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ABSTRACT

Despite the increasing interest in digital watermarking of multimedia data, watermarking of 3D geometrical
models has received little attention by the research community. One of the main reasons is that geometric data
is intrinsically complex to handle, in addition a lot of diverse attacks can be thought of that are not possible
in the 2D and 1D cases. So it is very difficult to develop robust watermarking algorithms for 3D models. In
order to overcome the above problems most of the systems proposed so far exploit the knowledge of the original,
non marked, mesh for watermark recovery. The practical usefulness of non-blind schemes, though, is very
limited, hence the need to develop new blind schemes for 3D watermarking. In this paper we propose a blind
watermarking algorithm for 3D meshes. Watermarking is achieved by perturbing the position of the vertices of
the model according to a spherical pseudo-random bumped surface. The pseudo-random position and amplitude
of the bumps encode the watermark. In order to gain robustness while keeping the distortion to a minimum, the
watermark is embedded into a low resolution version of the mesh. The coarse version of the model is obtained by
a MAPS! (Multiresolution Adaptive Parameterization of Surface) algorithm. The base domain produced by this
algorithm is used to obtain the full resolution watermarked model from the coarse watermarked one. Watermark
recovery is accomplished by means of a standard correlation detector. Experimental results show that the system
assure high visual quality of the watermarked model, and that a good degree of robustness can be reached for
models with a sufficiently high number of faces.

Keywords: Digital watermarking, 3D watermarking, geometric modelling, polygonal meshes, multiresolution
3D analysis.

1. INTRODUCTION

In these last years the applications using and managing 3D geometry data are quickly increasing in number even
thanks to the computer graphics power reached by standard personal computers. For these reasons the diffusion
of 3D models is in progress. Another key factor in the wide diffusion of a given data type is the existence of
efficient algorithms for the processing of this media type. For example, for the image and video case a lot of
processing tools to denoise, compress, transmit, enhance, analyse and edit these kind of signals exist. In this
framework, computer graphics research community has recently put a lot of effort to provide a new mathematical
framework for the so-called Digital Geometry Processing (DGP)? .

The creation of new tools to process geometric data is very helpful for 3D watermarking technology. As a
matter of fact, 3D watermarking sets a brand new class of problems that were not present in the image and video
cases; geometric data has intrinsic curvature, topology and no implicit ordering (with respect to the regular
sampling of an image): it is not a simple 2D to 3D extension. Additionally a 3D model may undergo more
complex and sophisticated attacks with respect to image and video media type. So it is very difficult to extend
the well-consolidated image and video watermarking algorithms to this new type of media. The consequence
is that while a lot of techniques and methods to embed copyright information in image and video have been
developed and tested with good performances, only few algorithms to hide confidential information (for IPR,
authentication and so on) into a 3D model have been developed.

In the following we provide a panoramic of the peculiarities of 3D watermarking, focusing on watermarking
of polygonal meshes and we present a novel watermarking algorithm to embed a detectable watermark® into a
polygonal mesh.
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1.1. 3D models and representation

Different representations are commonly used for 3D models; for example a 3D model can be described as a
collection of parametric curves (e.g. Non-Uniform Rational B-Splines, NURBS?) or as a set of implicit surfaces*.
More usually, a 3D model is represented by polygonal meshes.

