
DOI: 10.1111/j.1467-8659.2009.01425.x COMPUTER GRAPHICS forum
Volume 28 (2009), number 8 pp. 2025–2032

eNVyMyCar: A Multiplayer Car Racing Game for Teaching
Computer Graphics

F. Ganovelli and M. Corsini

Visual Computing Laboratory, ISTI-CNR, Italy
{F.Ganovelli, M.Corsini}@isti.cnr.it

Abstract
The development of a computer game is widely used as a way of conveying concepts regarding Computer Science.
There are several reasons for this: it stimulates creativity, it provides an immediate sense of achievement (when
the code works), it typically covers all the aspects of an introductory course, and it is easy to find ideas just by
looking around and finding stimulation from one’s environment and from fellow students. In this paper we present
eNVyMyCar, a framework for the collaborative/competitive development of a computer game, and report the
experience of its use in two Computer Graphics courses held in 2007. We developed a multiplayer car racing game
where the student’s task is just to implement the rendering of the scene, while all the other aspects, communication
and synchronization are implemented in the framework and are transparent to the developer. The innovative feature
of our framework is that all on-line users can see the views produced by their fellow students. This motivates students
to improve their work by comparing it with other students and picking up ideas from them. It also gives students
an opportunity to show off to their classmates.

Keywords: teaching in context learning computer graphics

ACM CCS: K.3.2 [Computer and Information Science Education]: Computer Science Education

1. Introduction

Introductory Computer Graphics (CG) courses form part of
many Engineering and Computer Science course programs.
Computer Graphics, in its broader sense, includes a large
number of subfields such as geometric modelling, rendering
techniques, design, computer animation and computational
photography, just to cite a few. Normally, these are covered
as part of specialized courses (for example, Stanford Univer-
sity offers 13 different courses closely related to CG, ranging
from Mathematical Methods for Graphics to Advanced Ge-
ometric Algorithms). In this paper, we will particularly focus
on introductory CG courses.

Normally, an introductory CG course gives an overview
of the field and then focuses on the rasterization-based ren-
dering pipeline of modern graphics hardware. At the end of
this type of course the students should be able to develop
an interactive 3D application involving geometrical manipu-
lation and providing a more or less sophisticated rendering,

possibly including non-local lighting effects such as shad-
ows, ambient occlusion, reflection of the environment on the
objects’ surface and so on. CG concepts translate quite nat-
urally to practical exercises that can be carried out with a
computer, especially when an API such as OpenGL of Di-
rectX takes care of the underlying details. It is a common
practice to organize all the exercises in a single effort to
implement some kind of graphical application. For this pur-
pose, we propose eNVyMyCar (NVMC), a multiplayer car
racing game framework specifically designed for learning
CG concepts.

The choice of using a software framework for teaching CG
is based on several recent teaching experiences in the field of
Computer Sciences. For example, computer games have been
used to teach object-oriented programming [CC07, CC05]
and pattern design [Ges07] and CG itself [HS05]. The Can-
nibal Experience[BDHB08] game engine was specifically
designed at the Delft University to be used by students to
learn many aspects of game development. ETH setup a game

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA. 2025



2026 F. Ganovelli & M. Corsini / eNVyMyCar

programming laboratory [STG08] with the specific aim of
providing to the students in-depth understanding of Visual
Computing concepts and team-working skills. Many other
studies shown the beneficial effects of teaching computing in
context such as Xu et al. [XBK08] where robots and games
are used to drive motivation and retention.

The NVMC framework is a car racing game implemented
with a client-server architecture, where the student’s task is
simply to implement the rendering part alone. The framework
is designed so that the student does not need to take care
of the networking issues or of the physics (although such
aspects might be included in a more specialized course).
They are only required to understand a few very simple C++
classes describing the scene and render it interactively. The
description of the scene is minimal and concerns only the
parts that can physically influence the race, i.e. the streets,
the buildings and the trees (others can be easily added). They
do not look to concern themselves with how things look. This
then gives total freedom on how to represent their car, the
terrain, the sky etc.

In this sense it is quite straightforward to see that a racing
game is a perfect scenario for progressively mapping CG
concepts to code, for example, the geometric transforma-
tions (the front wheels that rotate and steer), the use of im-
postors (the billboards for the trees), and the environment
mapping (the dynamic reflection on the car). However, free-
ing the students of non-CG problems was not the only reason
for NVMC. We also wanted them to be able to share knowl-
edge and discuss problems in the same platform, and possibly
to write modular code that it could be moved from one client
to another (instead of the thousands-lines long main bodies).

