Short BIO

January 2013 Permanent researcher   at Visual Computing Lab at cnr of Pisa in Italy.

May 2010 Back to Italy, post-doc  at Visual Computing Lab at cnr of Pisa in Italy.

November 2009 – April 2010 Visiting Academic at Media Research Laboratory, New York University New York City,
NY,USA under the supervision of prof. Denis Zorin and prof. Olga Sorkine
May 2009  Got the PHD in Computer Science at the university of Genova under the supervision of Fabio Ganovelli, Paolo Cignoni and Enrico Puppo.

September 2006 – February 2007 Visiting PHD at Computer Graphics Lab, ETH Zurich, Switzerland, under the supervision of prof. Miguel A. Otaduy and prof. Markus Gross

May 2004 Got my Master Degree, Computer Science, Dipartimento di informatica, University of Pisa. And  joined the Visual Computing Lab at cnr of Pisa in Italy.

Recent Projects

SIGGRAPH 2015 Elastic Textures for Additive Fabrication

We introduce elastic textures: a set of parametric, tileable, printable, cubic patterns achieving a broad range of elastic material properties: the softest pattern is over a thousand times softer than the stiffest, and the Poisson ratios range from below zero to nearly 0.5. Using a combinatorial search over topologies followed by shape optimization, we explore a wide space of wireframe-like, symmetric 3D patterns to obtain a small family.

SIGGRAPH 2015 Data-Driven Interactive Quadrangulation 

We propose an interactive quadrangulation method based on a large collection of patterns that are learned from models manually designed by artists. The patterns are distilled into compact quadrangulation rules and stored in a database. At run-time, the user draws strokes to define patches and desired edge flows, and the system queries the database to extract fitting patterns to tessellate the sketches' interiors...

EUROGRAPHICS 2015 Statics Aware Grid Shells

We introduce a framework for the generation of polygonal grid-shell architectural structures, whose topology is designed in order to excel in static performances....

ACM SIGGRAPH 2014 Robust Field-aligned Global Parametrization

We present a robust method for computing locally bijective global parametrizations aligned with a given cross-field. The singulari- ties of the parametrization in general agree with singularities of the field, except in a small number of cases when several additional cones need to be added in a controlled way.

ACM TOG (To be presented at SigAsia 2014)Field-Aligned Mesh Joinery

Mesh joinery is an innovative method to produce illustrative shape approxi- mations suitable for fabrication. Mesh joinery is capable of producing com- plex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth cross field defined over the surface. Cross fields allow representing global features that char- acterize the appearance of the shape. Slice placement conforms to specific manufacturing constraints.