A mesh can be seen as a t—uple (K, V) where V = {v; € R3i = 1...N,} is the set of the vertices of the
model (points in R?) and K is a set encoding adjacency information for vertices, edges and faces of the mesh.
In particular K is formed by subsets of {1,..., N, }. These subsets are called simplices of three types: vertices
v={i} €V, edges e ={i,j} € &, faces f = {i,j,k} € F. The set K is called simplicial complex and is defined
as K =V{JEUF. A vertex v; is a neighbor of another vertex v; if an edge exists that connects v; and v;. The
set of all the neighbors of a vertex v; is called I-ring of the vertex and is defined as vy (i) = {j|(¢,5) € £}. The
cardinality of vq(7) is called degree or wvalence of the vertex v;. The geometric realization of a simplex s € K,
denoted with ¢(s), is the strictly convex hull of the vertices v; with ¢ € s. For example the geometric realization
of an edge {i,j} € &€ is the segment connecting the vertex v; with the vertex v;, that of a face {i,j,k} € F
is the triangle defined by the vertices v;, v; and vy, and so on. The 3D model is the geometric realization of
the mesh ¢(K') defined as |J,cx ¢(s). In this work we assume that the model is represented through a mesh,
since the mesh is the lowest common denominator of surface representation. In fact, it is easy to convert other
representations to meshes. Usually the vertices are characterized not only by theirs coordinates but even by
other attributes such as texture coordinates, color and so on. Here we are interested only in the geometry of
the mesh so we do not take in account these attributes. In the following, when we refer to a mesh we intend a
triangular mesh, i.e. a mesh composed only by triangles. This assumption implies no loss of generality since every
polygon of a non-triangular mesh can be triangulated to obtain a triangular mesh. A mesh is called irreqular if
its vertices can have any valence, completely-reqular if all vertices have the same valence and semi-regular if most
of its vertices have the same degree except a small number that can have any valence. This last definition arise
because a semi-regular mesh is obtained by repeatedly regularly subdividing® an irregular coarse one. During
the subdivision process the irregular vertices of the initial mesh remain irregular while most of the newly inserted
vertices converge to valence six (for triangular semi-regular mesh). This classification is very important because
for semi-regular meshes (and, obviously for completely regular ones) a lot of geometric processing tools exist. For
example wavelet decomposition is defined only for semi-regular and completely-regular meshes® . An irregular
mesh can be converted in a semi-regular one by a remeshing operation™” . Our algorithm works on irregular
meshes not to impose any restrictions on the regularity of the to-be-watermarked mesh.

1.2. 3D watermarking issues

In digital watermarking, a digital code, or watermark, is embedded into the 3D model, called the host or cover
model, so that a given piece of information is indissolubly tied to it. This information can later be used to prove
ownership, identify a misappropriating person, trace the model dissemination through the network, or simply
inform users about the rights-holder or the permitted uses.

The way watermarking algorithm recover the watermark from the model has a strong impact on practical
applications, it is then common to classify digital watermarking techniques by their decoding processes.

e Blind vs. non blind. A watermarking algorithm is blind if it does not need to compare the marked
and unmarked documents to recover the watermark. Conversely, a watermarking algorithm is not blind
if it needs the original data to extract the information from the marked document. Blind techniques are
sometimes referred to as oblivious or public.

e Readable vs detectable. In this case we distinguish between algorithms that embed a code that can be
read without knowing it in advance, and those that insert a mark that can only be detected, that is, a user
can only verify whether a given code is contained in the document. Detectable watermarking is sometimes
referred to as 1-bit watermarking because the detector output is just yes or no.

*The implicit method uses an equation depending by axis variables to describe a shape. For example the equation
z2 + 3% + 2% = 1 represents the sphere of radius 1.



In this paper we focus on blind, detectable watermarking of 3D meshes. As to the requirements a watermarking
system must satisfy, the most important ones are robustness, i.e. the ability to survive manipulations, unobtru-
siveness, and capacity. Of course, the exact meaning of the above requirements depend on the type of media
under consideration, thus in the following sections we specialize them to the 3D case.

1.2.1. Requirements of 3D watermarking
Watermark capacity

Although in general the watermark capacity does not depend on the particular algorithm, but it is related
to the characteristics of the host signal, of the allowed embedding distortion and of the attack strength, we will
refer to the capacity of a given technique as the amount of information bits that the watermark is able to convey.
In this sense, capacity is a fundamental property of any watermarking algorithm, which very often determines
whether a technique can be profitably used in a given context or not. Generally speaking, capacity requirements
always struggle against two other important requirements, that is imperceptibility and robustness.

Having said this, it is obvious that the capacity of any 3D watermarking system is in relation with the
complexity of the given mesh, where by mesh complexity we intend the number of faces and vertices it contains.
Thus, a mesh with millions of faces will convey more bits than a simple mesh with a few faces.