Section 2 will give a detailed description of the NVMC
framework. In Section 3, we show how several Computer
Graphics techniques can be fitted into the project to prove
how this approach can be a very useful means for teaching
both basic and advanced CG topics. The results of the use of
NVMC as educational tool are reported in Section 4 and the
conclusions are outlined in Section 6.

2. eNVyMyCar: The Framework

NVMC is a car racing multiplayer game realized with a single
server-multiple client architecture.

The world represented by NVMC is made of a static part
and a dynamic part. The static part consists of the circuit, the
trees, the buildings and it is entirely stored by both the server
and the clients. The dynamic part consists of the state of the
cars (their position, orientation and speed) and the position
of the sun, hereafter the state of the race.

The simulation of the race is run on the server, which
updates the state of the race and broadcasts it to all the
connected clients.

A client corresponds to a player of the race. It receives
the state of the race from the server, renders the scene and
control the player’s car by sending messages to the server
(such as INCREASE_SPEED, STEER_LEFT, BRAKE, etc.)
which are processed and accounted for in the simulation.
The communication is asynchronous, meaning that mes-
sages are sent independently from each client and from the
server.

This may simply sound like a classic client-server scheme
for a multiplayer game, with commands sent from the clients
to the server and state of the system broadcasted from the
server to all the clients. The novelty of NVMC is that there
is another kind of data that the client may send, which is a
snapshot of the view provided to the player. The snapshots
follow the same path as the commands, except that they do
not influence the simulation of the race but are simply re-
bounced to all the other clients.

In this manner, while the client is running the developer
may see also snapshots from the other connected clients.
So this is where the ‘the envy factor’ comes into play. If a
student see snapshots of other clients they feel envious and
are stimulated to improve their own work. Of course it is not
really envy but the curiosity and desire to obtain a visually
pleasant result that motivated students to implement new
features influenced by each other ideas. This is very different
from comparing the students’ work at the exam or at fixed
milestones. It is more like forming a team where each student
can develop their own version.

Often course projects are assigned to small groups of peo-
ple but then often the individual contribution of students
of the same group to the project must be figured out with
an oral examination, while little feedback is given during
the development of the project. Furthermore, students of the
same group are typically in charge of different aspects of the
project so they may specialize too much in one topic and lack
insight into others (for example, one student may learn ev-
erything about normal mapping but never attempt to instance
a Vertex Buffer Object and so on). With NVMC every single
student is in charge of the whole project. They can exchange
ideas, tricks and code snippets, (as long as each student is
able to explain clearly every line that appears in their code)
and eventually everyone will have tackled all the difficulties
of the development.

The instructor may be connected to the server with their
own client and see how the projects are going. Note that
the upload of a snapshot is done upon client request and
not automatically. The developer may decide to code the
uploading of a snapshot at fixed intervals of time or, as all
the students did, associate the event with a key. This mech-
anism may also be used by the teacher to provide sugges-
tions to the class, by implementing their own client (sup-
posedly better than all those of the students) and uploading
snapshots.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



F. Ganovelli & M. Corsini / eNVyMyCar 2027

Figure 1: Software architecture of the NVMC framework.

2.1. Implementation

Figure 1 shows the structure of NVMC. The boxes with re-
turning arrows represent process threads, the boxes named in
bold are queues and the arrows are directed as the information
flow.

Cli::Main_Cycle_Th is the main thread of the
client and it is responsible for rendering the scene,
for writing commands to be sent to the server in the
Cli::Commands queue and for saving a copy of the cur-
rent view in the Cli::Snapshot memory area. The thread
Cli::Msg_snd_Th reads the commands from the queue
Cli::Commands and transmits them to the server. If the
commands is SEND_SNAPSHOT then the snapshot is read
and sent to the server. On the server side, the thread
Srv::Msg_rcv_Th receives all the communication from
the clients and stores commands in the local Commands

queue, where each entry is a couple (player, command) and
snapshots in the Srv::Snapshots area where the most
recent snapshot received from each client is stored. The
Srv::Main_Cycle_Th is responsible for running the simu-
lation of the race, which consists of updating the position of
each car, and saving the state of the race in Srv::State. In
addition, it updates the Srv::Snapshots area with the snap-
shot received in Srv::Snapshots_upd. Srv::Msg_snd_Th
continuously broadcasts the state of the race Srv::State

and the updating of the snapshot (when necessary) to all the
clients. Back in the client side, the thread Cli::Msg_rcv_th
receives the messages from the server and copy them to the
Cli::Snapshots and Cli::State areas, where they will
be read from Cli::Main_Cycle_Th. The NVMC frame-
work also provides a stand-alone mode in which the server

threads are launched within the same process (the client).
This is handy when the student works at home and does not
want to launch a separate process.

