2

n
erfc−1(2Pf ). (19)

In a similar way we can evaluate the probability of missing
the watermark presence [2], obtaining:

Pm =
1

2
erfc

(√
(µρ|H1 − Tρ)2

2σ2
ρ

)
. (20)

By using the result in (19), it is easy to obtain the following
expression for Pm, in which the missed detection probability
is expressed as a function of Pf :

Pm =
1

2
erfc




√√√√√ (γσ2
∆D

−
√

2
n
σ2

∆D
w2erfc−1(2Pf ))2

2
n
σ2

∆D
w2 + γ2[E[∆D

4]− E[∆D
2]2]


 .

(21)
Equation (21) completely characterizes the detector perfor-
mance. Such performance are usually summarized through
ROC curves where the missed detection probability is plot-
ted against Pf .

6. EXPERIMENTAL RESULTS
In this section we report a selection of the results that

we obtained while testing the validity of our watermarking
algorithm. Specifically three aspects where considered: i)
watermark invisibility, ii) actual false detection probability,
and iii) robustness.

The models used in the experiments are the semi-regular
meshes made available to the public by the Multiresolution
Modeling Group of Caltech University. These models are
the ”bunny”, the ”feline”, the ”Venus” head, the ”rabbit”
and the ”horse” model. Here we present some of the re-
sults obtained, in particular, for the bunny and the Venus
models but similar results, from a qualitative viewpoint, are
obtained even for the other models.

bunny venus
l γmax l γmax

3 0.0005 3 0.0003
2 0.0008 2 0.0005
1 0.0030 1 0.0009

Table 1: Maximum value of γ before the watermark
becomes perceivable (γmax) for different watermark-
ing levels (l).

Model l P ∗f = 10−2 P ∗f = 10−3

bunny 3 3.43× 10−2 8.4× 10−3

bunny 2 1.35× 10−2 1.8× 10−3

bunny 1 1.11× 10−2 1.1× 10−3

venus 3 3.14× 10−2 6.4× 10−3

venus 2 1.07× 10−2 1.2× 10−3

venus 1 0.97× 10−2 1.0× 10−3

Table 2: Actual false alarm rate for different water-
marking levels (l). P ∗f is the target value of Pf .

6.1 Watermark Perceptibility
In order to achieve high visual quality of the watermarked

model we have carefully considered the problem of water-
mark perceptibility after its insertion in the model. As pre-
viously noticed, it is very difficult to evaluate in a objective
way the perceptibility of the geometric distortion introduced
by the watermarking process. Hence we evaluated this dis-
tortion by visual inspection; an human user compares the
original and the watermarked model using a software ex-
pressly designed for this purpose and find the maximum
watermark strength (γ) that results in a non-visible water-
mark. We used this analysis to determine a value of γ that
ensured invisibility for all the models used. All the experi-
mental results we provide in this section guarantee a imper-
ceptibility of the watermark, i.e. a high visual quality of the
watermarked model. An example of the influence of γ on
the visibility of the watermark is shown in figure 7, where
the 3D model ”Venus” has been watermarked with different
values of γ.

In table 1 it is shown how the maximum perceptually
tolerable value of γ changes while varying the model and
the resolution level l. In particular γmax increases at lower
resolution levels.

6.2 False alarm rate
Equation 19 permits to determine a threshold Tρ that

guarantees the performance of the detector in terms of false
detection probability. To validate this theoretical result, we
tried to detect 10,000 different watermarks on the same non-
marked model for a fixed value of Pf = P ∗f ; we expect that
the actual false alarm rate equals P ∗f . The results we ob-
tained are summarized in table 2.

As it is readily seen, the agreement between theory and
practice is rather good. The slight differences that can be
observed can be explained by considering how watermark co-
efficients are mapped onto the watermarking map WMAP .
In fact, as previously noticed, if the model has a great den-
sity of vertices it may happen that a certain number of dif-
ferent points v̂(wi) are mapped on the same index of WMAP .
The effect is that ∆(v̂(wi), WMAP ) values are no more inde-
pendent, thus increasing the actual variance of ρ and causing
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Figure 7: Watermark Perceptibility. (Left) Original Venus model. (Center) Venus model watermarked with
l = 3, γ = 0.0002, the watermark is imperceptible. (Right) Venus model watermark with l = 3, γ = 0.002, the
geometric manipulations introduced by the watermarking process become visible.

an actual value of Pf greater than expected. This problem
can be alleviated either by embedding the watermark at
a lower resolution level or by augmenting the resolution of
WMAP , for example by using a map with 720×360 elements
(0.5 degrees of resolution).

6.3 Robustness
One of the main problems of 3D watermarking is the wide

variety of different attacks possible on a polygonal mesh.
This is one of the main reason why many 3D watermarking
algorithms use the original model in the extraction phase.

Since our technique is specific for semi-regular meshes
with subdivision connectivity, we do not take in account
those attacks that alter this properties of the mesh such as
re-triangulation, simplifications or re-meshing. Instead we
tested the robustness of the algorithm against additive noise,
low pass filtering, geometric manipulations, cropping and a
combination of the above.