Imperceptibility

The watermarked model must maintain the same visual quality of the original one. The importance and the
meaning of this property depends on the intended use of the model. Usually the intended use is viewing; so
the watermarked model and the original one must appear identical to visual inspection. This is a crucial point
because often a user sees a 3D model in an interactive way. On the contrary, images and video do not allow
such an extensive user-interaction, so it is by far simpler to hide the watermark using appropriate perceptual
masks® ? . It is important to underline that for some applications the imperceptibility of the watermark may not
be a sufficient requirement. This is the case, for example, when we want to analyze the deformations of cultural
heritage goods by periodic 3D acquisition of their surfaces.

Robustness

Every watermarking algorithm to be used in IPR (Intellectual Property Rights) applications has to be robust
against manipulations, usually called attacks, of the watermarked media. The problem with 3D watermarking
is that a lot of attacks are possible. In section 1.2.3 we give more details on 3D watermarking attacks.

1.2.2. Embedding domain

The first step towards the definition of a watermarking algorithms, consists in the choice of the host features, i.e.
the selection of a set of properties of the cover 3D model that will bear the watermark information. Of course,
many possibilities exist here, however, as we already said, we are interested in the geometry of the model, so we
focus only on geometric and topological features.

e Geometric Features. The main geometric features of a mesh are its vertices. One possible way to
embed the watermark is to modify the position or the normals of vertices (vertex normals are related to
the curvature of the mesh). Both these entities are altered by perturbing the coordinates of mesh vertices.

e Topological Features. These features are related to the connectivity of the mesh vertices. Usually, a
set of connected vertices is selected by using geometric features. Then, the topology of these vertices is
redefined to encode one or more bits.

In the proposed approach we have decided to use as embedding features the vertices position because vertices
contain most of the information of the mesh and the approaches based on topological features suffer the re-
triangulation attack (see next section), that is straightforward to implement.
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Figure 1. Re-triangulation attack.

1.2.3. Attacks

One of the main problems with 3D watermarking is that a lot of complex attacks can be carried out on a
polygonal mesh. Possible attacks range from simple attacks such as rotation, translation and uniform scaling to
complex attacks such as remeshing that involves geometric resampling with topology changes of the surface. It
is difficult to imagine all the possible attacks on a 3D model. Some of the most important ones are:

e Translation/Rotation/Uniform Scaling. These geometric transformations are very used in computer
graphics to position a 3D model within a scene. In addition, geometric transformations such as affine and
projective transformations may be used, even if they are less common that plain translations, rotations
and isotropic scaling.

e Noise. For noise attack we intend the addition of random vectors to mesh vertices. The modulus of these
vectors have to be small compared with the mesh dimension to preserve the overall shape of the model.

e Re-triangulation of vertices. This attack concerns the changes between the connections of the mesh
vertices (figure 1).

e Mesh smoothing. A smoothing of the surface represented by a polygonal mesh can be obtained by mesh
filtering such as Taubin filtering.!® This kind of filters act on the mesh as a low-pass filter attenuating the
roughness of the surface.

e Polygonal simplification. Polygonal simplification is often used to transmit a low-level version of the
model or to optimize a model eliminating most of the non-salient faces.

e Cropping. Cropping concerns the disjunction of a part of the model. Users can discard the pieces of the
model that they do not need (e.g. the hand of a statue).

e Remeshing Remeshing is used to regularize a mesh converting an irregular mesh into a semi-regular!:”

or a completely-regular'! one. This operation can be seen as a geometric resampling of the shape of the
model followed by a re-definition of the vertices connections (a re-triangulation) in order to give the mesh
vertices the desired valence.

1.3. Previous works on 3D watermarking of polygonal meshes

In these last years some algorithms to embed data into 3D polygonal models have been developed. Most of them
have been proposed by Ohbuchi et al.!? 13 and by Olivier Benedens'* % .