2.2. Interfaces towards the developer

The students’ goal was to implement their own rendering
engine for the game without necessarily knowing the under-
lying architecture, so NVMC provides a very simple software
interface. Basically the developer only needs to know the def-
inition of a few classes: Circuit, Car, Building, etc., to be able
to draw them, and three functions:

• Command(command_name) to issue a command to
the server

• UpdateScene(), which is called prior the rendering
cycle and updates all the dynamic data structures

• DrawScreenshots(), which is called at the end of the
rendering cycle and draws the other clients’ screen-
shot (if there is one).

All the code is written in ANSI C++ using QT [qtl]
for the multithreading and networking aspects and the
VCGLib [vcg] (a header only library) for loading and ren-
dering geometric models and performing simple matrix
computations.

Along with the framework we provided two ‘hello world’
clients for which we used SDL [sdl] and glut [glu] respec-
tively, to handle user commands through mouse/keyboard
and windowing. However these libraries do not have to do

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



2028 F. Ganovelli & M. Corsini / eNVyMyCar

Figure 2: A simple example of circuit encoded in a bitmap
image.

with the NVMC framework itself and other libraries could
equally well be used.

2.3. Creating a circuit

Along with the framework for playing the game, we also
provided the students with a simple program to create new
circuits. Instead of using general tools for modelling, such
as Blender or Google SketchUp and then convert them to
our data structure, we decided to use RGB images to code a
scene and therefore to write a simple converter from a RGB
image to NVC format. Although obvious limitations arise
using this encoding, it was more than enough for our needs
and a simple image editor (i.e. Microsoft PaintBrush) was
sufficient to create a new circuit. Figure 2 shows an example
of an image coding a scenario.

3. How Exercises Fit into the Project: From a Black
Screen to a Working Client

It does not take long to describe the NVMC framework to
students, since it is a matter of showing a few simple C++
classes. Depending on the students’ background additional
work may be needed. For example, it may be that most student
have an object-oriented programming background but little
or no knowledge of C++. In fact, in most OOP courses
Java, rather than C++, is used to illustrate computer science
principles. Hence, sometimes two or three lectures are needed
to fill in any specific gaps.

We stress that the development of the project may start at
the same time as the theory since, as shown below, the basic
concepts and related exercises naturally map onto the task
for implementing a working client.

3.1. Basic CG exercises

The minimal expected result from an introductory course
on CG is that the students become familiar with the theory
and implementation of geometric transformations, lighting

and texturing. Below we show how these concepts can be
deployed to client functionalities.

Geometrical transformations. One of the first prob-
lems that a student encounters is how to handle basic
geometric transformations correctly. Such transforma-
tions are necessary to visualize the car during its move-
ment, to place the elements of the scene, and to manage
camera movements. Obviously, all the students have to
deal with this step. In addition, students can use car
models composed by several parts and moving such
parts in order to produce a more realistic animation of
the cars, meaning, for example, that they need to com-
pose roto-translation matrices to make the wheels roll
and steer.

Lighting. First, the basic Phong illumination model that
OpenGL provides is used to implement very basic light-
ing: typically and ambient light plus a directional light
corresponding to the sun (which is part of the state).
It is common to try to do something more, for exam-
ple, to put lamps along the street implemented with a
positional light and an emissive material, or use the
spotlight to implement headlamps (which also involves
some more linear transformation). This example is par-
ticularly useful to understand how much phong lighting
is dependent on triangulation (the terrain is flat and typ-
ically tessellated with few polygons, therefore students
are not happy about how the headlamps light the street).

Texturing. The first approach consists in applying tex-
tures to the buildings, the terrain, the road and the car to
ensure a minimal visual richness. Typically the student
(wisely) decides to use one tileable texture for the ter-
rain and another one for the street. The faćades of the
buildings need to be textured with special care to keep
the appearance consistent with the scale of the scene
(100 m large windows are not acceptable).

3.2. Advanced CG exercises

To be able to implement the basic functionalities of the client
is the minimum required to reach a sufficient score in the
assessment. At this point the students are encouraged to im-
prove their clients by adding new functionalities or enhancing
the existent ones. Thus, a (not obligatory) list of choices is
given to the students, each with a brief explanation and some
references to further documentation.

Some students opt for simple techniques concentrating
their effort in creativity while others try to implement more
complex techniques. Below we report their preferences:

Billboarding. Billboarding is one of the image-based
rendering technique shown to the students during the
course. One of the typical uses of billboarding is of
course for trees (see Figure 3, bottom right-hand panel).