6.3.1 Additive noise
Additive noise is a standard attack to evaluate the per-

formance of a watermarking system. In our case the noise
is added to the watermarked model by perturbing its ver-
tices at full resolution in a random way. More specifically,
for each vertex a different displacement vector ∆noise =
(∆x, ∆y, ∆z) is applied. The vector components ∆x,∆y and
∆z are random variables with uniform distribution in the in-
terval [−∆, ∆]. In figure 8 the value of ρ and Tρ for increas-
ing values of ∆ is given. In particular the plot is given as a
function of the quantity lmed/∆, where lmed is the average
length of the edges of the model. The models used in this
test are the bunny and Venus both watermarked at level of
resolution l = 3 with γ = 0.0004 and Pf = 10−8. To give
a visual idea of the maximum amount of noise the water-
mark can survive, in figure 9, a noisy version of the bunny
model is shown, where noise strength is set to the maximum
level for which the watermark can be recovered. As it can
be seen, though the mesh is significantly deteriorated, the
watermark is still detectable.
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Figure 8: Robustness against Additive Noise at-
tack. (Top) Bunny model watermarked with l = 3,
γ = 0.0004 and Pf = 10−8. (Bottom) Venus model
watermarked with the same watermarking parame-
ters.
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Figure 9: Robustness against Additive Noise at-
tack. Original (up) and attacked (bottom) models.
The model is attacked with the maximum amount
of noise for which the watermark is detected.

6.3.2 Low pass filtering
Mesh filtering is used by a number of diverse applications,

e.g. to eliminate the surface imperfections in an 3D object
acquired by laser scanner or for editing purposes. Usually
mesh filtering is a local operations, in other words it affects
only the high-resolution part of the model. So, we expect
that by embedding the watermark at a low-medium resolu-
tion level a good resistance against this kind of attacks is
obtained. This is indeed the case. In particular we evalu-
ated the performance of the watermarking system against
the Taubin filter [22]. Several coefficients of the filter have
been tried to obtain different smoothing effects and these
battery of filters has been applied to the watermarked model
a certain numbers of times. An example of the results that
we obtained is given in Figure 10 and 11.

6.3.3 Geometric transformations
In the absence of further attacks, robustness against geo-

metric manipulations such as translation, rotation and uni-
form scaling is guaranteed by the normalization phase pre-
ceding both watermark insertion and detection. Some prob-
lems may arise when a geometric manipulation is accom-
panied by other attacks that may cause an error in the
normalization phase. Hence we measured the robustness
of the watermark when the marked mesh is filtered, de-
graded by noise addition and rotated. Specifically, in figure
12, the mesh obtained after a 22 degree rotation around
the x axis, 11 degree rotation around y axis, 5 applica-
tions of Taubin filtering with λ = 0.6307 and µ = −0.6352
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Figure 10: Robustness against Taubin filtering (the
coefficients of the filter are λ = 0.6307 µ = −0.6352
producing a strong smoothing effect). (Top) Bunny
model. (Bottom) Venus model. For both the models
watermarking parameters are the same used for the
noise attack (l = 3, γ = 0.0004, Pf = 10−8).

Figure 11: Visual effect of Taubin filtering (15 itera-
tions). The watermark can be recovered even if the
host mesh is severely degraded by the filter.
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Figure 12: Robustness against combined attacks.
The model has been watermarked with l = 3,γ =
0.0004 and Pf = 10−5, then it has been smoothed by
Taubin filter (λ = 0.6307, µ = −0.6352, 5 applications),
attacked with noise (∆ lmed = 0.1) and rotated by 22
around x axis and 11 around y axis. The detector is
still able to recover the watermark.

parameters and noise addition (∆/lmed = 0.1) is shown.
Even in this case the watermark was successfully recovered
(ρ = 3.02× 10−5, Tρ = 3.06× 10−5).

6.3.4 Cropping
Finally we verified whether the watermarked can be re-

covered even when a part of the mesh is removed. This
may cause a synchronization problem, since the mapping on
WMAP depends by the center of mass of the mesh. In fact,
if a part of the mesh is cut, the position of the center of
mass changes desynchronizing the watermarking map used
by the embedder and that available at the detector. Hence
in order to verify whether the watermark could be recov-
ered on a subpart of the mesh, we assumed that absolute
coordinates are used. It goes without saying that a proper
synchronization algorithm must be developed in order to en-
sure full robustness against cropping (for a possible way to
achieve this goal see section 7). Apart from the above con-
siderations, the watermark exhibited an excellent robustness
against cropping, as it is shown in Figure 13.

7. CONCLUSIONS AND FUTURE WORKS
In this paper we presented a new watermarking algorithm

for 3D models. In order to cast the watermarking problem
in a multiresolution framework, the algorithm is expressly
designed to work with semi-regular meshes, thus making 3D
wavelet analysis feasible. A particular mapping strategy is
proposed to take into account the non-regular sampling of
the 3D mesh. Correlation-based and geometric normaliza-
tion allow the blind detection of the watermark and a good
robustness against several attacks.

Several directions for future work remain open. First of
all, we are planning to apply the watermark to subparts of
the mesh [11]. By applying geometric normalizing to each
subpart, robustness against combined cropping and geomet-
ric manipulations should be achieved. We are also going to
evaluate the robustness of the watermark when the semi-
regular mesh is converted to a irregular one, edited, and

Figure 13: Cut Attacks. (Left) Bunny model water-
marked with l = 3, γ = 0.0009 and Pf = 10−8 and then
cut by a plane. (Right) Venus model watermarked
with l = 3, γ = 0.0004 and Pf = 10−8 and then cut by
a plane. In both cases the system is able to recover
the watermark.

brought back to a semi-regular format by a remeshing oper-
ation. Finally, to further diminish watermark visibility, the
possibility of modulating the watermark strength according
to perceptual considerations will be investigated.
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