More recently, 3D watermarking algorithms that use a multiresolution approach, such the algorithm proposed
in this paper, have been developed!® 7 . The main limitations of these algorithms is that they require the original
model to recover the watermark. On the contrary, the fundamental feature of our multiresolution-based technique
is blindness, i.e. our algorithm does not need the original model to extract the inserted watermark. Additionally,
the proposed method provides a high visual quality of the watermarked model.
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Figure 2. Sketch of the proposed approach.

2. A MULTIRESOLUTION 3D WATERMARKING FRAMEWORK

As sketched in figure 2, our approach to the 3D watermarking problem is a multiresolution one. We start by
performing a multiresolution analysis of the mesh, since we assume that the rough shape of the mesh is already
contained in a low resolution version of the model, and that such a shape can not be modified by the attacker.
Then we perturb the vertices of this coarse version and extend these perturbations to the higher resolution
versions of the mesh so to obtain the final marked-mesh. In the watermark extraction process, the coarse version
of the model is computed again by replicating the analysis performed by the embedder. The detector, then,
looks for the watermark at the coarse level.

The described approach gives a class of blind watermarking algorithms. In fact, the multiresolution analysis
can be performed by using a large number of well-consolidated different methods and, consequently, the extension
of the watermark from the coarse version to the original one can be done in many different ways. So, a lot of
variations can be investigated to find the most robust and promising ones. The main idea behind the multi-
resolution approach is that the insertion of the watermark in a low-resolution version of the original model has
two benefic effects. The first one is that the visual quality of the watermarked model is not impaired, the second
one is that some attacks, hopefully the most common ones, leave the coarse version of the model virtually intact.
The latter effect can be motivated by noting that since the low resolution version captures the very content of the
model, it can not be modified without degrading the model quality. Stated in another way, we are following the
old watermarking paradigm requiring that the watermark be injected into perceptually significant components
of the host data.

As to the algorithm used to derive the coarse version of the model, we used a variant of the Multiresolution
Adaptive Parameterization of Surface (MAPS)! algorithm to obtain a coarse parameterized version that enable
us to extend the watermark from the low-resolution mesh to the original one. Before describing the insertion
and extraction process we now give a brief explanation of the MAPS algorithm.

2.1. MAPS algorithm

An important element in the design of algorithms which manipulate mesh approximations of 2-manifold is the
construction of a parameterization of the mesh. Usually, the manifold is parameterized over a base domain
consisting of a set of planar regions that piecewise map the original mesh by a function defined from this base
domain to R3. The main idea of MAPS is to use mesh simplification to induce a parameterization of the original
mesh over a base domain consisting of a coarse version of the input mesh where each triangle parameterizes a
region of the starting mesh (figure 4). In a few words, during the simplification process a mapping is constructed.



Figure 3. A example mesh with previously assigned vertices. The reassignment after a simplification step (vertex v is
removed by collapsing the edge e, then it is assigned to the evidenced triangle).

Each point of the original mesh is mapped onto the surface of a triangle of the base domain, by paying attention
to record the information (details) that permit to recover the original position of the point on the original mesh.

More specifically, let (K ™) be the geometric realization of the original mesh (level N), ¢(K°) the geometric
realization of the base domain (level 0) and II a bijection from ¢(K™) to p(K°) that maps the point p € p(K™)
on the point p° € p(K?°) in the following way:

p° = ap; + Bpj + Vpr, (1)

where (p;, p;, pr) defines a triangle of the base domain and «, § and y are barycentric coordinates (a+ 3+~ = 1).

The mapping IT is constructed during the simplification process computing, for each simplification step, the
piecewise linear bijections ITV =1 between ¢(K?Y) and o(KN~1) starting with IV, which is the identity, and
ending with I1° = II. In particular, for each vertex (call it p;) removed by a simplification step the flattening
1-ring around p; is considered. After the flattening, the simplification is performed and p; is assigned to the
face of the new triangulation where it lies (see vertex v in figure 3). So, let (a, 8, ) the barycentric coordinates
of p; with respect to the flattened face where it lies, i.e. p; = au(p;) + Bu(pk) + vYp(pm), the map results
OV=Y(p;) = apj + Bpk + YPm- The operator u(.) performs a proper (conformal map'®) flattening of p;(i). It
is important to underline that not only the removed vertex needs to be assigned to a face, but even all the
previously-assigned vertices involved in the simplification step must be reassigned (figure 3).