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



F. Ganovelli & M. Corsini / eNVyMyCar 2029

Figure 3: Some clients developed by the students. (Top left-hand panel) Dynamic reflections on the car. (Top right-hand panel)
Projective textures for headlights and tunnel lamps faked with textures. (Bottom left-hand panel) Motion blur and lens flare.
(Bottom right-hand panel) Billboarding for showing trees.

Most students replicate such example to show the trees
in theirs scenarios or to implement lens flares. Some stu-
dents use billboarding in other way such as to add street-
lamp or to render the interior of the vehicle with screen-
aligned billboarding (see Figure 4, left-hand panel).

Projective texture mapping. As previously stated,
students are generally not happy with headlamps
implemented with per-vertex lighting, whereas with
projective texture mapping they obtain a much more

satisfactory effect. They also need to use multitextur-
ing and blending, i.e. to become more confident with
texture mapping, to achieve a satisfying result (see
Figure 3, top right-hand panel).

Skybox. Generally, students are not satisfied with the
look of the scenery until they see a sky over the car and a
landscape around the main road. Most students exploit
cube mapping to render a skybox and its reflection on
the car (see Figure 3, top left-hand panel).

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



2030 F. Ganovelli & M. Corsini / eNVyMyCar

Figure 4: More clients: (Left-hand panel) Screen aligned billboarding for the view from the interior of the car (Right-hand panel)
The mountains are procedurally generated as a height field and rendered with a displacement map assigning a height-dependent
texture (grass, mountain and snow).

Dynamic cube mapping. Reflection of the whole envi-
ronment on the car is accomplished by Dynamic Cube
Mapping (see Figure 5, left-hand panel).

Lighting models. Students who want to make practice
with vertex or pixel shaders are advised to implement
one of the lighting models (e.g. Cook-Torrance, Oren-
Nayar, Minnaert) they have seen in class.

Shadow mapping. Shadows add realism to the render-
ing and provide a professional look to the final rendered
scenery. Our course did not deal with other shadowing
techniques than shadow mapping such as volume shad-
ows or soft shadows.

Accumulation buffer. Students use accumulation
buffer to implement some interesting effects such as
motion blur or depth of field. The use of accumulation
buffer to implement such effects is advised during the
course as a simple alternative to the implementation
with shaders.

Particle systems. Particle systems can be used in sev-
eral ways in a car race simulation. The particles could
simulate dust when the car accelerate or fire when the
cars crash with something (since the collision detection
is not implemented in the framework this effect is usu-
ally enabled/disabled by the users). Another effect that
students can add to their client with a particle system
is an atmospheric effect such as rain or snow. Particle
systems was not among the recommended choices, sim-
ply because they are not part of the course. Nonethe-
less, its dynamic nature attracted at least one student

in two out of the three courses where NVMC was
used.

4. Results

So far the NVMC framework has been used in three courses:
the CG course of the University of Siena held in 2008 (six
students) and in 2007 (10 students) and the University of
Ferrara’s Advanced CG course of the (14 students) held in
2007. It is important to underline that the choice of NVMC
is not mandatory, i.e. students could choose to develop an
NVMC client, to do another project chosen from a list, or not
to a project at all (in this case a penalty to the final evaluation
is applied). Nevertheless, 28 out of 30 students choose to use
NVMC for their project.

In order to evaluate the effectiveness of the NVMC frame-
work as a tool to learn CG after the examination the students
have been interviewed informally and almost all of them
enjoyed the project and found the framework a useful learn-
ing tool. Apart from the positive interviews another factor
that demonstrated the effectiveness of the framework was
the good results obtained by several students. Here, we show
some screenshots of the developed clients. About 60% of
students implemented more than the basic features necessary
to reach a sufficient score (good camera handling/standard
lighting/texture mapping/skybox). For example, some use
shaders to implement complex lighting models. Others in-
serted particle systems to produce dust, fire, or other similar
effects. Others improved the look of theirs car with dynamic

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



F. Ganovelli & M. Corsini / eNVyMyCar 2031

Figure 5: Two players connected during the race. Note that each client provides its own view of the scenario, including the
appearance of the cars.

reflections. A few used procedural techniques for some
of the elements in the scene. Most used billboarding to ren-
der trees and projective texturing to draw headlights. In terms
of the artistic aspects only very few students contributed with
their own graphics (e.g. creating original textures) or devel-
oped interesting ideas from a visual point of view. This is
probably related to the fact that the majority of the students
had a technical rather than artistic background.