Figure 4 shows the parameterization of a particular of the bunny model (69,451 faces) over a base domain
composed by 500 faces. After the parameterization it is possible to determine the position on the mesh of each
point of the base domain, through II"!. In particular, given a point p on the base domain and the triangle which
contains it, i.e. p = all(p;) + BII(p;) + vII(pk), the inverse mapping is:

I (p) = ap; + Bp; +pi € p(KY), (2)

where p;, p; and py are the original mesh vertices and «, 3 and «y are the barycentric coordinates of p on the base
domain with respect to the triangle (II(p;), (p;), I(pk))-

We decided to use the MAPS algorithm because it allows to explicit control the number of triangles of the base
domain, it avoids some problems typical of mesh parameterizations and the constructed base domain coincides
with a coarse version of the original model. In our implementation we use Garland’s simplification'® algorithm
to simplify the mesh. This simplification is based on a quadric error metric that provides a coarse version that
is a good geometric approximation of the original model.

2.2. Insertion

The watermark embedding process can be described by the following steps:

1. The MAPS algorithms is applied to the original mesh. The output of this step is a coarse parameterized
version of the original model. Thanks to this we can associate each vertex of the original mesh to a point
on a base triangle. In the next we see how we have used this vertices association to compute details that
allow us to reconstruct the model from the deformed (watermarked) coarse version.
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Figure 4. Left: Input bunny model (detail). Center: Computed base domain; each points on base triangle correspond
to a vertex on the input mesh. Right: Regions of the original model colored according to their assigned base triangle.
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Figure 5. Watermarking sphere generation. From right to left: the starting icohesaedron, the icohesaedron subdivided
3 times, the sphere during the ”bumps adding” process and the final watermarking sphere.

2. A bumped spherical surface is generated starting from a pseudorandom sequence W representing the to-
be-embedded watermark. In the following we refer to this surface with the name watermarking sphere.

3. The vertices of the base domain are perturbed according to the watermarking sphere.

4. The details of the model, that were stored previously, are re-add to the watermarked coarse version of the
mesh (reconstruction phase) to produce the watermarked model.

2.2.1. Watermarking sphere generation

The watermarking sphere is generated by a pseudo-random sequence of linear “bumps”on a spherical mesh of
original radius R. First of all the spherical mesh is created by recursively subdividing an icosahedron. Then
this flat sphere is bumped according to the watermark sequence W = {wq,ws ... wn, }. The watermark W is
nothing but a pseudo random sequence uniformly distributed in the range [— Rmaz, Rmaz]- The sequence length
Ny coincides with the number of vertices of the sphere. The radius of each vertex v; of the sphere is altered by
adding to it the quantity w;.

Two parameters control the generation of the watermarking sphere: R,,.., determining the strength of the
watermark and the number of times that the icosahedron is subdivided. For example subdividing the icosahedron
five times yields a watermarking sphere composed by 20 x 4° = 20,480 faces. The number of faces of the
watermarking sphere (Ny) is an important parameter to take in account because it influences, with R4, the
recovery process and the robustness of the algorithm. More specifically, it determines the degree of correlation
of the bumps on watermarking sphere: if Ny is much larger than the number of vertices of the model, then the



Figure 6. Watermarking spheres. The parameter Rasq, increases from left to right (ranging from 0.2 through 2.0). The
spheres of the first row have Ny = 5,120 faces, those of the second rows and third Ny = 20,480, and Ny = 81,920
respectively.

watermark may be assumed to be uncorrelated, otherwise the non-null correlation between the points of the
sphere must be taken into account.

The watermarking sphere generation process is depicted in figure 5, whereas some watermarking spheres
obtained with different parameters of Ny and Ry, are showed in figure 6. As it may be seen R,,q, controls the
“height”of the bumps while N controls the density of bumps on the sphere.