On the downside, although the framework has been de-
signed to be very easy to use and the student has provided
with an ‘hello world’ fully working client, it would have
helped them to have a detailed technical manual about the
framework and a FAQ. This would have speeded up client
development and help to avoid some troubleshooting, partic-
ularly for those students who tried to modify the framework
a bit in order to fit their needs. Despite this, as just stated,
all the students are able to finished theirs project within 2–3
weeks with good results.

We found one shortage in the students’ background which
usually is not optimal. In fact, even if the pre-requisite is
the OOP programming, Java programmers could report some
initial difficulty with the use of STL libraries and other minor
aspects of the framework.

5. Discussion

NVMC is not a complete game: collision detection among
cars and scene elements, scores and power-ups, and other
typical features of game engines are not considered in the

current version. The main reason for this is that they were
not necessary for our purposes. Furthermore, we did not want
to include difficulties unrelated to CG. Collision detection for
example, could be integrated in NVMC in a course special-
izing in game physics. Similarly, Level of Detail representa-
tions, procedural modelling or real time global illumination
techniques could be integrated in a more advanced course
where these techniques would be explained in detail.

Finally, our framework can be tailored for use as an edu-
cational tool in other courses. For example, the framework
can be easily reused for an Artificial Intelligence (AI) course,
simply binding the commands to control the cars to an AI
engine instead of the keyboard.

6. Conclusions

In this paper we have presented NVMC which is a framework
to support the teaching of CG at basic and advanced level. The
use of the NVMC framework provides substantial advantages
to the students: strong motivation given by the ‘computer
games effect’, personalized learning and retention.

At the time of this writing, NVMC has so far been used
as part of four CG courses. Although a rigorous study about
the effectiveness of the framework has not been conducted
yet, student feedback was very encouraging. In addition, the
framework can be easily modified for use in other Computer
Science courses such as AI, Games Physics and Advanced
Geometric Modelling.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



2032 F. Ganovelli & M. Corsini / eNVyMyCar

The future of this project is essentially to extend the use of
NVMC to further CG classes, to gain more experience and
finally to write a concise textbook.

The NVMC project is hosted by Source Forge and can be
found at the URL: http://envymycar.sourceforge.net.

Acknowledgement

We wish to thank all the students of our courses for their
feedback and their enthusiasm. Like many other researchers
in Italy, we teach University courses as freelancers, so we
also thank our affiliating institution, the National Research
Council, for allowing us to take some time off our regular
activities.

References

[BDHB08] BOERS J., DOBBE J., HUIJSER R., BIDARRA R.:
From a Light CG Framework to a Strong Cannibal Ex-
perience. In Cunningham S., Kjelldahl L., (Eds.), Euro-
graphics Association, Creta, Greece, pp. 15–19.

[CC05] CLAYPOOL K., CLAYPOOL M.: Teaching software
engineering through game design. In ITiCSE ’05: Pro-
ceedings of the 10th Annual SIGCSE Conf. on Innovation
and Technology in Comp. Sci. Education (New York, NY,
USA, 2005), ACM Press, Caparica, Portugal, pp. 123–
127.

[CC07] CHEN W. K., CHENG Y. C.: Teaching object-
oriented programming laboratory with computer game
programming. IEEE Transactions on Education 50, 3 (Au-
gust 2007), 197–203.

[Ges07] GESTWICKI P. V.: Computer games as motivation
for design patterns. In SIGCSE ’07: Proceedings of the
38th SIGCSE Technical Symposium on Computer Sci-
ence Education (2007), ACM Press, Covington, KY, USA,
pp. 233–237.

[glu] Glut - the opengl utility toolkit. More info on: http://
www.opengl.org/resources/libraries/glut/.

[HS05] HOETZLEIN R. C., SCHWARTZ D. I.: Gamex: a plat-
form for incremental instruction in computer graphics and
game design. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Educators Program (2005), ACM Press, Los Angeles,
USA, pp. 36.

[qtl] Qt http://www.qtsoftware.com/.

[sdl] Simple direct media library. http://www.libsdl.org/.

[STG08] SUMNER R. W., THUEREY N., GROSS M.: The eth
game programming laboratory: a capstone for computer
science and visual computing. In GDCSE ’08: Proceed-
ings of the 3rd International Conference on Game Devel-
opment in Computer Science Education (New York, NY,
USA, 2008), ACM Press, Miami, FL, USA, pp. 46–50.

[vcg] Visualization and computer graphics library. http://
vcg.sourceforge.net/.

[XBK08] XU D., BLANK D., KUMAR D.: Games, robots,
and robot games: complementary contexts for introduc-
tory computing education. In GDCSE ’08: Proceedings of
the 3rd International Conference on Game Development
in Computer Science Education (New York, NY, USA,
2008), ACM Press, Miami, FL, USA, pp. 66–70.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.