2.2.2. Watermarking process
Watermark embedding corresponds to step 3 of the insertion algorithm.

All the watermarking process is better described in polar coordinates, so when we refer to a vertex position we
have to think to it in spherical coordinates (¢, 6, ). Imagine to place the watermarking sphere in the baricenter
of the coarse version of the to-be-marked model; by extending the lines connecting a vertex v; to the baricenter of
the mesh we identify a point of intersection P; on the watermarking sphere characterized by spherical coordinates
(®p,,Op,, Rp,). Watermarking is achieved by modifying the position of each vertex of the coarse parameterized
version according to the radius of P;. More specifically, by letting r; be the distance of the i-th vertex from the
baricenter of the 3D model, the vertex is moved to a new position defined by the same angular coordinates and
a new radius given by:

Tiw =75 +Y(Rp, — R) =1 + 7, (3)

where 7 is a parameter controlling the watermark strength, Rp, is the radius of the sample value on the water-
marking sphere associated to the vertex v;, R is the radius of the non-marked watermarking sphere and where
we let Az = Rpi — R.

2.2.3. Model reconstruction

After the base domain is produced by the MAPS algorithm we consider, for each point of the base triangle
associated to a vertex of the original mesh, the vector connecting it to its original position. These vectors



represent the ”details” to reconstruct the mesh from the coarse version. In fact, to reconstruct the mesh we
simply adds these vectors to theirs associated points over the base domain. These vectors are stored before
watermark insertion. To obtain the watermarked model from its watermarked coarse version we re-add to each
point of the base domain its associated detail vector.

Let £ = (ts,ty,t.) be the detail vector associated to the point p = (p,,py,p.) liying on the base triangle
T(v1,v2,v3). After watermark insertion the position of p changes. To find the new position of p, say p,,, we use
the baricentric coordinates («, 3,7) of p with respect to triangle T'. So, if p is expressed as p = avy + Bvg + Yv3
its new position becomes p,, = V1, + Bv2.w + VU3, To obtain the position of p,, on the original mesh (P,)
we simply add ¢ to pw; Pw = 4+ puw, while the original position was P = £ + p.

2.3. Recovery

Given the watermark W and a mesh, the detector must decide whether W is contained in the mesh or not. This
problem reduces to a standard hypothesis testing problem. Under the hypothesis that r; and A; are uncorrelated
i.i.d. normal random variables, the optimum watermark detector reduces to a correlation-based detector?® . As
previously noticed, it is important to underline that r; and A; are uncorrelated if and only if Ny is sufficiently
high with respect to the number of vertices of the base domain.

To be specific, let us assume the to-be-inspected model has already been simplified according to Garland’s
algorithm. The simplification stops when the coarse version reaches a prefixed number of vertices (n). Then, by
relying on W the watermarking sphere is generated and the correlation between the radial components of each
vertex and the corresponding points on the bumped sphere is computed:

1 n
P = ﬁzriAia (4)
i=1

where r; and A; are the same as in equation (3), and n is the number of vertices of the base domain. Of course
the assumptions under which the correlation-based detector is optimum may not hold in practice, however for
the sake of simplicity, and for the difficulty to define a proper model fitting the statistics of r; and A;, we decided
to adopt a correlation based detector. Such a choice is validated a posteriori by means of experimental results.
To summarize, let Hy and H; denote the following hypothesis:

e H, : the watermark given by W is not present or another watermark is present

e H; : the watermark is present

We accept as true the hypothesis H; if p > T),, otherwise we accept as true Hy. The probability to accept
H, when the watermark is not present is called false detection probability, Py = P{p > T,|Hy} , while the
probability to accept Hy when the watermark is present is called missed detection probability and is given by
P,, = P{p <=T,|H,}. By fixing P and by invoking the central limit theorem, it is possible to compute pP,,2%0:

vl -1
P, - lerfc (7 nAZ — /2erfc (2Pf)or> ,
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where A2 = %Z?Zl A2, erfc() is the error function and o2 is the variance of the radial component of the mesh
vertices. The threshold T}, can be expressed as a function of P;:

202A2 _
T, = UTTerfc_l(ZPf) + pr A, (6)

where A = % S, A; and p, is the expected value of the radial component of the mesh vertices.

It is worth noting that from equation (5) and (6) it is possible to see that the number of vertices of the
watermarked coarse version plays an important role in the robustness of the watermarking algorithm, since the
higher the n the lower the P, for a given Pj.
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Figure 7. Visual perception of the watermark model for different values of v and n (defining the coarseness of the base
domain). In all the cases A belongs to the [-0.1,0.1] interval. Note that the original Bunny model has 69,451 faces.

3. EXPERIMENTAL RESULTS

In this section we evaluated the effectiveness of the proposed watermarking technique from the points of view
of obtrusiveness and robustness. With regard to visibility we obtained excellent results, whereas those related
to robustness are still preliminary and show that an acceptable degree of robustness can only be achieved for
meshes containing a sufficiently large number of vertices.

3.1. Watermark visibility

We evaluated the visibility of the watermark as a function of the watermark strength and the resolution of the
base domain the watermark is embedded in. The results we obtained confirm the validity of the multiresolution
approach, in that the visibility of the watermark diminishes when the hidden information is embedded at a
lower resolution level. An example of this behavior is given in figure 7, where the bunny model is watermarked
at different resolution levels and with different watermark strengths. In all the cases we let A be uniformly
distributed in the [-0.1,0.1] interval. As it can be seen, when the watermark is embedded at a very low resolution,
a higher v can be used without compromising invisibility. Whereas, at high resolution levels, even a very small
v results in a visible watermark.

3.2. Watermark robustenss

A rough measure of watermark robustness is given by ROC curves, in which the missed detection probability
is plotted as a function of Py. Actually, ROC curves are plotted by assuming that no attack is present, ROC
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Figure 8. Receiving Operation Characteristic (ROC) Curves for different values of v and n. The other parameters
appearing in equation (5) have been set by looking at the values they assume for the Bunny model, i.e o2 = 0.032,
A € [-0.1,0.1].

curves characterized by extremely low values of Py and P, are a good indication that the watermark is a robust
one (at least against very simple attacks such as noise addition). In figure 3.2 the ROC curves stemming from
equations (5) are given. As it can be seen, in order to achieve a satisfactorily degree of robustness either a high
value of v must be sued or a large number of vertices must be marked. By comparing the values used to plot
the curves in the figure, and those used to obtain the visibility results shown in figure 7, we can conclude that
the proposed technique is not suitable to watermark rather simple meshes as that describing the Bunny model.
On the contrary, very good results have to be expected when very complex meshes consisting of millions of faces
are considered. This is the case, for example, of the 3D digital models acquired in the field of Cultural Heritage
(for instance, in the framework of the Digital Michelangelo Project of Stanford University 3D models with about
300 millions faces. have been produced).

4. CONCLUSIONS AND FUTURE WORK

In this work we addressed the problem of blind watermarking of 3D meshes. To this aim, we proposed a mul-
tiresolution framework, and presented a practical implementation based on the MAPS simplification algorithm.
Watermark insertion and retrieval are kept very simple, since a simple additive embedding rule, and a correla-
tion detector have been used - the whole embedding algorithm runs in less then 10s on a PC with 512 Mbyte of
RAM. In spite of this, the results we obtained are encouraging. More specifically, the multiresolution framework
permitted us to perfectly hide the watermark within the host 3D mesh, while contemporarily giving promising
indications with regard to robustness, at least if a sufficiently large number of vertices is available. Of course
a much deeper investigation about robustness is needed, especially with regard to typical 3D attacks, such as
re-triangulation, mesh simplification and re-sampling. Future work will also address the possibility of retrieving
the watermark after that the mesh has been rotated or scaled, e.g by inserting a re-synchronization step based
on hierarchical principal component analysis before watermark detection.
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